
Tạp chí KHOA HỌC ĐHSP TPHCM Nguyen Huu Thong

 63

A NEW SEARCH VIA PROBABILITY ALGORITHM
FOR SINGLE-OBJECTIVE OPTIMIZATION PROBLEMS

NGUYEN HUU THONG*

ABSTRACT
This paper proposes a new stochastic algorithm, Search Via Probability (SVP)

algorithm, for single-objective optimization problems. The SVP algorithm uses
probabilities to control a process of searching for optimal solutions. We calculate
probabilities of an appearance of a better solution than the current one on each iteration,
and on the performance of SVP algorithm we create good conditions for its appearance.

Keywords: numerical optimization, stochastic, random, probability, algorithm.
TÓM TẮT

Một giải thuật tìm kiếm theo xác suất mới cho bài toán tối ưu một mục tiêu
Bài viết này đề xuất một giải thuật ngẫu nhiên mới, giải thuật Tìm kiếm theo Xác

suất (TKTXS), cho bài toán tối ưu một mục tiêu. Giải thuật TKTXS sử dụng xác suất để
điều khiển quá trình tìm kiếm lời giải tối ưu. Chúng tôi tính toán xác suất của sự xuất hiện
một lời giải tốt hơn lời giải hiện hành trên mỗi lần lặp, và trong việc thực thi giải thuật
TKTXS chúng tôi tạo điều kiện tốt cho sự xuất hiện của lời giải này.

Từ khóa: tối ưu số, ngẫu nhiên, xác suất, giải thuật.

1. Introduction
There are many algorithms, traditional computation or evolutionary computation,

for single-objective optimization problems. Almost all focus on the determination of
positions neighbouring an optimal solution and handle constraints based on violated
constraints. However the information of violated constraints is not sufficient for
determining a position of an optimal solution.

We can suppose that every decided variable of an optimization problem has m
digits that are listed from left to right; we have our remarks as follows:

 To evaluate an objective function, the role of left digits is more important than the
role of right digits of a decided variable. We calculate probabilities of changing the
values of digits of variables for an appearance of a better solution than the current one
on each iteration, and on the performance of SVP algorithm, we create good conditions
for its appearance.

 Based on relations of decided variables in the formulas of constrains and an
objective function we select k variables (1kn) to change their values instead of
selecting all n variables on each iteration.

* MSc., HCMC University of Education

Tạp chí KHOA HỌC ĐHSP TPHCM Số 43 năm 2013

 64

 Because we can not calculate exactly a number of iterations of a stochastic
algorithm for searching an optimal solution the first time on each performance of the
algorithm, we use an unfixed number of iterations, which has more chance to find an
optimal solution the first time with a necessary number of iterations.

Based on these remarks we introduce a new stochastic algorithm, Search Via
Probability (SVP) algorithm, the SVP algorithm uses probabilities to control the
process of searching for optimal solutions.
2. The model of single-objective optimization problem

We consider a model of single-objective optimization problem as follows:
()
() 0 (1, ,)

, , , 1, , .
j

i i i i i

Minimize f x
subject to g x j r
where a x b a b R i n

 

   

K

K

We can suppose that every decided variable of a solution of an optimization
problem has m digits that are listed from left to right. The role of left digits is more
important than the role of right digits of a decided variable for evaluating an objective
function. Hence we should find the values of digits from left digits to right digits one
by one. To do it we want to use probabilities, that is to calculate changing probabilities
of digits which can find better values than the current one on each iteration. The
proposed algorithm below is a repeated algorithm. On each repeat of algorithm, we
select k variables (1≤k≤n) and change their values with the guide of probabilities to
find a better solution than the current one. Hence the next work is that we should
calculate probabilities of changing values of variables, probabilities of selecting values
of changed digits of a variable, and the complex of selecting k variables (1≤k≤n) to
change their values.
3. Probabilities of changes and selecting values of a digit

We suppose that every decided variable xi (1≤i≤n) of a solution of an
optimization problem has m digits that are listed from left to right xi1, xi2,, xim (xij is
an integer and 0≤xij≤9, 1≤j≤m). To evaluate an objective function, the role of left digits
is more important than the role of right digits of a decided variable; hence we calculate
changing probabilities of digits which can find better values than the current ones on
each iteration.
3.1. Probabilities of changes

Consider the j-th digit xij of a variable xi, let Aj be an event that the value of digit
xij can be changed (1≤i≤n,1jm). Event Aj is more important than event Aj+1, it means
that the occurrence of event Aj has a decisive influence on the occurrence of event Aj+1,
and after event Aj occurs a certain number of times, it will create good conditions for
occurrences of event Aj+1.

Let qj be the probability of Aj, rj be a number of occurrences of event:

 )1(121 mjAAAA jr
jj 

Tạp chí KHOA HỌC ĐHSP TPHCM Nguyen Huu Thong

 65

We find values of digits of a variable from left digits to right digits one by one. If
the value of left digit xik (k=1, 2, , j-1) is not worse than the previous one, we have to
fix the values of left digits and change the value of j-th digit to find a new value, and
we hope that it may be a better value than the current one of an optimal solution.

The event for finding a new value of 1-th digit:   1
1

rA

The event for finding a new value of 2-th digit:   2

21
r

AA
Generally, the event for finding a new value of j-th digit:

 )1(121 mjAAAA jr
jj 

After a certain number of iterations of the algorithm, we want to create good
conditions for appearances of these events such that these events occur one after the
other. Hence we have the product of these events:

        mr
mm

rrr AAAAAAAAAA 121321211
321


Because A1,A2,,Am are independent of one another, the probability of this event is:

              mmmmm r
m

r
m

r
m

rrrrrrrr qqqqqqq 112211 111 1432321


  

and this probability is maximum if

)1(
1

mj
rrr

r
q

mjj

j
j 




  (I)
Because left events are more important than right events, it means that left events

are more stable than right events, we have to have:

mrrr  21
Therefore:

mqqq  21
and

)1(
1
1

)1(
mj

jm
q

rmr
r

j
mj

j 





If m=7, the maximum values of q=(q1, q2, q3, q4, q5, q6, q7) are:
1 1 1 1 1 1(, , , , , ,1) (0.14,0.17,0.20,0.25,0.33,0.50,1)
7 6 5 4 3 2

q   ()II

q1=0.14; q2=0.17; q3=0.20; q4=0.25; q5=0.33; q6=0.50; q6=1.
The changing probabilities of digits of a variable increase from left to right. This

means that left digits are more stable than right digits, and right digits change more
than left digits. In other words, the role of left digit xij is more important than the role
of right digit xi,j+1 (1jm-1) for evaluating an objective function.

Tạp chí KHOA HỌC ĐHSP TPHCM Số 43 năm 2013

 66

We do not know what digit of variables the algorithm is finding at the current
iteration, hence we consider all cases of digits with m=1,2,3,4,5,6,7.

 m=1: .11 q

 m=2: .1,5.0
2
1

21  qq

 m=3: .1,5.0
2
1,3.0

3
1

321  qqq

 m=4: .1,5.0,3.0,25.0
4
1

4321  qqqq

 m=5: .1,5.0,3.0,25.0,2.0
5
1

54321  qqqqq

 m=6: .1,50.0,33.0,25.0,20.0,17.0
6
1

654321  qqqqqq

 m=7: .1,50.0,33.0,25.0,20.0,17.0,14.0
7
1

7654321  qqqqqqq

We select the values of q1 where m=1,…,7:

.
7
1,

6
1,

5
1,

4
1,

3
1,

2
1,1

We have the sum of all denominators: 1+2+3+4+5+6+7=28.
We have changing probabilities of each case of m:

Table 1. The statistics of probabilities changing the value of the digits

m Probabilities Changing probabilities
1 1/28 (1,1,1,1,1,1,1)
2 2/28 (0.5,1,1,1,1,1,1)
3 3/28 (0.33,0.5,1,1,1,1,1)
4 4/28 (0.25,0.33,0.5,1,1,1,1)
5 5/28 (0.20,0.25,0.33,0.5,1,1,1)
6 6/28 (0.17,0.20,0.25,0.33,0.5,1,1)
7 7/28 (0.14,0.17,0.20,0.25,0.33,0.5,1)

The procedure of generating probabilities of changes as follows:
R=random(28);
If (R<1) then q=(1,1,1,1,1,1,1)
 Else If (R<3) then q=(0.5,1,1,1,1,1,1)
 Else If (R<6) then q=(0.33,0.5,1,1,1,1,1)

Tạp chí KHOA HỌC ĐHSP TPHCM Nguyen Huu Thong

 67

 Else If (R<10) then q=(0.25,0.33,0.5,1,1,1,1)
 Else If (R<15) then q=(0.20,0.25,0.33,0.5,1,1,1)
 Else If (R<21) then q=(0.17,0.20,0.25,0.33,0.5,1,1)
Else q=(0.14,0.17,0.20,0.25,0.33,0.5,1)

3.2. Probabilities for selecting values of a digit
Consider j-th digit with changing probability qj (1jm), let R1 be the probability

of choosing a random integer number between 0 and 9 for j-th digit, let R2 be
probability of j-th digit incremented by one or a certain value, let R3 be the probability
of j-th digit decremented by one or a certain value. Now we consider two digits aj-1 and
aj, with two probabilities (1-qj-1) and qj (2jm). We have two cases:

 Case 1: If the value of aj-1 is not worse than the previous one, we have the
probability so that aj can find a better value than the current one as follows:

100
1

100
1

10
1

321 RRR 

Because of R1+R2+R3=1, this probability is maximum if R1=1, R2=R3=0.
 Case 2: If the value of aj-1 is worse than the previous one, we have the probability

so that aj-1 and aj can find better values than the current ones as follows:

100
1

100
10. 321 RRR 

Because of R1+R2+R3=1, this probability is maximum if R1=0, R2=R3=0.5.
We have the average probabilities of R1, R2 and R3 of both two cases: R1=0.5,

R2=R3=0.25
4. Selecting k variables (1kn) to change their values

On each iteration, if we select n variables to change their values, the ability of
finding a better solution than the current one may be very small. Therefore we select k
variables randomly (1kn) to change their values, and after a number of iterations the
algorithm has more chance to find a better solution than the current one. Let Bi be an
event that variable xi can be changed to find a better value than the current one (1in).
Let B be an event that k variables are selected and then their values are changed to find
a better solution than the current one. We have:

)Pr()Pr()Pr()Pr()Pr()Pr()Pr(
2121 kk iii

k

iii BBB
n
kB

n
kB

n
kB

n
kB  






























where niii k  211

We consider the context of one iteration; probabilities  niBi 1)Pr(are still
fixed if the values of variables  nixi 1 are not changed. We consider the worst
case, let

Tạp chí KHOA HỌC ĐHSP TPHCM Số 43 năm 2013

 68

)Pr(min
1 ini

Bs




and k
k

s
n
kp 







We have:

pBBB
n
kB

kiii

k







)Pr()Pr()Pr()Pr(

21


Let X be a random variable that represents a number of appearances of the event
B on a number of iterations d of algorithm. X conforms to the law of binomial
distribution B(d, p). We have:

xdxx
d ppCxX )1()Pr(

Probability for event B to occur at least once on one of iteration:
dpXX)1(1)0Pr(1)0Pr(

We calculate a number of iterations d such that this probability is greater than or
equal  (0<<1):





























k
k

dd

s
n
k

d
p

d

pdppX

1ln

)1ln(
)1ln(
)1ln(

)1ln()1ln(1)1()1(1)0Pr(




Select a minimum number of iterations and when n+, we have:







 




































kk

kk
kk

k
k

k
k sk

CnCn
sk

s
n
k

s
n
k

)1ln()1ln()1ln(

1ln

)1ln(
11



On each iteration, the algorithm performs k works and each work loses time O(1).
We have the time of transforming a state:

   )1()1()1(12211 kOCCnCnkOCkOnC kkk 
If k is a fixed number and independent from n, the complexity for finding a better

solution than the current one on each iteration is O(nk). According to statistics of many
experiments, the best thing is to use k in the ratio 20%80% of n.

If k=n, we have the minimum number of iteration:

Tạp chí KHOA HỌC ĐHSP TPHCM Nguyen Huu Thong

 69

 
ln(1) ln(1) ln(1)

ln 1
ln 1 ln 1

ln(1) 1 1ln(1) 1

k n n
k n

n
n

n

sk ns s
n n

Ca a
s s s

  




  
 

                       

                 

 ()III

the complexity for finding a better solution than the current one on each iteration is
O(an).

Ex: With k=1, on each iteration we select only one variable, it is sufficient for
finding a better solution than the current one. The problems of this type have the
following similar form:

.,,1,,,

)()(
1

niRbabxa

xfxfMinimize

iiiii

n

i
ii






In the formula of objective function, all variables are independent. Every variable

xi is calculated independently of other variables.
5. The random search via probability algorithm

The main idea of SVP algorithm is that variables of problem are separated into
discrete digits, and then they are changed with the guide of probabilities and combined
to a new solution. We suppose that a solution of problem has n variables, every
variable has m=7 digits that are listed from left to right xi1, xi2,, xim (xij is an integer
and 0≤xij≤9, j=1, ,m). M is a number of inside iterations of an outside iteration. SVP
algorithm is described with general steps as follows:

S1. Select a random feasible solution x. Let Fx=f(x). Loop=0.
S2. We apply the procedure to generate a new solution y.
S3. If y is an infeasible solution then return S2.
S4. Let Fy=f(y). If Fy <Fx then x=y; Fx=Fy; loop=0;
S5. If loop<M then loop=loop+1, return S2.
S6. End of SVP algorithm.
The procedure of generating a new solution as follows:
S2.1. We create changing probabilities qj (1≤j≤m) and q1≤q2≤≤qm.
S2.2. The technique for changing value via probability to create a new solution

y=(y1, y2, , yn) is described as follows:
k=20+random(80);
For i=1 to n do
 Begin_1
 If (random(100)<k) then {select k variables }

Tạp chí KHOA HỌC ĐHSP TPHCM Số 43 năm 2013

 70

 Begin_2 {variable yi is selected for changing its value}
 yi=0;
 For j=1 to m-1 do
 Begin_3
 If j=1, 2, 3 then a=2 else a=4 ; (*)
 If (probability of a random event is qj) then
 If (probability of a random event is R1) then yij= yij+101-j*random(10);
 else if (probability of a random event is R2) then yij= yij+101-j*(xij –

random(a));
 else yij= yij +101-j*(xij +random(a));
 else yij= yij +101-j* xij;
End_3;
 yim= yim +10-m *random(10);
 End_2;
 Else yi=xi; {variable yi is not selected for changing its value}

if (yi<ai) then yi=ai; if (yi >bi) then yi=bi;
End_1;
The SVP algorithm has the following characteristics:

 The central algorithmic ideas: The SVP algorithm finds the value of each digit
from left digit to right digit of every variable with the guide of probabilities, and the
newly-found value may be better than the current one (according to probabilities).

 Variable Loop will be set to 0 if SVP algorithm finds a better solution than the
current one; this means that SVP algorithm can find an optimal solution the first time
after a necessary number of iterations.

 (*): The right digits vary more than the left digits.
6. Examples

It would be interesting to see how the algorithm SVP performs on more widely
used benchmark problems in continuous optimization with or without constraints. Eight
test multimodal functions without constraints including Sphere function, Ellipsoidal
function, Griewank’s function, Ackley’s function, two functions of Schwefel,
Rastrigin’s function, and Rosenbrock’s function [1][2][3][4].

Using PC, Celeron CPU 2.20GHz, Borland C++ 3.1. Select value to parameter
M=100000. We performed 30 independent runs for each example. The results for all
test problems are reported in Tables.
6.1. Sphere function

Tạp chí KHOA HỌC ĐHSP TPHCM Nguyen Huu Thong

 71





n

i
ixxf

1

2)((IV)

Search space: -100≤xi≤100, i=1,…,n.
Global optimum solution: x*=(xi=0) (i=1,…,n). Global optimum value: f(x*)=0.
There is only an optimum point of this function and it is a global optimum point,

i.e. the function is uni-modal. Al variables are not interdependent.
The experimental value of objective function for SVP algorithm: f(x)=0.

Table 2. Statistics of SVP algorithm for finding the minimum of sphere function

 k=1 k=3 k=1-5
 Iterations Time Iterations Time Iterations Time
Max 391507 63 889480 155 536015 82
Min 104579 24 282869 50 180913 35
Average 274259 48 513236 85 323574 53
Medium 273174 52 492710 80 299056 51
Standard
Deviation 93020 13 178582 30 120814 16

6.2. Ellipsoidal function





n

i
ixixf

1

2*)((V)

Search space: -100≤xi≤100, i=1,…,n.
Global optimum solution: x*=(xi=0) (i=1,…,n). Global optimum value: f(x*)=0.
There is only an optimum point of this function and it is a global optimum point,

i.e. the function is uni-modal. Al variables are not interdependent.
The experimental value of objective function for SVP algorithm: f(x)=0.

Table 3. Statistics of SVP algorithm for finding the minimum of ellipsoidal function

 k=1 k=5 k=1-3
 Iterations Time Iterations Time Iterations Time
Max 40058 23 201727 56 41661 20
Min 26122 16 105729 32 22133 14
Average 30609 19 139822 41 30545 17
Medium 30010 20 128206 39 29158 17
Standard
Deviation 3983.80 1.87 35055.78 8.63 6561.44 2.23

Tạp chí KHOA HỌC ĐHSP TPHCM Số 43 năm 2013

 72

6.3. Griewank’s function

 
 









n

i

n

i

i
i i

xxxfMinimize
1 1

2 1*
4000

1)(
 (VI)

Search space: -600≤xi≤600, i=1,…,n.
Global optimum solution: x*=(xi=0) (i=1,…,n). Global optimum value: f(x*)=0.
This function is strongly multi-modal, the number of local optimal points

increases with the dimensionality.
Select Loop=50000, K=n/10+random(10)

Table 4. Statistics of SVP algorithm for finding the minimum of Griewank’s function

 n=30 n=50 n=100
 fx) Time f(x) Time f(x) Time
Min 0.0000000000 16 0.0000000000 26 0.0000000008 68
Max 0.0811674346 18 0.0393113727 31 0.0344011556 109
Average 0.0238396198 17 0.0127923868 28 0.0085991893 75
Medium 0.0159957028 17 0.0098585146 28 0.0000000030 71
Standard
Deviation 0.0269205669 1 0.0137978969 1 0.0140545242 12

6.4. Ackley’s function




















 



n

i
i

n

i
i x

n
epxx

n
exf

11

2)2cos(112.0exp2020)( (VII)

Search space: -100≤xi≤100, i=1,…,n.
Global optimum solution: x*=(xi=0) (i=1,…,n). Global optimum value: f(x*)=0.
This function has many local optima, i.e. it is multi-modal. The difficult part

about finding optimal solutions to this function is that an optimization algorithm easily
can be trapped in a local optimum on its way towards the global optimum.

The experimental value of objective function for SVP algorithm: f(x)=0, and
n=100.

Table 5. Statistics of SVP algorithm for finding the minimum of Ackley’s function

 k=1% of n k=5% of n k=1%-5% of n
 Iterations Time Iterations Time Iterations Time
Min 32897 15 192222 38 35925 14
Max 44943 17 277869 53 45988 15

Tạp chí KHOA HỌC ĐHSP TPHCM Nguyen Huu Thong

 73

Average 38550 16 218740 42 42218 15
Medium 38180 17 202435 39 43479 15
Standard
Deviation 5157 1 40205 7 4523 1

6.5. Schwefel’s function 1

 
 











n

i

i

j
jxxf

1

2

1
)((VIII)

Optimal solution: xi=0, (i=1,…,n), f(x)=0.
The experimental value of objective function for SVP algorithm: f(x)=0.1.

Table 6. Statistics of SVP algorithm for finding the minimum of Schwefel’s function 1

 K=1 k=20%-60% of
n

K=10%-80% of
n

 Iterations Time Iterations Time Iterations Time
Max 323912 434 70984 37 60880 32
Min 289192 293 52863 24 46284 26
Average 311449 340 60318 29 53330 30
Medium 316345 317 58712 28 53078 30
Standard
Deviation 16221.28 63.94 7728.72 5.56 6988.01 2.65

6.6. Schwefel’s function 2

 30,,1500500,30

))sin(.(.9829.418)(
1



 


ixn

xxnxfMinimun

i

n

i
ii (IX)

Search space: -500≤xi≤100 (i=1,…,n).
Global optimum solution: x*=(xi=0) (i=1,…,n). Global optimum value: f(x*)=0.
Loop=50000, k=10-30%.

Table 7. Statistics of SVP alg. for finding the minimum of Schwefel’s function 2

 N=30 N=50 N=100
 f(x) Time F(x) Time f(x) Time
Min 0.000382 14 0.000657 22 0.151995 39
Max 0.000382 16 0.000720 24 0.585872 44
Average 0.000382 15 0.000681 23 0.357464 42

Tạp chí KHOA HỌC ĐHSP TPHCM Số 43 năm 2013

 74

Medium 0.000382 15 0.000682 24 0.391186 43
Standard
Deviation

0.000000 1 0.000019 1 0.154470 2

Loop=100000, n=100
Table 8. Statistics of SVP alg. for finding the minimum of Schwefel’s function 2

 k=10-50% k=40-80% k=50-100%
 f(x) Time F(x) Time f(x) Time
Min 0.079213 55 886.560075 50 3843.442593 56
Max 0.263182 58 1428.157463 52 4773.125910 57
Average 0.143390 57 1151.183931 51 4196.844639 57
Medium 0.137396 57 1153.912549 51 4181.108227 57
Standard
Deviation

0.047134 1 211.887194 1 266.041875 1

6.7. Rastrigin’s function





n

i
ii xxnxf

1

2))2cos(10(10)( (X)

Search space: -100≤xi≤100 (i=1,…,n).
Global optimum solution: x*=(xi=0) (i=1,…,n). Global optimum value: f(x*)=0.
This function has many local optima, i.e. it is multi-modal. The difficult part

about finding optimal solutions to this function is that an optimization algorithm easily
can be trapped in a local optimum on its way towards the global optimum.

The experimental value of objective function for SVP algorithm: f(x)=0.
Table 9. Statistics of SVP algorithm for finding the minimum of Rastrigin’s function

 k=1 k=5 k=1-5
 Iterations Time Iterations Time Iterations Time
Max 63934 21 317432 57 54585 17
Min 28393 13 156305 30 35509 14
Average 37156 16 212384 40 44314 15
Medium 33060 15 205548 40 44166 15
Standard
Deviation 10994.74 2.37 55697.37 9.17 6129 1

Tạp chí KHOA HỌC ĐHSP TPHCM Nguyen Huu Thong

 75

6.8. Rosenbrock’s function





 

1

1

222
1)1()(*100)(

n

i
iii xxxxfMinimun (XI)

Search space: -100≤xi≤100 (i=1,…,n).
Global optimum solution: x*=(xi=1) (i=1,…,n). Global optimum value: f(x*)=0.
The global optimum point is the only optimum point. However, the variables are

strongly interdependent, which makes this function very difficult to optimize using
particle swarms and evolutionary algorithms.

Loop=100000, n=100
Table 10. Statistics of SVP alg. for finding the minimum of Rosenbrock’s function

 K=5-20% K=20-80% K=50-100%
 F(x) Time F(x) Time f(x) Time
Min 0.095616 88 57.499233 93 335.043873 100
Max 70.879085 76 205.010381 76 447.997597 99
Average 9.360828 79 124.836888 79 380.865796 100
Medium 2.979793 78 121.599714 77 377.163320 100
Standard
Deviation

21.654109 4 53.888290 5 34.741264 0

Remarks on 8 test multimodal functions: Variables of problems 1-5 are not
interdependent, the increase or decrease of one variable xi (1≤ xi ≤n) influences only on
a term including this variable xi. Therefore we can randomly select one variable (k=1)
to change its values. However we should select k=10%-20% of n to increase the
convergent speed of algorithm. The test problem 6 has n variables which are
interdependent, the increase or decrease of one variable xi (1≤ xi ≤n) influences
previous term and next term, therefore we have to select many variables (k>1) to
change their values. See the statistical table 8 of problem 6 for n=10, n=20 and n=30,
because the problem 6 has interdependent variables, therefore the number of iterations
increases very quickly in the ratio of n. It means that the complexity of SVP
algorithm for these problems is not based on formulas of problems, such as linear
or nonlinear, but it is based on the relations of variables in the objective function
and constraints.
7. Conclusions

In this paper, we proposed a new approach for single-objective optimization
problems, Search via Probability algorithm, this algorithm was extended from [4]. The
SVP algorithm used probabilities to control the process of searching for an optimal
solution. We calculated the probabilities of the appearance of a better solution than the
current one, and on each iteration of the performance of SVP algorithm, we created

Tạp chí KHOA HỌC ĐHSP TPHCM Số 43 năm 2013

 76

good conditions for its appearance. The idea of SVP algorithm was based on essential
remarks as follows:

 The role of left digits was more important than the role of right digit for
evaluating an objective function. We calculated probabilities for searching better values
than the current ones of digits from left digits to right digits of every variable. Decided
variables of problem were separated into discrete digits, and then they were changed
with the guide of probabilities and combined to a new solution.

 The complexity of SVP algorithm of a problem was not based on the type of
expressions in the objective function or constraints (linear or nonlinear), but on the
relation of decided variables in the formulas of object function or constraints; therefore
if there were k independent variables (1kn), it would be sufficient to find a better
solution than the current one, we only needed to select k variables to change their
values on each iteration.

 We could not calculate exactly a number of iterations for searching an optimal
solution the first time because SVP algorithm was a stochastic algorithm; therefore we
used unfixed number of iterations which has more chance to find an optimal solution
the first time with necessary number of iterations.

We tested this approach by implementing the SVP algorithm on some test single-
objective optimization problems, and we found very stable results. We are applying
SVP algorithm for solving multiobjective optimization and discrete optimization
problems.

REFERENCES
1. Dolan A., A general GA toolkit implemented in Java, for experimenting with genetic

algorithms and handling optimization problems,
http://www.aridolan.com/ofiles/ga/gaa/gaa.html.

2. EMOO Home Page, http://www.lania.mx/~ccoello/
3. GEATbx: Example Functions (single and multi-objective functions),

http://www.geatbx.com/docu/fcnindex-01.html
4. Nguyễn Hữu Thông and Trần Văn Hạo (2007), “Search via Probability Algorithm

for Engineering Optimization Problems”, In Proceedings of XIIth Applied Stochastic
Models and Data Analysis (ASMDA2007) International Conference. In book: Recent
Advances in Stochastic Modeling and Data Analysis, editor: Christos H. Skiadas,
publisher: World Scientific Publishing Co Pte Ltd, 454 – 463.

5. Yang X.-S.(2010), A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired
Cooperative Strategies for Optimization (NICSO 2010) (Eds. J. R. Gonzalez et al.),
SCI 284, 65-74.

(Received: 28/5/2012; Revised: 03/12/2012; Accepted: 18/02/2013)

