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ASYMPTOTIC FORMULAS FOR THE FORCES
AND TORQUES OF TWO CLOSE PARTICLES IN A STOKES FLUID

TRAN MINH PHUONG', NGUYEN THANH NHAN"™

ABSTRACT

The main goal of this paper is to establish the asymptotic formulas of forces and
torques exerted by two closed spherical particles with prescribed velocities moving in a
viscous fluid. Our proof is based on the decomposition into some more simple motions
after a singular-regular decomposition of forces (torques) in the inner and outer region of
expansions.
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TOM TAT o
Cong thirc tiém cdn cho lwe va ngdu lyc ciia hai qua cdu gan nhau
trong dong chdy Stokes
Muc tiéu chinh cua bai bao nay la thlet ldp cong thitc tiém cdn cua hai dai heong luc
Va ngau luec, dwoc tao ra béi hai qua cau rat gan nhau, chuyén dong véi vin toc xdc dinh
trong mgt dong chay nhét. Chirng minh ciia chiing toi dua trén Viéc phdn chia thanh nhiéu
chuyén dong don gian hon, sau khi da taCh lwc (ngdu hec) thanh tong hai hee va dwa vao
cac khai trién trén mién bén trong va mién bén ngoai.

Tir khéa: phuong trinh Stokes, cdng thirc tiém can, co hoc chit 16ng.

Many of numerical methods were proposed these last years to compute the
hydrodynamic interactions between rigid spheres in a Stokes fluid, such as Brady et al.
(1987, 1988), Cichocki et al. (1994), Ladd (1988), or recently Nguyen (2013),
Lefebvre et al. (2014)... The motivation comes from the model of nano-scale
swimmers, such as sperm cells, swimming bacteria or unicellular algae or recent
advances in creating artificial nanoscale swimmers designed to deliver medication from
nanosized medical devices. Some numerical simulations of these model were also
studied by Alouges et al. (2008, 2013), Lefebvre et al. (2009). To do this, we have to
compute the hydrodynamic forces and torques generated by a viscous fluid on each
particle. The well known difficulty in such numerical simulations is take into account
the singular lubrication forces exerted by the fluid remaining in the gap between close
particles. So it is very interesting if we have an asymptotic formula of force of two
close particles in this case.

The sequel is organized as follows. In Section 1, we describe the setting of the
problem and the main result. The proof of this result is presented in Section 2, 3 and 4.
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1.  Setting of the problem

We consider two non intersecting particles immersed in a viscous fluid. For
simplicity, the particles are identical balls B, B, with radius 1 and centers z,, z,,

respectively. We assume that these closed balls do not intersect and that the fluid fills
the rest of the space. The fluid occupies the domain Q = R® \(B,UB,).

We assume moreover that the fluid inertia effects are negligible compared to the
viscosity (i.e. the Reynolds number is very small Re << 1) so that the velocity u and

the pressure p solve the stationary Stokes equations in the fluid domain,
—Au+Vp=0 in Q,
{ Vu=0 in Q.
On the surfaces of the particles, we consider a no-slip condition,
u=u; on 0B, =12,

where the velocity u; corresponds to a rigid displacement. It is characterized by the

1)

velocity U, at the center z; of the ball B; and by the angular velocity w, (Ui, W; € R3),

u (x)=U; +w, x(x-z), fori=12. (2)

where "x" denotes the cross product in R®.
We are interested in solutions u which decay at infinity, i.e., which fulfills
u(x)—>0, as |x| > +w.

We note that the existence and uniqueness of a solution to (1) is classical in the
Hilbert space

u

,/1+|x|2

(uv), =_[Vu :VV.
endowed with the scalar product Q

The surface density of force exerted on the fluid at some point x of the surface
OB, is given by

D'*(Q):={ueD'(Q.R*): Vuel’(Q), el?(Q), V.u=0in Q¢,

f,(x)=(Vu+Vvu' - pld)n;,

where n; denotes the exterior normal on the surface of the i-est particle B;. The total
force and total torque exerted by the particle B, on the fluid are given by the following
formulas,
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F=[fi0ds, 7= ] (x-z)xf(xds,
oB,

0B

! 3)
where n is the unit normal to the surface and dS is the element of area of the surface.
The main goal of this paper is to give a complete proof of the following result:
The main result
Assume that F and r are respectively the force and torque exerted by the fluid
on the first particle and are given by the formula (3). Let us set
_W—W
U1;U2 + W1;W2 274 a0 w_T'

Then F ~ F®™ and 7 ~7*™" asd tends to 0, where

[ asympt _ Fasympt1 F asympt1 . asympt and Tasympt _ Tasympt Jasympt J_asympt with
1 2 3 1 2 3

V =

F™ =27V, Ind +0(d°),
FAY™ = 27V, Ind +O(d°),
F79™ = —37V,d " +0(Ind),

Tlasympt _ [_zﬂvz +6?ﬂa)ljln d +O(do),

T;sympt — [27Z'V1 +6?ﬂa)2j|n d +O(do)1

- 0(d°),

The proof of this result is given by three steps. In the first step, we decompose the
force (torque) into two parts: regular part and singular part. The regular part is order of

d’, so we just need to establish the asymptotic formula for the singular part. In the
next step, we expand the velocity u and pressure p in the power series of the distance
d. Then, we form the equations of the leading terms based on a decomposition into
inner and outer region of expansion. In the last step, by linearity of the equations, we
decompose the total force (torque) as a sum of several forces (torques) which
correspond to simple motions. The detailed process is described in the three next
sections.
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2. Decomposition in regular and singular parts
We decompose the rigid displacements (2) as follows:

ul(X):U1+U2 +Ul—U2 LW
2 2 2

Uy (X) = U, +U, N U, -U; L+ W
2 2 2

To lighten motion, let us introduce the mean values:

u,+U, — w+w, - zZ+zZ
U=—1t—2 po=—2—-2 z7="L""2

2 2 2
The two rigid velocities u, and u, can be decomposed as sums of singular and
regular part as follows

x(x—zl)+%x(x—zl),

x(x—zz)+@x(x—zz).

u =uf (x)+u; (x), fori=12, 4)

where

us = 17Uy ozl WMo W, x (X—1,),
2 2 2
u,-u Z,-2, W,—W
us = =2 1 2”4 27 M o (x—7.).
2 > 5 5 (X=2)
_W W

It is convenient to set V =————=+wox—=——= and , then the
singular parts of the velocities rewrite as

U =V +ox(x—-1,),

us =-V —ox(X-12,).

By linearity, the corresponding force densities are given by

We note that in the decomposition (4), since the first term u" corresponds to a
rigid displacement of the object formed by the two balls, we do not expect it to lead to
a singular force density. We have f" =0O(1). Without loss the general, we assume
u" =0, thatis:

Uu(x)=tVtox(x-z). (5)

For simplicity, we just consider the total force F and torque r exerted by the

fluid on the first particle. The total force and torque on the other particle are obtained
by symmetry. Recall that F and r are given by
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F=[fds, 7=[nxfgds.

oB, oB,
3. Inner and outer region of expansion

It is known that the expansions of velocity u and pressure p are singular in terms
of the distance d. So we consider two regions of expansion. An outer region of

expansion is defined using the outer variables (xl,xz,x3) in euclidean coordinates. In
these coordinate systems, the velocity u and the pressure p have the forms

u(x) = (uy (%), ux(x),u3(x)) and p=p(x),

with X = (Xl’ X2 X3). The system of equations (1) is valid in this region. For some very
small distances d tends to 0, the particles are almost in contact and the point ofcontact
will be a singular point for the flow. So it is necessary to build a new coordinates
system for inner region of expansion.

The variations in the inner region of expansion are described using the inner variables

(X1,X2,X3)Z

d*llz 1

X'= X', Xs=d X,

where ;'=(§1,)_(2). In this coordinate system, the velocity and pressure fields are
given by
00 =d" u (0, u,()=d"**u,(x),
UL =d"u,(x),  p)=d"" p(x),
where X = (xl,xz,x3),>_< = (§1,§2,§3) and k is a real constant which is defined later.
We have:
d“’zviﬁl 42 0 0
vu=d“¥vu |l 0 d* 0
dkfa/zv;a3 0 0 Y2
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From the scaling relations between inner and outer variables we have:
T

vx p= (d k-5/2a;IB’ d k-5/2a;2 6' d k-5/28;36)

- 62u1
Axul — d k—3/2v§’ U+ d k-5/2 —,
0X3
- 52U2
Axuz — dk—3/2V§,u2 +dk—5/2 —,
0X3
_ - , 0%Us3
AU, =d“ V2 ug+d" 2 ——~,
OXa

We then expand formally u and pon the forms

u=u +du +d?u +..

— —0 —1 —2

p=p +dp +d°p +...

Plugging these expansions in (1) and identifying the terms of the power series in
d', i=k-5/2,k-2k-3/2,..., we obtain that the flow field (GO,BO) satisfies:

—0 —0

Fu_Fp _, P dp _, &P,
oxs X L ooxs 0% - oxs , (6)
oou’ ut o
—+—+—=0
OX1  OX2  0X3

The flow field (51,51) satisfies:
2l ol _ 21 21 _
a_uzl_a_p =—V§,uf, a_u;_a_p :—V;ug,
oxs OXi Ox; OXa
21 20 21 21 21
op _0 us ou ,ou  ou -0.

8;3 a;g ox1 00X OXs3

There is no difficulty in principle which prevents us from now proceeding to
calculate further terms in the expansion, but for the purpose of the analysis, we only
need to consider the leading order given by (6).

Now, it is convenient to change variables:

— — - 1 1/(—2 =2
Y =X, Y, =Xo, y3=X3+E+E(X1 + X2 )
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The surfaces of the particles near the contact point respectively satisfy
0B™: y,=0(d),
oB™ 1y, =14y +y; +O(d) := h(y,, ¥,) + O(d).

For X = (X1, X2,X3) and Y=(1.Y5Ys), let us set
V(y) = Uo(x);  d(y) = Po(x),
with these new variables and v(y)=(v,(y),v,(y),v;s(y)), the equation (6) reads as
follows:
2 2
v 29, v A
d; Oy ¥y Oy, Oy
%4_%4_%4_}/1%4_}/2%:0_ (8)
ayl ayz ay3 ay3 ayS

Let us consider the force F and torque r exerted by the fluid on the first particle.
The force and torque on the other particle can be obtained by symmetry. In inner
variables, the unit normal n to the surface and the element of area of the surface dS are
given by:

n=(d"2y, +0(d),d"?y, +O(d) 1+0(d)), dS =d.dy,dy,(1+O(d)).

, (7)

We note that the singular terms of force and torque are contained in the leading
term of the inner expansion. Moreover the asymptotic formulas of force F*™ and
torque =*™" at small gaps are only generated on the area of surface around the contact
points. Hence we may compute F*™ and ¢*™ on the small surface
{x € B X +X 332} , Where ¢ is a small real number. In inner variables, this surface

becomes:
S, ={yedB™ : y;+y; <d’&’}.
Then we obtain

o™ =d | [—qu + %} dy,dy, +0(d"),

S, 3

asym, - av
ot = g* ”ZI[—yzq +szdyldyz +0(d"), ®)

S, 3

Fsasympt — dk—lJ.(_q)dyldy2 +O(dk),

SS
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Tlasympt k2 J' [_%j dyldy2 + O(d k),
3

SS

Tzasymp[ dk—IIZI[%J dyldy2 +O(dk), (10)
3

SS

asm aV +
= d J.[yla_yz aygjdyldyz"'O(dk 1/2)

The boundary conditions for v in inner variables reads
Vl =V1d1/2—k _a)gygdl_k +O(d 3/2—k),
v, =V,d"** + @y, d* +O(d¥* ), (11)
Vv, =V, d ™ + (Y, —,y,)d"*™ on oB™",
and
Vl =_V1d1/2—k +a)3y2d1—k +O(d3/2_k),
v, =-V,d"" —@,y,d"* +O(d¥*), (12)
=V, d™ (@Y, —®,y;)d"*™ on B,
where V and o in (5) have components V = (V,,V,,V,) and o = (o, »,, ®,) .
4.  Asymptotic formulas for total force and torque
Since (v,q) linearly depends on V and o, we may decompose the velocity field
(v,q) in three parts
V=Vy+Vg+Ve, Q=0,+0g+0c,
where the first part (v,,q,) is the flow resulting from the translational motion of
surfaces along the vertical axis, the second part (v5,q;) is the flow resulting from the
tangential and rolling motion of surfaces and the last part (v.,q.) is the folw resulting
from the rotational motion of surfaces about normal. More precisely, three flow fields
(V4,0,) s (vg,05) and (v, q.) satisfy (7), (8) with the following boundary conditions
(VA)l = (VB)Z =0, (VA)3 = iV3d “on aBiinner' (13)
(VB)]_ zivldIIZ—k +O(d3/2_k), (VB)2 ziV2d1/2—k +O(d3l2_k),
(Ve)s = £ (e, —@,y,)d"*™ on oB™",
Vo), =®,Y,d"*, (V.), =t @,Y,, (V.), =0 on oB™". (15)
From the boundary condition (13), (14) and (15) we deduce that in order to

calculate (v,,q,) one must take k=0, k=1/2 for (v,,q;) and k=1 for (v.,q.). Next

we build the symptotic formulas of force and torque which are correspondingly
decomposed as

(14)
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Fo™ = F, +Fy+F,, ™ =1, +7,+7..
4.1. Translation motion of spheres
Since (v,,q,) satisfies (7), (8) we obtain

1%, ay,4C, (v,),= 1%

1 2
where A B, C and D are arbitrary functions of y, and y,. These terms may be
determined from the above boundary conditions of v, as

=0a(V1Y2), (Vo) = +By,+D,

1oq, 10oq,

20y, ") 23y, ")
Hence, (v,), and (v,), become

1 aq 1 aq

== h)—=, == h)—2 17
(=5 (% —ysh) 3 Ged =55 -y 3 (17)

Substituting the expressions of (v,),, (v,), given by (7) into (8) and then
integrating with respect to y, we get

1( o%q an
(va) =——[ s all Y Y
SER WEYaY: ayl o, oy oy,
_(Ay1+By2)y3+E'

where E is a function of y, and vy, .

O0A OA B oB 8qA 09, 2
(18)

Since (v,),=-V, on the surface y,=0 in the limit of d {0, it follows that
y =-V, . Similarly, since (v,), =1 on the surface y, =h, we get:
2 2
, z[a_qa_qjh (a_A B, N, A,
6 Loy oy, 200y, oy, oy, %Y,

After substituting the values of A and B from (16) into the above equality and
then simplifying we obtain:

th (Ay, +By,)h+E.

V- (h°va, ) =-24V,. (19)
In order to solve this equation, we use the polar coordinates
y, = rcosé, y, =rsiné,
so that the equation (19) takes the form
= aziA .\ azqu +[F+ 6r_32 J o, _ —24V3Fz | (20)
or- 00 1+r Jor (1+F2)

86



Tap chi KHOA HOC BHSP TPHCM Tran Minh Phuong et al.

If we assume that q, isof order r' as r —oo , then (v,),,(v,), are O(r ) and

(v,), is of the form —1+0(r") as r —o. By expressing these qualities in outer

variables and noting that the pressure and velocity in the outer region of expansion
cannot contain any terms which tend to infinity as d tends to 0, this shows that n<—4.

Hence g, =O(r') as r — oo.

The solution of (20) which satisfies the above condition could be

Gy = — 5 +O(d). (21)

(1+r)?

The error term of order d in the expression of g, arises from the fact that the
expressions given in the boundary conditions have an error of order d.
From (9) and (10), the symptotic formulas F, and z, generated from the flow field
(v4,q,) are given by

(Fp)=d] [—quA - ag’y“)ljdyldyz +0(d"),

S, 3

(FA)Z =d ™ J. [_yqu + ag/;)zjdyldyz +O(d0)1

S, 3

(F.),=d " [ (~a,)dy,dy, +0(d"),
SS
and

(ra), =0 [—%j dy,dy, +0(d°),

S, 3

(), =d ™| [agy—’j dy,dy, +0(d°),

S, 3

(7a), = f[yl agﬁ)z - ag;’*)ljdyldy2 +0(d™?).

We can see that y,,y, are replaced by -vy,,—y, respectively, the value of q,
given by (21) is unchanged whereas (v,),,(v,), given by (17) become —(v,),,—(v,),
respectively. Hence the force F,,z, can be estimated by

(F):=0(d%), (F,),=0(d°), (F),=d"*[(-q,)dydy,+O(Ind), (22)
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and

B o\ o(v
(£, =0, (5,), =0(d°), (r,),=d" [yl oy, gy’*)ljdyldyz O(*?)
S, 3 3
* (23)
Substituting the formula of G given by (20), we have

duz 27 duz
(F),=—d* j [ rq,drdo+0(Ind) =67d ™ j r(l+r ) 2dr+0(nd).

r=0 6=0 r=0

Moreover, we have

d*JJZS

J' F(lJrFZ)‘Qszl 1- 1_1 51 asttendstoo.
2 1+d ¢ 2

r=0
It implies (F,), =37zd ™" +0O(Ind).
Substituting (v,), and (v,), given by (17) into the expression of z, in (23), we get

0q, 00,
A/3 h 2 N dldzod
VA I[yslyszjyy+()

Using polar coordinates y, =rcosé, y, =rsin6 , we obtain

d]"2 2r

(TA)S—— j j r(1+r)0(d)drd6+0(d°) = f (¢) +0O(d®),

where f(z) tendsto0as & tends to 0. Therefore, we get (z,), =0(d°).

4.2. Tangential and rolling motion of spheres

Since (v5,0q;) satisfies (7) and (8), we can do similar to the previous section, the
value of the flow field (v;,q,) is given by:

10
B D R R R - 24
0%q, 0°q aA B aq aq 2
(Ve)s = {—B Bjy [ Yty —Bjy
o o o )7 2oy oy, oy oy )
—(AY, +BY,)Y; + @y, —@,Y,, (25)
where A, B are the functions of y,,y, and are given by:
N, 10y, g N, 106y,
h 2oy h 2oy,

Substituting the value of (v, ), into the last boundary condition, we obtain
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V.(h*Va, ) = 24(,Y; —@,Y,). (26)

We use the polar coordinates again, the above equation has the form

Y 2 _ -3 -3
r 6925 +9 qZB +Hr+ 6r_2 My _ 24(w, 050 —w; sin0) r_2 :
or 00 1+r° ) or A+r’)? 27)

Here we just need the asymptotic expansion of g, for large r, so we only require
the form of q, by using the limiting form of (27), we have

¢ 00, 0y, 7y 0 _

=t g - (,c080 -, sin6O)r .

(28)
Similar to the case of q,, we require g, to satisfy
Qs = O(F_s) as I — +o. (29)
The solution of (28) satisfy (29) is
Us =—%F_3(wz cos —, sin o). (30)

Due to the approximation in (28) that r was very large, (30) for qs gives really
the first term in the asymptotic expansion of q, for large r. Also since the expression
in the boundary condition have an error of order d, so g, is given by

3

Us :—%F_ (o, cos@—wlsin0)+0(r2)+O(d). (31)

If we replace vy,,y, by -y, —y, respectively or equivalently 6 by =+6, the
value g, becomes —q, while (v;), and (v,), are unchanged. Using these symmetric
properties of the flow, the force F, and torque z, on 0B, generated by the flow
(vg,qg) are calculated from (9) and (10) as

(Fy), = j[—qus +ag;s)1jdyldy2 +0(d"?),

S, 3

(Fy), = I[—yzqs + a(ayVB)Z}jyloly2 +0(d"?),

S, 3

(Fs)s :O(do),
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and

o))

(te) = J.[_ S;B)Z jdyldyZ +O(dl/2)'

3

(o))

(TB)Z = J.[_ (a\;B )1de1dy2 +O(d1/2),

SS
(); =0(d°).
Substituting the values of (vg), and (vg), from (24) into these expressions, we
obtain

-V, 1,49 12

(F), = (—yq +—1——h—5jdydy +0(d¥?),

B/1 ! 148 h 5 ayl 14y, ( )

-, 1 0

(Fs)z = J.[_yqu + h 2 ——hﬁjdyldyz +O(d1/2).

S, 2

These integrals can be evaluated by changing from (y,,y,) to polar coordinates
(F,H) and by substituting the value of g, from (31), the above expression for (FB )l
becomes

T 240,141

. }dFJrO(dO).

_8\/1

7 240, P
5 141 5 ¢

(FB)l :E J.

0
So we get the asymptotic form of (F;), as (F;), =22V, Ind +0(d°).
By performing the similar computation for (F;),, (z), and (z;),, we also obtain

(FB)2 =27V, Ind +0(d°),
and

(), =(—27IV2 +6?ﬁa)1jlnd +0(d®),
(74 )2 =(—27rV1 +6?ﬂa)2jlnd +0(d®).

4.3. Rotational motion of spheres

As in two previous sections, since (v.,q.) satisfies (7) and (8), we obtain
1 0qc 10qc

Oe = e (Y1, Ya), (vc)1=55y§+Ay3—w3yz, (vc)2=§ﬁy§+8y3—w3yl,
1 2
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1(0°q, , 0°9c ). s 1(OA OB 00, . . 00 | .
V, =——| —=+ - | —t—t Yy, —+ Yy, — —(Ay, +B .
( C)s 6[ aylz ayzz y3 2 ayl ayz y1 ayl yz ayz ys ( y1 yz)ys

where A, B are the functions of y,,y, and are given by:

A:%yz_laih’ B:ﬂyl_l%h

h 2 0y, h 2 0y,
Using the last boundary condition on (v, ), , we get an equation for q. as follows
V.(h*vg.) =0.

This implies that gq. =0O(d). Hence, we can see that the force F. and torque z,

are no longer singular being of order d°, it means F. =0(d®), 7. =0(d®).

Finally, the proof of the main result is complete by combining with all the results

in section 4.1, 4.2 and 4.3. So we obtain the asymptotic formulas of the force F and
torque = on 0B, as claimed.
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