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A NEW SEARCH VIA PROBABILITY ALGORITHM 
FOR SINGLE-OBJECTIVE OPTIMIZATION PROBLEMS 

 

NGUYEN HUU THONG* 

 

ABSTRACT 
This paper proposes a new stochastic algorithm, Search Via Probability (SVP) 

algorithm, for single-objective optimization problems. The SVP algorithm uses 
probabilities to control a process of searching for optimal solutions. We calculate 
probabilities of an appearance of a better solution than the current one on each iteration, 
and on the performance of SVP algorithm we create good conditions for its appearance.  

Keywords: numerical optimization, stochastic, random, probability, algorithm. 
TÓM TẮT 

Một giải thuật tìm kiếm theo xác suất mới cho bài toán tối ưu một mục tiêu 
Bài viết này đề xuất một giải thuật ngẫu nhiên mới, giải thuật Tìm kiếm theo Xác 

suất (TKTXS), cho bài toán tối ưu một mục tiêu. Giải thuật TKTXS sử dụng xác suất để 
điều khiển quá trình tìm kiếm lời giải tối ưu. Chúng tôi tính toán xác suất của sự xuất hiện 
một lời giải tốt hơn lời giải hiện hành trên mỗi lần lặp, và trong việc thực thi giải thuật 
TKTXS chúng tôi tạo điều kiện tốt cho sự xuất hiện của lời giải này.  

Từ khóa: tối ưu số, ngẫu nhiên, xác suất, giải thuật. 
 

1. Introduction 
There are many algorithms, traditional computation or evolutionary computation, 

for single-objective optimization problems. Almost all focus on the determination of 
positions neighbouring an optimal solution and handle constraints based on violated 
constraints. However the information of violated constraints is not sufficient for 
determining a position of an optimal solution.  

We can suppose that every decided variable of an optimization problem has m 
digits that are listed from left to right; we have our remarks as follows:  

 To evaluate an objective function, the role of left digits is more important than the 
role of right digits of a decided variable. We calculate probabilities of changing the 
values of digits of variables for an appearance of a better solution than the current one 
on each iteration, and on the performance of SVP algorithm, we create good conditions 
for its appearance.  

 Based on relations of decided variables in the formulas of constrains and an 
objective function we select k variables (1kn) to change their values instead of 
selecting all n variables on each iteration.  
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 Because we can not calculate exactly a number of iterations of a stochastic 
algorithm for searching an optimal solution the first time on each performance of the 
algorithm, we use an unfixed number of iterations, which has more chance to find an 
optimal solution the first time with a necessary number of iterations.  

Based on these remarks we introduce a new stochastic algorithm, Search Via 
Probability (SVP) algorithm, the SVP algorithm uses probabilities to control the 
process of searching for optimal solutions.  
2. The model of single-objective optimization problem 

We consider a model of single-objective optimization problem as follows: 
( )
( ) 0 ( 1, , )

, , , 1, , .
j

i i i i i

Minimize f x
subject to g x j r
where a x b a b R i n
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We can suppose that every decided variable of a solution of an optimization 
problem has m digits that are listed from left to right. The role of left digits is more 
important than the role of right digits of a decided variable for evaluating an objective 
function. Hence we should find the values of digits from left digits to right digits one 
by one. To do it we want to use probabilities, that is to calculate changing probabilities 
of digits which can find better values than the current one on each iteration. The 
proposed algorithm below is a repeated algorithm. On each repeat of algorithm, we 
select k variables (1≤k≤n) and change their values with the guide of probabilities to 
find a better solution than the current one. Hence the next work is that we should 
calculate probabilities of changing values of variables, probabilities of selecting values 
of changed digits of a variable, and the complex of selecting k variables (1≤k≤n) to 
change their values. 
3. Probabilities of changes and selecting values of a digit 

We suppose that every decided variable xi (1≤i≤n) of a solution of an 
optimization problem has m digits that are listed from left to right xi1, xi2,, xim (xij is 
an integer and 0≤xij≤9, 1≤j≤m). To evaluate an objective function, the role of left digits 
is more important than the role of right digits of a decided variable; hence we calculate 
changing probabilities of digits which can find better values than the current ones on 
each iteration. 
3.1. Probabilities of changes 

Consider the j-th digit xij of a variable xi, let Aj be an event that the value of digit 
xij can be changed (1≤i≤n,1jm). Event Aj is more important than event Aj+1, it means 
that the occurrence of event Aj has a decisive influence on the occurrence of event Aj+1, 
and after event Aj occurs a certain number of times, it will create good conditions for 
occurrences of event Aj+1.  

Let qj be the probability of Aj, rj be a number of occurrences of event:  

  )1(121 mjAAAA jr
jj   
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We find values of digits of a variable from left digits to right digits one by one. If 
the value of left digit xik (k=1, 2, , j-1) is not worse than the previous one, we have to 
fix the values of left digits and change the value of j-th digit to find a new value, and 
we hope that it may be a better value than the current one of an optimal solution.  

The event for finding a new value of 1-th digit:   1
1

rA  

The event for finding a new value of 2-th digit:   2

21
r

AA  
Generally, the event for finding a new value of j-th digit:  

  )1(121 mjAAAA jr
jj   

After a certain number of iterations of the algorithm, we want to create good 
conditions for appearances of these events such that these events occur one after the 
other. Hence we have the product of these events:  

        mr
mm

rrr AAAAAAAAAA 121321211
321

  
Because A1,A2,,Am are independent of one another, the probability of this event is:  
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and this probability is maximum if 
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                                                                           (I) 
Because left events are more important than right events, it means that left events 

are more stable than right events, we have to have:  

mrrr  21  
Therefore:  

mqqq  21  
and  
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If m=7, the maximum values of q=(q1, q2, q3, q4, q5, q6, q7) are: 
1 1 1 1 1 1( , , , , , ,1) (0.14,0.17,0.20,0.25,0.33,0.50,1)
7 6 5 4 3 2

q                         ( )II  

q1=0.14;   q2=0.17;   q3=0.20;   q4=0.25;   q5=0.33;   q6=0.50;   q6=1. 
The changing probabilities of digits of a variable increase from left to right. This 

means that left digits are more stable than right digits, and right digits change more 
than left digits. In other words, the role of left digit xij is more important than the role 
of right digit xi,j+1 (1jm-1) for evaluating an objective function. 
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We do not know what digit of variables the algorithm is finding at the current 
iteration, hence we consider all cases of digits with m=1,2,3,4,5,6,7. 

 m=1: .11 q  

 m=2: .1,5.0
2
1

21  qq  

 m=3: .1,5.0
2
1,3.0

3
1

321  qqq  

 m=4: .1,5.0,3.0,25.0
4
1

4321  qqqq  

 m=5: .1,5.0,3.0,25.0,2.0
5
1

54321  qqqqq  

 m=6: .1,50.0,33.0,25.0,20.0,17.0
6
1

654321  qqqqqq  

 m=7: .1,50.0,33.0,25.0,20.0,17.0,14.0
7
1

7654321  qqqqqqq  

We select the values of q1 where m=1,…,7: 

.
7
1,

6
1,

5
1,

4
1,

3
1,

2
1,1  

We have the sum of all denominators: 1+2+3+4+5+6+7=28. 
We have changing probabilities of each case of m:  

Table 1. The statistics of probabilities changing the value of the digits 
 

m Probabilities Changing probabilities 
1 1/28 (1,1,1,1,1,1,1) 
2 2/28 (0.5,1,1,1,1,1,1) 
3 3/28 (0.33,0.5,1,1,1,1,1) 
4 4/28 (0.25,0.33,0.5,1,1,1,1) 
5 5/28 (0.20,0.25,0.33,0.5,1,1,1) 
6 6/28 (0.17,0.20,0.25,0.33,0.5,1,1) 
7 7/28 (0.14,0.17,0.20,0.25,0.33,0.5,1) 

 

The procedure of generating probabilities of changes as follows: 
R=random(28); 
If (R<1) then q=(1,1,1,1,1,1,1) 
  Else If (R<3) then q=(0.5,1,1,1,1,1,1) 
          Else If (R<6) then q=(0.33,0.5,1,1,1,1,1) 
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                  Else If (R<10) then q=(0.25,0.33,0.5,1,1,1,1) 
                          Else If (R<15) then q=(0.20,0.25,0.33,0.5,1,1,1) 
                                  Else If (R<21) then q=(0.17,0.20,0.25,0.33,0.5,1,1) 
Else q=(0.14,0.17,0.20,0.25,0.33,0.5,1)  

3.2. Probabilities for selecting values of a digit 
Consider j-th digit with changing probability qj (1jm), let R1 be the probability 

of choosing a random integer number between 0 and 9 for j-th digit, let R2 be 
probability of j-th digit incremented by one or a certain value, let R3 be the probability 
of j-th digit decremented by one or a certain value. Now we consider two digits aj-1 and 
aj, with two probabilities (1-qj-1) and qj (2jm). We have two cases:   

 Case 1: If the value of aj-1 is not worse than the previous one, we have the 
probability so that aj can find a better value than the current one as follows:  

100
1

100
1

10
1

321 RRR 
 

Because of R1+R2+R3=1, this probability is maximum if R1=1, R2=R3=0.  
 Case 2: If the value of aj-1 is worse than the previous one, we have the probability 

so that aj-1 and aj can find better values than the current ones as follows: 

100
1

100
10. 321 RRR 

 
Because of R1+R2+R3=1, this probability is maximum if R1=0, R2=R3=0.5.  
We have the average probabilities of R1, R2 and R3 of both two cases: R1=0.5, 

R2=R3=0.25 
4. Selecting k variables (1kn) to change their values 

On each iteration, if we select n variables to change their values, the ability of 
finding a better solution than the current one may be very small. Therefore we select k 
variables randomly (1kn) to change their values, and after a number of iterations the 
algorithm has more chance to find a better solution than the current one. Let Bi be an 
event that variable xi can be changed to find a better value than the current one (1in). 
Let B be an event that k variables are selected and then their values are changed to find 
a better solution than the current one. We have: 

)Pr()Pr()Pr()Pr()Pr()Pr()Pr(
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k
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where niii k  211  

We consider the context of one iteration; probabilities  niBi 1)Pr(  are still 
fixed if the values of variables  nixi 1  are not changed. We consider the worst 
case, let  
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)Pr(min
1 ini
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

  

and   k
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s
n
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

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
  

We have: 

pBBB
n
kB

kiii

k







 )Pr()Pr()Pr()Pr(

21
  

Let X be a random variable that represents a number of appearances of the event 
B on a number of iterations d of algorithm. X conforms to the law of binomial 
distribution B(d, p). We have: 

xdxx
d ppCxX  )1()Pr(  

Probability for event B to occur at least once on one of iteration:  
dpXX )1(1)0Pr(1)0Pr(   

We calculate a number of iterations d such that this probability is greater than or 
equal  (0<<1): 
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Select a minimum number of iterations and when n+, we have: 
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On each iteration, the algorithm performs k works and each work loses time O(1). 
We have the time of transforming a state: 

   )1()1()1( 12211 kOCCnCnkOCkOnC kkk   
If k is a fixed number and independent from n, the complexity for finding a better 

solution than the current one on each iteration is O(nk). According to statistics of many 
experiments, the best thing is to use k in the ratio 20%80% of n. 

If k=n, we have the minimum number of iteration: 
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 
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                                      ( )III  

the complexity for finding a better solution than the current one on each iteration is 
O(an). 

Ex: With k=1, on each iteration we select only one variable, it is sufficient for 
finding a better solution than the current one. The problems of this type have the 
following similar form: 

.,,1,,,

)()(
1

niRbabxa

xfxfMinimize

iiiii

n

i
ii






 
In the formula of objective function, all variables are independent. Every variable 

xi is calculated independently of other variables. 
5. The random search via probability algorithm 

The main idea of SVP algorithm is that variables of problem are separated into 
discrete digits, and then they are changed with the guide of probabilities and combined 
to a new solution. We suppose that a solution of problem has n variables, every 
variable has m=7 digits that are listed from left to right xi1, xi2,, xim (xij is an integer 
and 0≤xij≤9, j=1, ,m). M is a number of inside iterations of an outside iteration. SVP 
algorithm is described with general steps as follows:  

S1. Select a random feasible solution x. Let Fx=f(x). Loop=0. 
S2. We apply the procedure to generate a new solution y.  
S3. If y is an infeasible solution then return S2. 
S4. Let Fy=f(y). If Fy <Fx then x=y; Fx=Fy; loop=0; 
S5. If loop<M then loop=loop+1, return S2. 
S6. End of SVP algorithm. 
The procedure of generating a new solution as follows: 
S2.1. We create changing probabilities qj (1≤j≤m) and q1≤q2≤≤qm. 
S2.2. The technique for changing value via probability to create a new solution 

y=(y1, y2, , yn) is described as follows: 
k=20+random(80); 
For i=1 to n do 
  Begin_1 
    If (random(100)<k) then {select k variables } 
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      Begin_2  {variable yi is selected for changing its value} 
        yi=0;   
        For j=1 to m-1 do 
          Begin_3 
             If j=1, 2, 3 then a=2 else a=4 ; (*)                      
   If (probability of a random event is qj) then   
       If (probability of a random event is R1) then yij= yij+101-j*random(10); 
       else if (probability of a random event is R2) then yij= yij+101-j*( xij –

random(a)); 
                else yij= yij +101-j*( xij +random(a)); 
   else yij= yij +101-j* xij; 
End_3; 
       yim= yim +10-m *random(10); 
    End_2; 
  Else yi=xi;  {variable yi is not selected for changing its value} 

if (yi<ai) then yi=ai;   if (yi >bi) then yi=bi; 
End_1; 
The SVP algorithm has the following characteristics:  

 The central algorithmic ideas: The SVP algorithm finds the value of each digit 
from left digit to right digit of every variable with the guide of probabilities, and the 
newly-found value may be better than the current one (according to probabilities). 

 Variable Loop will be set to 0 if SVP algorithm finds a better solution than the 
current one; this means that SVP algorithm can find an optimal solution the first time 
after a necessary number of iterations.  

 (*): The right digits vary more than the left digits. 
6. Examples 

It would be interesting to see how the algorithm SVP performs on more widely 
used benchmark problems in continuous optimization with or without constraints. Eight 
test multimodal functions without constraints including Sphere function, Ellipsoidal 
function, Griewank’s function, Ackley’s function, two functions of Schwefel, 
Rastrigin’s function, and Rosenbrock’s function [1][2][3][4].  

Using PC, Celeron CPU 2.20GHz, Borland C++ 3.1. Select value to parameter 
M=100000. We performed 30 independent runs for each example. The results for all 
test problems are reported in Tables. 
6.1. Sphere function  



Tạp chí KHOA HỌC ĐHSP TPHCM  Nguyen Huu Thong 
_____________________________________________________________________________________________________________ 
 
 

    71  





n

i
ixxf

1

2)(                                                                                                        (IV) 

Search space: -100≤xi≤100, i=1,…,n. 
Global optimum solution: x*=(xi=0) (i=1,…,n). Global optimum value: f(x*)=0. 
There is only an optimum point of this function and it is a global optimum point, 

i.e. the function is uni-modal. Al variables are not interdependent. 
The experimental value of objective function for SVP algorithm: f(x)=0. 

Table 2. Statistics of SVP algorithm for finding the minimum of sphere function 
 

 k=1 k=3 k=1-5 
 Iterations Time Iterations Time Iterations Time 
Max 391507 63 889480 155 536015 82 
Min 104579 24 282869 50 180913 35 
Average 274259 48 513236 85 323574 53 
Medium 273174 52 492710 80 299056 51 
Standard 
Deviation 93020 13 178582 30 120814 16 

 

6.2. Ellipsoidal function  





n

i
ixixf

1

2*)(                                                                                                      (V) 

Search space: -100≤xi≤100, i=1,…,n. 
Global optimum solution: x*=(xi=0) (i=1,…,n). Global optimum value: f(x*)=0. 
There is only an optimum point of this function and it is a global optimum point, 

i.e. the function is uni-modal. Al variables are not interdependent. 
The experimental value of objective function for SVP algorithm: f(x)=0. 

Table 3. Statistics of SVP algorithm for finding the minimum of ellipsoidal function 
 

 k=1 k=5 k=1-3 
 Iterations Time Iterations Time Iterations Time 
Max 40058 23 201727 56 41661 20 
Min 26122 16 105729 32 22133 14 
Average 30609 19 139822 41 30545 17 
Medium 30010 20 128206 39 29158 17 
Standard  
Deviation 3983.80 1.87 35055.78 8.63 6561.44 2.23 



Tạp chí KHOA HỌC ĐHSP TPHCM  Số 43 năm 2013 
_____________________________________________________________________________________________________________ 
 
 

 72 

6.3. Griewank’s function 

 
 









n

i

n

i

i
i i

xxxfMinimize
1 1

2 1*
4000

1)(
                                               (VI) 

Search space: -600≤xi≤600, i=1,…,n. 
Global optimum solution: x*=(xi=0) (i=1,…,n). Global optimum value: f(x*)=0. 
This function is strongly multi-modal, the number of local optimal points 

increases with the dimensionality.   
Select Loop=50000, K=n/10+random(10) 

Table 4. Statistics of SVP algorithm for finding the minimum of Griewank’s function 
 

 n=30 n=50 n=100 
 fx) Time f(x) Time f(x) Time 
Min 0.0000000000 16 0.0000000000 26 0.0000000008 68 
Max 0.0811674346 18 0.0393113727 31 0.0344011556 109 
Average 0.0238396198 17 0.0127923868 28 0.0085991893 75 
Medium 0.0159957028 17 0.0098585146 28 0.0000000030 71 
Standard  
Deviation 0.0269205669 1 0.0137978969 1 0.0140545242 12 

 

6.4. Ackley’s function 
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11

2 )2cos(112.0exp2020)(                             (VII) 

Search space: -100≤xi≤100, i=1,…,n. 
Global optimum solution: x*=(xi=0) (i=1,…,n). Global optimum value: f(x*)=0. 
This function has many local optima, i.e. it is multi-modal. The difficult part 

about finding optimal solutions to this function is that an optimization algorithm easily 
can be trapped in a local optimum on its way towards the global optimum. 

The experimental value of objective function for SVP algorithm: f(x)=0, and 
n=100. 

Table 5. Statistics of SVP algorithm for finding the minimum of Ackley’s function 
 

 k=1% of n k=5% of n k=1%-5% of n 
 Iterations Time Iterations Time Iterations Time 
Min 32897 15 192222 38 35925 14 
Max 44943 17 277869 53 45988 15 
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Average 38550 16 218740 42 42218 15 
Medium 38180 17 202435 39 43479 15 
Standard 
Deviation 5157 1 40205 7 4523 1 

 

6.5. Schwefel’s function 1 
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Optimal solution: xi=0, (i=1,…,n), f(x)=0. 
The experimental value of objective function for SVP algorithm: f(x)=0.1. 

Table 6. Statistics of SVP algorithm for finding the minimum of Schwefel’s function 1 
 

 K=1 k=20%-60% of 
n 

K=10%-80% of 
n 

 Iterations Time Iterations Time Iterations Time 
Max 323912 434 70984 37 60880 32 
Min 289192 293 52863 24 46284 26 
Average 311449 340 60318 29 53330 30 
Medium 316345 317 58712 28 53078 30 
Standard 
Deviation 16221.28 63.94 7728.72 5.56 6988.01 2.65 

 

6.6. Schwefel’s function 2 
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Search space: -500≤xi≤100 (i=1,…,n). 
Global optimum solution: x*=(xi=0) (i=1,…,n). Global optimum value: f(x*)=0. 
Loop=50000,  k=10-30%. 

Table 7. Statistics of SVP alg. for finding the minimum of Schwefel’s function 2 
 

 N=30 N=50 N=100 
 f(x) Time F(x) Time f(x) Time 
Min 0.000382 14 0.000657 22 0.151995 39 
Max 0.000382 16 0.000720 24 0.585872 44 
Average 0.000382 15 0.000681 23 0.357464 42 
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Medium 0.000382 15 0.000682 24 0.391186 43 
Standard  
Deviation 

0.000000 1 0.000019 1 0.154470 2 
 

Loop=100000, n=100 
Table 8. Statistics of SVP alg. for finding the minimum of Schwefel’s function 2 

 

 k=10-50% k=40-80% k=50-100% 
 f(x) Time F(x) Time f(x) Time 
Min 0.079213 55 886.560075 50 3843.442593 56 
Max 0.263182 58 1428.157463 52 4773.125910 57 
Average 0.143390 57 1151.183931 51 4196.844639 57 
Medium 0.137396 57 1153.912549 51 4181.108227 57 
Standard  
Deviation 

0.047134 1 211.887194 1 266.041875 1 
 

6.7. Rastrigin’s function  
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2 ))2cos(10(10)(                                                                        (X) 

Search space: -100≤xi≤100 (i=1,…,n).  
Global optimum solution: x*=(xi=0) (i=1,…,n). Global optimum value: f(x*)=0. 
This function has many local optima, i.e. it is multi-modal. The difficult part 

about finding optimal solutions to this function is that an optimization algorithm easily 
can be trapped in a local optimum on its way towards the global optimum. 

The experimental value of objective function for SVP algorithm: f(x)=0. 
Table 9. Statistics of SVP algorithm for finding the minimum of Rastrigin’s function 

 

 k=1 k=5 k=1-5 
 Iterations Time Iterations Time Iterations Time 
Max 63934 21 317432 57 54585 17 
Min 28393 13 156305 30 35509 14 
Average 37156 16 212384 40 44314 15 
Medium 33060 15 205548 40 44166 15 
Standard  
Deviation 10994.74 2.37 55697.37 9.17 6129 1 
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6.8. Rosenbrock’s function 
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Search space: -100≤xi≤100 (i=1,…,n).  
Global optimum solution: x*=(xi=1) (i=1,…,n). Global optimum value: f(x*)=0. 
The global optimum point is the only optimum point. However, the variables are 

strongly interdependent, which makes this function very difficult to optimize using 
particle swarms and evolutionary algorithms. 

Loop=100000, n=100 
Table 10. Statistics of SVP alg. for finding the minimum of Rosenbrock’s function 

 

 K=5-20% K=20-80% K=50-100% 
 F(x) Time F(x) Time f(x) Time 
Min 0.095616 88 57.499233 93 335.043873 100 
Max 70.879085 76 205.010381 76 447.997597 99 
Average 9.360828 79 124.836888 79 380.865796 100 
Medium 2.979793 78 121.599714 77 377.163320 100 
Standard  
Deviation 

21.654109 4 53.888290 5 34.741264 0 
 

Remarks on 8 test multimodal functions: Variables of problems 1-5 are not 
interdependent, the increase or decrease of one variable xi (1≤ xi ≤n) influences only on 
a term including this variable xi. Therefore we can randomly select one variable (k=1) 
to change its values. However we should select k=10%-20% of n to increase the 
convergent speed of algorithm. The test problem 6 has n variables which are 
interdependent, the increase or decrease of one variable xi (1≤ xi ≤n) influences 
previous term and next term, therefore we have to select many variables (k>1) to 
change their values. See the statistical table 8 of problem 6 for n=10, n=20 and n=30, 
because the problem 6 has interdependent variables, therefore the number of iterations 
increases very quickly in the ratio of n. It means that the complexity of SVP 
algorithm for these problems is not based on formulas of problems, such as linear 
or nonlinear, but it is based on the relations of variables in the objective function 
and constraints. 
7. Conclusions 

In this paper, we proposed a new approach for single-objective optimization 
problems, Search via Probability algorithm, this algorithm was extended from [4]. The 
SVP algorithm used probabilities to control the process of searching for an optimal 
solution. We calculated the probabilities of the appearance of a better solution than the 
current one, and on each iteration of the performance of SVP algorithm, we created 
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good conditions for its appearance. The idea of SVP algorithm was based on essential 
remarks as follows:  

 The role of left digits was more important than the role of right digit for 
evaluating an objective function. We calculated probabilities for searching better values 
than the current ones of digits from left digits to right digits of every variable. Decided 
variables of problem were separated into discrete digits, and then they were changed 
with the guide of probabilities and combined to a new solution. 

 The complexity of SVP algorithm of a problem was not based on the type of 
expressions in the objective function or constraints (linear or nonlinear), but on the 
relation of decided variables in the formulas of object function or constraints; therefore 
if there were k independent variables (1kn), it would be sufficient to find a better 
solution than the current one, we only needed to select k variables to change their 
values on each iteration.  

 We could not calculate exactly a number of iterations for searching an optimal 
solution the first time because SVP algorithm was a stochastic algorithm; therefore we 
used unfixed number of iterations which has more chance to find an optimal solution 
the first time with necessary number of iterations.    

We tested this approach by implementing the SVP algorithm on some test single-
objective optimization problems, and we found very stable results. We are applying 
SVP algorithm for solving multiobjective optimization and discrete optimization 
problems. 
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