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A LONG TIME BEHAVIOR FOR GRADIENT-LIKE
SYSTEMS UNDER A WEAK ANGLE CONDITION
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ABSTRACT

We study the long time behavior of solutions of gradient-like systems that admit a
strict Lyapunov function. In a recent paper of Merlet and Nguyen [11], the authors showed
that if the Lyapunov function satisfies the Kurdyka-Lojasiewicz inequality then the
convergence result can be obtained by the angle condition. In this paper, we extend this
result by taking a weaker angle condition which was proposed by Huang in [6]. The
convergence rates are also obtained under some additional hypotheses.
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TOM TAT
Ddng digu tiém cin cho hé twa gradient dwdi diéu kién géc yéu

Chung toi quan tam dang diéu tiém can cua nghiém hé tua gradient, thira nhdn mot
ham dang Lyapunov. Trong mgz bai b&o gan day cia Merlet va Nguyen [11], cac tac gla
da chi ra rang néu ham Lyapunov théa mén bdt dang thirc Kurdyka-Lojasiewicz thi két
qud héi tu cé thé thu dwoe boi diéu kién gée. Trong bai bdo nay, ching ti mo réng két
qua nay bang cdch dung diéu kién goc yeu hon, dwoc de ra boi Huang trong [6]. Toc do
héi tu ciing thu dwoc duoi mot so dieu kién bo sung.

Tir khéa: hé tua gradient, ham Lyapunov, bat dang thic Lojasiewicz.

1. Introduction

We are interested in the long-time behavior and stability properties of the global
solutions of the non-linear differential system,

u'(t)=G(u(t)), t=0, u(t)edl", (1)

where G:Qc " — [ "is a continuous vector field on Q. We assume that the system
(1) admits a strict Lyapunov function F:0" — [ , that is

—[F )](t) <0 for every solution and every t >0,
and moreover,

% F(u)](t,)=0 = u(t)=u(t,) for t=>t,.
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The most simple situation is the case of a gradient flow G =-VF. In this case, if
F is of class C*' and bounded from below, we have F(u(t)) converges as t tends to

infinity.
Moreover, the o -limit set
o[u] ={veQc": 3(t,) T oo such that u(t, ) - v

is a connected subset of the critical points of F.

We restrict our study to situations for which F satisfies a Lojasiewicz inequality
at some point a e w[u], that is: there exists 6 €[0,1/2), >0 and o >0 such that

FO)-F @ <o FF ), weB(ao)na

where B(a,o)={vel": |v-a|<c}, and |.| denotes the Eclidian norm in 0. This

inequality implies that u has a limit at infinity u(t)—»>a as t —oo, and we even have
the stronger result

_[”u'(t)” dt < oo,

The importance of the Lojasiewicz inequality comes from a famous result by
Lojasiewicz which states that: “if F: Q<" — [ is real analytic then such inequality
holds in the neighborhood of any point ae Q. Certainly, this is non trivial only when
a is a critical point of F.

The convergence is not true in general. As a counterexample, Palis and de Melo
built a C* “Mexican hat” function (see [12]). They showed that the Euclidean gradient
system associated with this energy possesses a global, bounded solution which has the
whole unit circle as w - limit set.

In the papers by Lageman [8,9], by Chill et al. [1,2], by Barta et al. [3,4], by
Haraux et al. [5], or the more recent paper by Merlet et al. [11], the authors proved that
if F satisfies a Lojasiewicz inequality in a neighborhood of a € w[u] and if G (u) and

—VF (u) satisfy an angle condition then u(t) converges to a. We even have

convergence rates depending on the Lojasiewicz exponent under an additional
comparability condition.

The main goal of this paper is to obtain the convergence results under a more
general angle condition which is obtained from the angle condition by adding a
negative term. The sequel is organized as follows. In the next section, we set the
notations and the main hypotheses. We also give some existing convergence results. In
the last section, we prove the convergence result and then we obtain the convergence
rates.
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2. Some notations and hypotheses
Let us first recall some definitions and some convergence results.

Definition 1. We say that G and —VF the angle condition if there exists a real number
o >0 such that

<G(u),—VF(u)> > a||G(u)||||VF(u)||, ueQcin, (2)
where (.,.) denotes the normal Eulidean inner product in [ ".

Definition 2. We say that G and —VF the comparability condition if there exists a
real number « >0 such that
a|6() = [vF ()] et (u)], ueo. 3)
Of course, if G and —VF satisfy the angle and comparability condition then F is
a strict Lyapunov function.
Definition 3. We denote by 3 the class of non-decreasing function ® e C (1 *,0*)
such that
©(0)=0, ©>0 on (0,+x), 1/@eLy (D). (4)

Definition 4. Let ae Q.

1) We say that the function F satisfies a Lojasiewicz inequality at a if there
exists 0 €(0,1/2], >0 and o >0 such that

IF(v)-F(a) * <y[VF(v)], WeB(ao)nQ. ()

The coefficient @ is called a Lojasiewicz exponent.

2) The function F satisfies a Kurdyka-Lojasiewicz inequality at a if there exists
o >0 and a function ® € 3 such that

O(|F (v)-F(a)))<|VF(v)], ¥veB(ao)nQ. (6)

Notice that the first definition is a particular case of the second one with
O(x)=(1/7)x""

In fact, the Lojasiewicz inequality comes from the following result which is
proposed by Lojasiewicz in 1965.
Theorem 1. (Lojasiewicz [10], see also [13]).

If F: Qc0" —0 isreal analytic in some neighborhood of a point a Q, then F
satisfies the Lojasiewicz inequality (5) at a.

In the paper [11], Merlet and Nguyen proved the convergence result of the
solution of gradient-like system (1) with Kurdyka-Lojasiewicz inequality. Then they

67



TAP CHi KHOA HOC BHSP TPHCM Sé 5(70) nam 2015

obtained the convergence rate if F satisfies the Lojasiewicz inequality depending on the
Lojasiewicz exponent. These results can be summarized by two following theorems,
see Merlet & Nguyen [11].

Theorem 2.

Let u be a bounded global solution of (1) which admits strict Lyapunov function
F . Assume that G, VF satisfy the angle condition (2) and F satisfies the Kurdyka-

Lojasiewicz inequality (6). Then the gradient-like trajectory u(t) converges to
a e o[u] at infinity.
Theorem 3.

Under the hypotheses of Theorem 2, assume moreover that if G, VF satisfy the
comparability condition (3) and F satisfies the Lojasiewicz inequality (5) then there
exist some constants c, x>0 such that

||u(t)— ”< ce ™ if 6=1/2,
PIN et i 0<o <12’

where @ is the Lojasiewicz exponent in (5).

vt >0, (7)

Notice that if u is a bounded solution of (1) then the w-limit set is non-empty,
connect and compact subset of the critical points of F.

3.  The main results

In this paper, we consider a growth condition of the form, namely a weak angle
condition, as follows

{<G(u(t)),VF(u(t))> > G (u(®))||[VF (u(t)]+M (1), (8a)
BIVF (][ (u)+ N (1), @)
for all t>0 and some positive constants «, # and M, N eC'(0*,0) are non
increasing functions satisfying

!LrQM (t):!LrpoN(t):O. 9)
This condition was proposed by Huang in [6,7].

However, the Kurdyka-Lojasiewicz inequality is not sufficient to prove the
convergence result under this weak angle condition. In this case, we assume moreover
that the function ® satisfies the following hypothesis:

there exists a function ¥: 0 * - 0 * such that
O(x+y)<C[O(X)+¥(y)], vxyel", (10)

for some constant C > 0.
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Lemma 4.

The Lojasiewicz inequality (5) is also a particular case of the Kurdyka-
Lojasiewicz inequality (6) and the function ® satisfies the hypothesis (10) with ¥ =0
and C=1.

Proof.
We need only to check that the function ©(x)=x", 0e[1/2,1) satisfies (10).
For y >0 fixed, let us define

fy(x)z(x+y)9—x"—y", x> 0.

We have
X7 —(x+ y)l'g
fy‘(X)ZQ—HSO, VX>O.
X7 (x+y)
So the function f, is non increasing. It follows that f (x)< f (0)=0. The proof
is complete. a0

Theorem 5 (Convergence result).

Let u be a bounded global solution of (1) which admits strict Lyapunov function
F . Assume that G, VF satisfy the weak angle condition (8a,8b) and F satisfies the
Kurdyka-Lojasiewicz inequality (6).

Assume moreover that there exists a function ¥:0 " —0" such that ®,¥
satisfy (10) and

T‘P(M (t))dt <o, (11)
then u'e Ll(D +)
H‘u(t)” dt < oo, (12)

and the gradient-like trajectory u(t) convergesto a e w[u] as t goes to infinity.

Proof.

We always keep in mind that the trajectory u is a global solution of (1). Then,
using the growth condition (8a) and the fact that M is a non increasing function, we
have

d

G LF )M (O] =(6(u(0). VF (u(0)) M ()
<—afe(u®)fFFlum) <o

(13)
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This implies the function F(u(t))+M(t) is also non increasing. Since we
consider the bounded solution u, so there exists a € w[u]. By continuity of F, M and
limM (t)=0, we obtain that F(u(t)) converges to F(a) as t goes to infinity.

t—>o

Changing by an additive constant if necessary, we may assume F (a) =0, so that
F(u(t))+M(t)=0.
If F(u(t,))+M(t,)=0 for some t,>0 then F(u(t))+M(t)=0, forevery t>t,

. By (13), there are two cases G(u(t))=0 or VF(u(t))=0 for t>t,. Of course we get

(12) in the first case. In the second case, since F is a strict Lyapunov function,
therefore u(t) is constant for t>t,. So there remains nothing to prove in these cases.

Hence, without loss of generality we may assume F (u (t))+ M (t)>0, forevery t>0.

Since the function F satisfies the Kurdyka-Lojasiewicz inequality at a, there
exists o >0 and a function ® € 3 such that

O(|F (v)-F(a)])<|VF(v)|, vveB(ao)nQ.
In particular, since a e w[u] and F(a)=0, we obtain
O(|F (u(t))]) <|vF (u(v)] (14)

Let us define

and E(t)=@(F (u(t))+M(t)), t=0.
Notice that the function @ is well-defined by the above assumptions that

F(u(t))+M(t)>0and 1/© €L, (0 ). On the other hand, it is easy to see that

limE(t)=0.

t—>o0

Using the weak angle condition (8a) , we have
()= (G(u(t)),~VF (u(t))-M( g aHG u(t)||vF (u ()]
O(F(u(t)+M (1)) O(F (u())+Mm (1)

Since © satisfies the condition (10), we get that

e Wl o)
02 S {F ) e (M 0) )
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The function F satisfies the Kurdyka-Lojasiewicz inequality at a, using (14), the
estimate goes further as follows

—E'(I)Z%.| "U' ||||VF ”

|VF || +¥ (M

" " a "“ "

c'||V|: t||+‘P (M (1))

It follows that

(o< Cg: ()] (0]
u (t)"s-;E (t)+

HVF H+‘P ®)

which, combined with the condition (8b), yields that

”u'(t)"S_EE'(t)JF‘P(M(t)) ﬁ"v':(“(t))"—N t

. (16)
a [VF (u()]+w(m (1)

On the other hand, since the function N is non increasing, so that N (t) <0, for
every t=0., Moreover, the function ¥ is positive. So we get two estimates
[VF (u)] ¥(M (1))

[VF O]+ (M (1) <L and [VF (u(O)]+ ¥ (M (1) =1

Combining these estimates with (16), we have that

ool SE )+ g (M (0)-N (1) )
Taking together with the assumption (11) and noting that !Lrg E(t)= !LT N (t)=0,
we obtain
J.”u ||dt<—E +[3J.‘P dt+N(O)
This is complete the proof. 0

As in the paper of Merlet and Nguyen [11], in order to obtain the convergence
rate, we need to consider the function F satisfying a Lojasiewicz inequality.

Lemma 6.

Let ©>0, a>1 andy Dbe a solution of the following ordinary differential
equation

y'(O)+u(y(t) <0, t=0,

Then for t large enough, we have

—ut i —
y(t)s{ze et

tVeD g g >1.
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Proof.
In the case o =1, we get y'(t)+uy(t)<0

Writing  y(t)=e*g(t), we conclude that g 1is non increasing, so
y(t)<e™g(0)=ce™ , forevery t>0.

In the second case o >1, we set g(t):=(y(t)) "

This function satisfies g'(t)zil, which implies g(t)>ct for t large enough. Hence

a —
y(t)<ct e, O
Theorem 7 (Convergence rates).

Under the hypothesis of Theorem 5, assume moreover that F satisfies a
Lojasiewicz inequality (5) with a Lojasiewicz exponent 0e(0,1/2] and

|G (u())]| = 2[vF (u )]+ K (t), (18)

Where K eC*(0*,0 *) is non increasing function and limK (t)=0.

t>o

Then there exists a constant ¢ >0 such that
Ju(t) a||<c[v )+w(t I\I’ t))dt+N(t )j (19)

where v is a solution of the ordinary differential equation

1-6

V'(t)+ca.(v(t)) o =a(A+B)O(M(t))-aN'(t)-aK'(t),

e if 9=1/2,
and w(t) = oin2s) -
ct if 0<0<1/2.
Remark.

With the hypotheses in Theorem 7, the right hand side of (19) converges to 0 as t
goes to infinity.

Proof.
In the previous proof, we know that u(t) converges to a as t goes to infinity. Let

us use the same notation with the proof of Theorem 5, by the estimate (17), we obtain
that
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Ju(t)-al < [o(0)]de < —%T(E'(t))dHﬁT‘P(M () dt-[(N'(1))et o0
:EE(t)+ﬁT‘I’(M (t))dt+N(t).

a t

By using estimate (17) again and assumption (18), we get that
C_. . :
A|VF(u(t)]< —E(1)+p¥(M (1) -N'(H)- K (1)
Combining with the Lojasiewicz inequality, it follows that
C _, . '
76(F (u(1))) <= E'(t)+ f¥ (M (1)) =N (1) - K (1),

where the function © defined by ®(x)=(1/y)x"*, x>0. In this case, by Lemma 4,
the function ¥ coincidesto ® and C =1. This implies

20(F (u(t)))< —éE '(t)+BO(M (t))-N'(t)-K(t), (21)

With the same definition as in the proof of Theorem 5, we have the explicit

formula @ (x) =§x9, x> 0. As a consequence, we have

E(t)=5(F(u(t))+M ),

and

o(F (u()+M (1)) =1H" (E(t))7 .

y

Now let us estimate

A0(F (u(t)))= 40(F (u(t))+M (1)) - 20 (M (1)) -
ZC.(E(t))%G—)@(M (1)),

where ¢ :i(gj ’ > 0. Taking the estimates (21) and (22) together, it implies
Y7

1-6

E'(t)+ca.(E(t)) 0 <a(A+B)O(M(t))-aN'(t)-aK'(t).

Let us set h(t):=E(t)-v(t), where v is the solution of the following ordinary
differential equation
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1-6

V'(t)+ca(v(t)) 0 =a(i+B)O(M(t))-aN'(t)-aK'(t).

So we have
1-0

h'(t)+ca(h(t)) ? <O0.

By Lemma 6, we obtain the convergence rate as follows

ce if 9=1/2,
E(t)-v(t)<w(t):= 23
(Vi) <w() {ct'“”") if 0<0<1/2. =
Combining (20) and (23), we finish the proof. 0
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