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EXISTENCE OF SOLUTIONS FOR GENERALIZED
QUASIEQUILIBRIUM PROBLEMS
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ABSTRACT

In this paper, we establish some existence theorems by using Kakutani-Fan-
Glicksberg fixed-point theorem for generalized quasiequilibrium problems in real locally
convex Hausdorff topological vector spaces. Moreover, we also discuss closeness of the
solution sets of generalized quasiequilibrium problems. The results presented in the paper
improve and extend the main results of Long et al in [3], Plubtieng - Sitthithakerngkietet
in [5] and Yang-Pu in [6].
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TOM TAT
Sw ton tai nghiém cho bai todn twa cin bang tong qudt

Trong bai bdo nay, ching tdi thiét Igp mot sé dinh Ii ton tai nghiém bang cdch sie
ding dinh li diém bat dong Kakutani-Fan-Glicksberg cho bdi todn tira cdn bang tong qudt
trong khéng gian top6 Hausdorff thiee 16i dia phirong. Ngoai ra, chiing ti ciing thdo ludn
tinh dong ciia cdc tdp nghiém ciia bai todn twa cdn bang tong qudat. Két qua trong bdi bdo
la cdi thién va mé réng cdc két qud chinh ciia Long va cdc tac gia trong [3], Plubtieng -
Sitthithakerngkietet trong [5] va Yang-Pu trong [6].

Tir khéa: cac bai toan tua cin bang tong quat, dinh 1i diém bat dong Kakutani-Fan-
Glicksberg, tinh dong cuia tdp nghiém.

1. Introduction and Preliminaries
Let X, Y, Z be real locally convex

Hausdorff topological vector spaces,

Ac X and BcY be nonempty compact

(QEP,): Find xeA4 such that
X € K,(x) and 3z e T(x) satisty
F(x,z,y)cC,VyeK,(x)

convex subsets and C < Z is a nonempty and

(QEP,): x € 4 such that x € K,(¥)
and Vz e T(x) satisfying

closed compact convex cone. Let
K :A4—2", K,:4—>2", T:4—2" and

F: AxBx A— 27 be multifunctions.

We  consider the following
generalized quasiequilibrium problems
(in short, (QEP,) and (QEP,)),

respectively:

"MSc., Dong Thap University
" BA., Dong Thap University

F(x,z,y)cC,Vy e K,(x).

We denote that S;(F) and S,(F)
are the solution sets of (QEP,) and
(QEP,), respectively.

If K=K =K, (QEP))

becomes strong vector quasiequilibrium
problem (in short,(QEP)). This problem
has been studied in [3, 5].

then
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(QEP): Find xe A4 and zeT(x)
such that x € K(x) and

F(x,z,y)cC, forall y e K(x).

If Ki(x)=K,(x)=K(x),T(x)={z}
for eachx € 4, then (QEP,) becomes

strong vector equilibrium problem (in

short,(EP)). This problem has been
studied in [6].

(EP): Find XxeA such that
X € K(x) and

F(x,y)cC, forally e K(X).

The structure of our paper is as
follows. In the remaining part of this
section we recall definitions for later
uses. In Section 2, we establish some
existence and closeness theorems by
using Kakutani-Fan-Glicksberg fixed-
point theorem for generalized
quasiequilibrium problems with set-
valued mappings in real locally convex
Hausdorff topological vector spaces.

Now we recall some notions in [1,
2, 4]. Let X and Z be as above and
G:X —2° be a multifunction. G is said
to be lower semicontinuous (Isc) at x, if

G(x,))NU =0  for
Uc Zimplies the existence of a
neighborhood N of x, such that, for all
xeN,G(x)nU#J. An

formulation is that: G is Isc at x, if

some open set

equivalent

Vx, = x,,

Vz, € G(x,),3z, € G(x,),z, > z,. G 18
called upper semicontinuous (usc) at x,
if for each open set U o G(x,), there is a
neighborhood N such that
U>2G(N). Q is said to be Hausdorff

of x,

16

upper semicontinuous (H-usc in short;
Hausdorff lower semicontinuous, H-Isc,
if for each

neighborhood B of the origin in Z, there
exists a neighborhood N of x, such that,

O(x) € O(x,)+B,Yx e N
(O(x,)) < O(x)+B,VxeN). G is said to

be continuous at x, if it is both Isc and

respectively) at  x,

usc at x, and to be H-continuous at x, if
it is both H-Isc and H-usc at x,. G 1s

called closed at x, if for each net

{(x,,2,)} < graphG :
= {(62)| 2 € G (x,02,) > (3,7)
must belong to G(x,). The closeness is
closely related to the wupper (and
Hausdorff upper) semicontinuity. We say
that G satisfies a certain property in a
subset A X if G satisfies it at every
points of A.If 4=X we omit “in X ” in
the statement.

Lemma 1.1. ([2], [4])

Let X and Z be two Hausdorff
topological spaces and 4 be a nonempty
subset of X and F:4—2" be a
multifunction. If F has compact values,
then F isusc at x, if and only if for each

net {x,} < 4 which converges to x, and
for each net {y }c F(x,), there are
y € F(x) and a subnet {y,} of {y,} such
that y, — y.

Definition 1.2. ( [4])

Let X, Y be two topological vector
spaces and 4 be a nonempty subset of X

and let F:4—>2" be a set-valued
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mapping, with CcY 1is a nonempty
closed compact convex cone.

(1) F 1s called upper C -continuous
at x, € A, if for any neighborhood U of
the origin in Y, there is a neighborhood
V' of x, such that, forall xeV,

F(x)c F(x,)+U+C,VxeV.

(1) F 1s called lower C -continuous
at x, € A, if for any neighborhood U of
the origin in Y, there is a neighborhood
V' of x, such that, forall xe/V,

F(x)cF(x)+U-C,VxeV.
Lemma 1.3. ([4])

Let X and Y be two Hausdorff
topological spaces and F:X —2" be a
set-valued mapping.

(i) If F is upper semicontinuous
with closed values, then F is closed;

(ii) If F is closed and Y is
compact, then F is upper
semicontinuous.

Lemma 1.4.

(Kakutani-Fan-Glickcberg (See [2, 4])).
Let A be a nonempty compact

subset of a locally convex Hausdorff

topological ~ space Y. If

M :A—2" is upper semicontinuous and

vector

for any x e A,M(x) is nonempty, convex

and closed, then there exists an x € A
such that x e M(x").

2.  Existence of solutions

In this section, we discuss existence
and closeness of the solution set of
generalized quasiequilibrium problems
by using Kakutani-Fan-Glicksberg fixed-
point theorem.
Definition 2.1.

Let X and Z be two Hausdorff
topological spaces and 4 be a nonempty
subset of X and Cc Z is a nonempty
closed compact convex cone. Suppose

F:A4— 2" be a multifunction. F is said

to be generalized C-quasiconvex at

x, €A, 1f Vx,x, € A,VA €[0,1] such that

F(x))cC and F(x,)cC, we have
F(Ax,+(1-A)x,) cC.

Remrk 2.2.

To see the nature of the above
quasiconvexity, let wus consider the
simplest case when A= X = Z = R,
F:R— R is single-valued and C=R_.
Then Vx,,x, € A,YA1€<[0,1], if
F(x)<0,F(x,)<0, then

F((1-A)x,+4x,))<0. This means
that ' 1s modified 0 -level quasiconvex,
since the classical quasiconvexity says
that Vx,,x, € 4,V4€[0,1],

F((1-A)x,+ Ax,)) < max{F (x,, F(x,)}.
Theorem 2.3.

Assume for (QEP ) that

(i) K, is upper semicontinuous in
A with nonempty convex closed values

and K, is lower semicontinuous in A

with nonempty closed values,

(ii) T is upper semicontinuous in
A with nonempty convex compact
values;

(iii)  for  all
F(x,z,K,(x))cC;

(iv) for all (z,y)e BxA, F(.,z,y)
is generalized C -quasiconvex,

(v) F is upper C -continuous.

(x,z) e Ax B,
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Then, (QEP,) has a solution.
Moreover, the solution set of (QEP,) is
closed.

Proof.

For all (x,z)e AxB, define a set-
valued mapping: ¥: Ax B — 2" by

Y(x,z)={teK (x): F(t,z,y)cC Wy ek, (x)}.

Step 1. We show that W(x,z) is
nonempty.

Indeed, for all (x,z)eAxB,
K, (x),K,(x) are nonempty. Thus, by
assumption (iii), we have W(x,z) = J.

Step 2. We show that W(x,z) is
convex subset of 4.

Let #,,t, e ¥(x,z), a €[0,1] and put
t=at,+(1-a)t,. Since t,t, € K,(x) and
K,(x) is convex set, we have reKk,.
Thus, for ¢,,¢, € ¥(x,z), it follows that

F(t,z,y)cC,i=12,Vy e K,(x).

By (iv), F(., z, y) is generalized C -
quasiconvex
Flat, +(1-a)t,,z,y)cCVa €[0,1],Vy e K, (x),
1e., te¥(x,z). Therefore, W(x,z) is a

convex subset of 4.
Step 3. We show that W(x,z) is

upper semicontinuous with nonempty
closed convex values. Since A is
compact, by Lemma 1.3 (ii), we need
only show that ¥ is a closed mapping.
Indeed, let a net {(x,,z,)} < AxB such

that (x,,z,) > (x,z)e AxB, and let
t e¥(x
need to show that ¢, ¥ (x,z). Since
t, e K (x,) and K, 1S upper

semicontinuous with nonempty closed

z,) such that ¢ —>¢,. We now

n’
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values, hence K, is closed, thus we have
t, € K,(x). Suppose to the contrary of
t, ¢ ¥Y(x,z). Then, 3y, € K, (x) such that

F(ty,2,5,) ¢ C,

Which implies that there exists a
neighborhood U of the origin in Z, such
that

F(t),z,y)+U ¢ C.

By condition (v), for any
neighborhood U, of 0 in Z, there exists
a neighborhood V(t,,z,y) of (¢,z,y)
such that

F1,2,)) <t 2,)+U +C MG, 2,)) €V 2,9).
Without loss of generality, we can
assume that U, =U . This implies that
F(,,Z,y)cF(t,,z,y)+U+CEC+CcC,
Yty,2,)) €Vt 2, ).
Thus there is n, € I such that
F,z,y,)&xC,NVn=n,,
which contradicts to ¢, € ‘¥ (x,,z,). Thus,
t,e'¥(x,z).
Step 4. Now we need to prove the
solutions set S,(F)#J.
Define the
H:AxB:—2"* by
H(x,z)=(Y(x,2),T(x)),¥(x,z) € AxB.
Then H 1is upper semicontinuous and
V(x,z)e AxB,H(x,z) 1s a nonempty
closed convex subset of AxB. By

set-valued mapping

Lemma 1.4, there exists a point
(x",z")e AxB such that
(x',z)eH(x',z), that is

X e ‘I’(x*,z*), z e T(x*),
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which implies that there exists x e 4
and z" eT(x") such that x" e K,(x") and
F(x',z',y)cC,
ie., x eS| (F).

Step 5. Now we prove that S,(F) is
closed. Indeed, let a net
{x,nelfcS (F): X, = X,. As
x, €S,(F), there exists z, €T(x,) such
that

F(x,z,y)cC,VyeK,(x,).

Since K, is upper semicontinuous

n’

with nonempty closed values, hence K|
is closed. Thus, x, €K (x,). Since T 1is

upper semicontinuous with nonempty
compact values, then T is closed, hence
we have zeT(x,) such that z, -z . By

the condition (v), we have

F(x,,z,y)c C,Vy e K,(x,).

This means that x, €S,(F). Thus
S,(F) is closed. [J

In the special case K, =K, =K, we

have the following Corollary.
Corollary 2.4.

Assume for (QEP) that

(i) K is continuous in A with
nonempty closed convex values,

(ii) T is upper semicontinuous in

A with nonempty compact convex
values;
(iii)  for  all (x,z)e AxB,

F(x,z,K,(x))cC;

(iv) for all (z,y)e BxA, F(.,z,y)
is generalized C -quasiconvex,

(v) F is upper C-continuous;

Then, (QEP) has a solution.
Moreover, the solution set of (QEP) is
closed.

Proof. The result is derived from the
technics of the proof for Theorem 2.3. [J
Remark 2.5.

In the special case as above,
Corollary 2.4 reduces to Theorem 3.1 in
[3].

However, our Corollary 2.4 is
stronger than Theorem 3.1 in [3]. The
following example shows that in this
special case, all assumptions of Corollary
2.4 are satisfied. However, Theorem 3.1
in [3] is not fulfilled.

Example 2.6.
Let X=Y=Z=0,4=B=[0,1],C=[0,4]
and let K, (x) =K, (x)=[0,1]

and 7,(x) =) =[]

1
F(x,z,y)= [5’
[1,2]
We see that all assumptions of Corollary
2.4 are satisfied. So by this corollary the
considered problem has solutions.

However, F is not lower (-C)-

continuous at x, :%. Also, Theorem 3.1

1] if xo:J’o:Zo:E=

otherwise.

in [3] does not work.
Corollary 2.7.
Assume for (EP) that
(i) S
nonempty convex closed values,
(ii) for all xe A, F(x,K(x))cC;
(iii) for all yeA, F(,y) is

strongly C -quasiconvex;

is continuous in A with
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(iv) the set F is upper C-
continuous.
Then, (EP) has a solution.

Moreover, the solution set of (EP) is
closed.

Proof. The result is derived from the
technics of the proof for Theorem 2.3.
Remark 2.8.

In the special case as above,
Corollary 2.4 and Corollary 2.7 reduces
to Theorem 3.1 in [3] and Theorem 3.3 in
[6], respectively. However, our Corollary
2.4 and Corollary 2.7 is stronger than
Theorem 3.1 in [3] and Theorem 3.3 in
[6]. The following example shows that
the  assumption  generalized C-
quasiconvex of Corollary 2.4 and
Corollary 2.7 1s satisfied, but the
assumption C -quasiconvex of Theorem
3.1 in [3] and Theorem 3.3 in [6] is not
fulfilled.

Example 2.9.
Let 4,B,X,Y,Z,K,K,,C as in

Example 2.6 and T'(x) =[0,1] and
[1,2]
F(x,z,y)=
~1
[2 ]
We see that the assumption generalized
C -quasiconvex is satisfied. However, F

if x,=y,=2,=—,

2

otherwise.

. . 1
1s not C -quasiconvex at x, = 5

20

Passing to the problem (QEP, ), we
also have the following similar results as
that of Theorems 2.3.

Theorem 2.10.
Assume for (QEP, ) that

(i) K, is upper semicontinuous in
A with nonempty closed convex values
and K, is lower semicontinuous A with

nonempty closed values;

(ii) T is lower semicontinuous in A
with nonempty convex values,

(iii)  for  all (x,z)e Ax B,
F(x,z,K,(x))cC;

(iv) for all (z,y)e BxA, F(.,z,y)
is generalized C -quasiconvex;

(v) F is upper C -continuous,

Then, (QEP,) has a solution.
Moreover, the solution set of (QEP,) is
closed.

Proof.

We omit the proof since the
technique is similar as that for Theorem
2.3 with suitable modifications. 0
Remark 2.11.

Note that, if we let X, Y, Z be real
locally G - convex Hausdorff topological
vector spaces, then, the results in this
paper is extended the results of Plubtieng
- Sitthithakerngkietet in [5] as in Remark
2.5, Example 2.6 and 2.9.
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