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A PROBABILITY-DRIVEN SEARCH ALGORITHM
FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

NGUYEN HUU THONG’, TRAN VAN HAO"

ABSTRACT

This paper proposes a new probabilistic algorithm for solving multi-objective
optimization problems - Probability-Driven Search Algorithm. The algorithm uses
probabilities to control the process in search of Pareto optimal solutions. Especially, we
use the absorbing Markov Chain to argue the convergence of the algorithm. We test this
approach by implementing the algorithm on some benchmark multi-objective optimization
problems, and find very good and stable results.
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TOM TAT
M@t gidi thudt fim kiém dwoc diéu khién theo xdc sudt
gidi bai todn téi wu da muc tiéu

Bai nay dé nghi mét giai thudt xdc suat moi dé gidi bai todn toi wu da muc tiéu, gidi
thudt tim kiém dwoc diéu khién theo xdc sudt. Gidi thudt sir dung cdc xdc sudt dé diéu
khién qud trinh tim kiém cac loi giai 16i wu Pareto. Ddc biét, ching t6i sir dung Chuoz
Markov héi tu dé thdo ludn ve tinh hoi tu cua giai thugt. Chung t0i thu nghiém hudng tiép

cdn ndy trén cdc bai todn 16i wu da muc tiéu chudn va ching téi da tim dwoc cdac két qua
rat tot va on dinh.

Tir khoa: 161 wu, da myc ti€u, ngau nhién, xac suat, giai thuat.

1. Introduction

We introduce the Search via Probability (SVP) algorithm for solving single-
objective optimization problems [4]. In this paper, we extend SVP algorithm into
Probabilistic-Driven Search (PDS) algorithm for solving multi-objective optimization
problems by replacing the normal order with the Pareto one. We compute the
complexity of the Changing Technique of the algorithm. Especially, we use the
absorbing Markov Chain to argue the convergence of the Changing Technique of the
algorithm. We test this approach by implementing the algorithm on some benchmark
multi-objective optimization problems, and find very good and stable results.

2.  The model of Multi-objective optimization problem
A general multi-objective problem can be described as follows:
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Minimize fi(x) (k=1,...,5)

subject to g;(x)<0 (j=1,..,r)

where x=(x,),a, <x,<b,(a;,,b,e R, 1<i<n).

A solution x is said to dominate a solution y if

L)< f,(»),Vke{l,..,s} and f,(x)< f.(y) foratleastoneie{l,...,s}

A solution that is not dominated by any other solutions is called a Pareto
optimization solution. Let S be a set of Pareto optimization solutions, S is called Pareto
optimal set. The set of objective function values corresponding to the variables of S is
called Pareto front.

3.  The Changing Technique of PDS algorithm and its complexity

We consider a class of optimization problems having the character as follows:
there is a fixed number k (1<k<n) that is independent of the size n of the problem such
that if we only need to change values of k variables then it has the ability to find a
better solution than the current one, let us call it O,. We suppose that every variable x;
(I<i<n) has m digits that are listed from left to right X;;, Xi,..., Xim (Xjj 1S an integer,
0=x;;<9, 1<j<m). Let L be a number of iterations for finding correct values of j-th
digits. The Changing Technique which changes a solution x into a new solution y is
described with general steps as follows:

Input: a solution x

Output: a new solution y

S1. j«—1 (determine j-th digit);

S2. 1«1 (start counting variable of the loop);
S3. ye—x;

S4. Randomly select k variables of solution y and randomly change values of j-th
digits of these k variables;

S5. If (x is dominated by y) then x«y;
S6. If (<L) then i« i+1 and return S3;
S7. If (j<m) then j« j+1 and return S2;
S8. The end of the Changing Technique;

The Changing Technique finds the value of each digit from left digit to right digit
one by one. Consider j-th digit, on each iteration the Changing Technique randomly
selects k variables, and randomly changes values of j-th digits of these k variables to
find a better solution than the current one. Let A be the event such that the technique
can find correct values of j-th digits of k variables on each iteration. The probability of
Ais
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Let X be a number of occurrences of A with N of iterations. X has the binomial
distribution B (N, p,) and the probability mass function as follows:
(x = 0,1,...,N)

Pr(sz)zC;(pA)x(l—pA)N_x
Because N is sufficiently large and p, is sufficiently small, the Poisson
distribution can be used as an approximation to B (N, p,) of the binomial distribution
as follows:
AT
Pr(X =x)= ¢

with the parameter A=Np, and the expected value of X is E(X) = A.

Because the solution has n variables, we select an average number of iterations
such that the event A occurs at least n/k times. We have
n loknk+l

n n
E(X)>—=N.p,>>=>N> =
(X)> = Npi>o ko, kT

Because every variable has m digits, so the average number of iterations for
finding correct values of a solution the first time is

k k
m [ llcfc)ﬂ jnk“ = (llgkin ] nk+1

On each iteration, the technique performs k jobs with complexity O(1). Because k
is a fixed number, so the complexity of the Changing Technique is O(n*™").

4.  The absorbing Markov Chain of the Changing Technique

Without loss of generality we suppose that the solution has n variables, every
variable has m=5 digits. Let E, be the starting state of a solution that is randomly
selected, E; (i=1,2,...,5) be the state of the solution having n variables with correct
values that are found for digits from 1-th digit to i-th digit (1<i<5). We have (X,;
n=0,1,2,...) is a Markov chain with states {E,, E;, E,, E;, E4, Es}. Let p be the
probability of event in which i-th digits of n variables have correct values. According to
section 2, we have

kk+1
lok nk+1

Set q=1-p, the transition matrix is then

p:

10
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g p 0 0 00
0 g p 00O
0 0 g p 00O
P=(rs), 750 0 o g p O
00 0 0 g p
1000 0 0 0 1|

The states E; (0<i<4) are transient states, and the state Es is an absorbing state.
The Markov chain is an absorbing Markov Chain and its model as follows:
1

q q q q q
/N /N /N /N /N /N
Figure 1. The model of absorbing Markov Chain of the Changing Technique

Absorption Probabilities: Let u;; (0<i<4) be the probability that the absorbing
chain will be absorbed in the absorbing state Es if it starts in the transient state E;
(0<i<4). If we compute u;s in term of the possibilities on the outcome of the first step,
then we have the equations

4
Uis =Pis +Zpijuj5 0<i<4) = wups =u;s =ty =z =uys =1
=0

Here the result tells us that, starting from state 1 (0<i<4), there is probability 1 of
absorption in state Es.

Time to Absorption: Let t; be the expected number of steps before the chain is
absorbed in the absorbing state Es, given that the chain starts in state E; (0<i<4). Then
we have results as follows: t;= (5-1)/p (0<i<4).

5.  PDS algorithm for solving multi-objective optimization problems
5.1. The Changing Procedure

Without loss of generality we suppose that a solution of the problem has n

variables, every variable has m=5 digits. We use the Changing Technique of section 3

and increase the speed of convergence by using two sets of probabilities [4] to create
the Changing Procedure. Two sets of probabilities [4] are described as follows:

e The changing probabilities q=(0.46, 0.52, 0.61, 0.75, 1) of digits of a variable are
increasing from left to right. This means that left digits are more stable than right digits,
and right digits change more than left digits. In other words, the role of left digit x;; is
more important than the role of right digit x;;;; (1<jSm-1) for evaluating objective
functions.

e The probabilities (r;=0.5, r,=0.25, r;=0.25) for selecting values of a digit. r;: the
probability of choosing a random integer number between 0 and 9 for j-th digit, r,: the
probability of j-th digit incremented by one or a certain value (+1,...,+5), 13: the
probability of j-th digit decremented by one or a certain value (-1,...,-5).

11
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We use a function random (num) that returns a random number between 0 and
(num-1). The Changing Procedure which changes values of a solution x via probability
to create a new solution y is described as follows:

The Changing Procedure

Input: a solution x

Output: a new solution y

S1. ye—x;

S2. Randomly select k variables of solution y and call these variables y; (1<i<k).

Let x;; be j-th digit (1<j<m) of variable x;. The technique which changes values of these
variables is described as follows:

For i=1 to k do
Begin 1
yi=0;
For j=1 to m do
Begin 2
If j=1 then b=0 else b=10;
If (probability of a random event is g;) then
If (probability of a random event is r;) then y;=b*y;+random(10);
Else
If (probability of a random event is r,) then y;= b*y;+( x; -1);
Else yi=b*yi+( x;; +1);
Else y= b*y; +x;;;
End 2
If (yi<a;) then y;=a;; If (yi>b;) then y;=b;;
End 1;
S3. Return y;
S4. The end of the Changing Procedure;
The Changing Procedure has the following characteristics:

e The central idea of PDS algorithm is that variables of an optimization problem
are separated into discrete digits, and then they are changed with the guide of
probabilities and combined to a new solution.

e Because the role of left digits is more important than the role of right digits for
evaluating objective functions. The algorithm finds values of each digit from left digits
to right digits of every variable with the guide of probabilities, and the newly-found
values may be better than the current ones (according to probabilities).

12
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e The parameter k: In practice, we do not know the true value of k for each
problem. According to statistics of many experiments, the best thing is to use k in the
ratio as follows:

0 n>35, kis an integer selected at random from 1 to 5.
0 n>6, k is chosen as follows:

= k is an integer chosen randomly from 1 to n / 2 with probability 20% (find
the best peak of a hill to prepare to climb).

= k is an integer selected at random from 1 to 4 with probability 80%
(climbing the hill or carrying out the optimal number).

5.2. General steps of Probabilistic-Driven Search algorithm
We need to set three parameters S, M and L as follows:
e Let S be the set of Pareto optimal solutions to find

e Let M be a number of Pareto optimal solutions which the algorithm has the ability
to find

e After generating a random feasible solution X, set L is the number so large that
after repeated L times the algorithm has an ability to find a Pareto optimal solution that
dominates the solution X.

The PDS algorithm for solving multi-objective optimization problems is
described with general steps as follows:

S1. 1«1 (determine i-th solution);

S2. Select a randomly generated feasible solution X;;

S3. j«1 (create jth loop);

S4. Use the Changing Procedure to transform the solution X; into a new solution

S5. If (Y is not feasible) then return S4.

S6. If (X; is dominated by Y) then X; < Y;

S7. If j<L then j«—j+1 and return S4;

S8. Put X, on the set S;

Remove the solution in the set S which is dominated by another;
Remove overlapping solutions in the set S;

Set|S|=1;

S9. If i<M then i«<—i+1 and return S2;

S10. The end of PDS algorithm,;

Remarks: After generating a random feasible solution x, the algorithm repeats L
times to find a solution that dominates the solution x. Thus each of the solutions works
independently of the other solutions. The changes of solutions are driven by
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probabilities. Every solution has an ability to change and directs its position to a point
of the Pareto front.

6. Illustrative examples

In order to assess the performance of DPS algorithm, the algorithm will be
benchmarked by using six optimization test cases developed by Deb et al. [1]. The
problems are minimization problems with M=3 objectives.

DTLZI:
f(x)——xxz(l+g(X ), fo(%) = X(l )1+ g(X,, ))f3(X)——(l x)(1+g (X)),

gcxM):loOUx¢|+§:mXM¢g—05)-—cquon(%-415»},
0<x <1(i=1.7), x=(x,..;), X}, = (25,00, %,).
DTLZ2:
f(x)=(1+g(X,,))cos(xz/2)cos(x,7/2),
f(x)=(1+g(X,,))cos(x/2)sin(x,7/2), f,(x) = (1+ g(X,,))sin(x,7/2),

2

g(X,)=> (x-05),0<x, <1 =1...12),x = (x,,...., X}, ), Xy = (55,000, ).

xeXy,

DTLZ3: As DTLZ2, except the equation for g is replaced by the one from DTLZ1.
DTLZA4: As DTLZ2, except x; is replaced by X, where a >0 (i=1,2)

1+2g(X,,)x,
DTLZ5: As DTLZ2, except X, is replaced by 2+g ( b ))
M
0.1

DTLZ6: As DTLZS5, except the equation for g is replaced by Z ieX, X

DTLZ7:
Min f,(x) =x1;Min f(x0)=x:Min f;(x) = (1+g(X,)) h(£,(x), £, (x), g(X,)))
> x;

X, €Xy,

g(X,, )—1+|

U () =00 8| 013 0)|

0<x <1 (i=1...22),x:(xl,...,x22), X, = (%5000 Xy ).

1

Because the memory of computer is limited, we divide the Pareto surface into
four parts as follows:

e Part 1: £;(x)<0.5 and £,(x)<0.5

14
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e Part 2: £(x)<0.5 and £5(x)>0.5
e Part 3: f1(x) >0.5 and £5(x)<0.5

e Part 4: f1(x) 0.5 and f(x) >0.5
Set L=30000 and M=700, we apply PDS algorithm to finding 700 Pareto optimal
solutions for each part. We use two digits after decimal point for all problems. It takes
120 seconds to implement PDS algorithm for finding Pareto surface of each problem.
Here the Pareto surfaces of illustrative examples are found by PDS algorithm.
We use two digits after decimal point for all problems. Here the Pareto fronts of
illustrative examples are found by PDS algorithm.

Figure 4. DTLZ3

15
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Figure 5. DTLZ4 (a=10)

Figure 8. DTLZ5

Fig. 10. Pareto surface of DTLZ7
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Remarks:

e PDS algorithm has the ability to find a large number of Pareto optimization
solutions and these solutions are able to express the concentrated regions of Pareto
front.

e PDS algorithm has the ability to maintain diversity and the overall distribution of
solutions on Pareto front is acceptable.

Now we use three digits after decimal point for problem DTLZ4 and the Pareto
front is found by PDS algorithm with =100 as follows:

Figure 11. DTLZ4 (a=100 with three digits after decimal point)
7.  Conclusions

In this paper, we consider a class of optimization problems having the character
as follows: there is a fixed number k (1<k<n) and k is independent of the size n of the
problem such that if we only need to change values of k variables then it has the ability
to find a better solution than the current one, let us call it O,. We introduce PDS
algorithm for solving multi-objective optimization problems of the class O,. We
compute the complexity of the Changing Technique of PDS algorithm. Specifically, we
use the absorbing Markov Chain to argue the convergence of the Changing Technique.
PDS algorithm has the following advantages:

e There is no population or swarm, the algorithm is very simple and fast. The
changes of solutions are driven by the probabilities and every solution has the ability to
independently operate.

e The PDS algorithm has the ability to find a large number of Pareto optimization
solutions and the overall distribution of solutions on Pareto front is acceptable.

e There are not many parameters to be adjusted. There is no predefined limit of
objective functions and constraints, and the algorithm does not need a pre-process of
objective functions and constraints.

e The parameter k: In practice, we do not know the true value of k for each
problem. According to statistics of many experiments, the best thing is to use k in the
ratio as follows:

0 n>35, kis an integer selected at random from 1 to 5.
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0 n>6, k is chosen as follows:

= k is an integer chosen randomly from 1 to n / 2 with probability 20% (find
the best peak of a hill to prepare to climb).

= k is an integer selected at random from 1 to 4 with probability 80%
(climbing the hill or carrying out the optimal number).

In next paper, we apply PDS algorithm to solving optimization problems with
equality constraints by increasing the degree of equality accuracy step by step. On the
other hand, because the memory of computer is limited, we study to divide the Pareto
front into several parts and apply PDS algorithm to finding a lot of solutions for each
part. Especially, we apply PDS algorithm to solving multiobjective portfolio
optimization problems.
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