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LOWER SEMICONTINUITY OF THE SOLUTION SETS
OF PARAMETRIC GENERALIZED QUASIEQUILIBRIUM PROBLEMS
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ABSTRACT

In this paper we establish sufficient conditions for the solution sets of parametric
generalized quasiequilibrium problems with the stability properties such as lower
semicontinuity and Hausdorff lower semicontinuity.
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TOM TAT
Tinh chit nira lién tuc dwéi ciia cdc tap nghiém
ciia cdc bai todn twa cin bing tong qudt phu thudc tham sé

Trong bai bdo nay, ching téi thiét ldp diéu kién dii cho cdc tdp nghiém ciia cdc bai
toan twa can bang tong quat phu thudc tham so co cac tinh chat on dinh nhu: tinh nira lién
tuc dwoi va tinh nwea lién tuc duoi Hausdorff.

Tir khéa: cic bai toan tya can bang tong quat phu thudc tham sb, tinh nira lién tuc
dudi, tinh ntra lién tuc dudi Hausdorft.

1. Introduction and Preliminaries

Let X,Y,A,,M be a Hausdorff topological spaces, let Z be a Hausdorff
topological vector space, 4 X and BcCY be a nonempty sets. Let K, : AxA —> 27,
K,:AxA —2", T:AxAxT —2%, C:AxA—>2" and F:AxBxAxM —2° be
multifunctions with C is a proper solid convex cone values and closed.

For the sake of simplicity, we adopt the following notations. Letters w, m and s
are used for a weak, middle and strong, respectively, kinds of considered problems. For
ubsets U and V' under consideration we adopt the notations.

(u,v) wUxV means VueU,Ivel,
(u,vy mUxV means 3JvelV,VuelU,
(u,v)sUxV means VuelU,Vvel,
AU, V) means UnNV =0,
p, (U, V) means Uc/V,

(u,v) wUxV means JuelU,Vvel andsimilarly for m,s ,
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AU, V) means UnV = and similarly for p,.

Let ae{w,m,s}, ae{w,m,s}, pe{p,p,} and pe {;l,p_z} . We consider the
following parametric generalized quasiequilibrium problems.

(QEP )): Find x € K| (x,4) such that (y,/)aK,(x,4)xT(x,y,y) satisfying

PF(X,t,y, 11); C(X, 4)).

We consider also the following problem (QEP ,) as an auxiliary problem to
(QEP,,):

(QEP, ): Find X € K,(X,4) such that (y,naK,(¥,A)xT(X,y,y) satisfying

p(F(x,t,y,1);intC(x,A)).

For each AeA,yel,ueM, we let E(A)={xed|xeK (x,4)} and let
S, e :AxIxM —2% be a set-valued mapping such that X (4,7,u4) and

ap?

Seo(A,7, 1) are the solution sets of (QEP «») and (QEP ; ,)> respectively, i.e.,
2,4y, ) ={x e EQD)|(y,0)aK, (X, )xT(X, y,7): p(F(X,t,y, 1); C(X, 4))},
Sop(A,7, 1) = {X € E(A) | (0, 0)aK, (X, )< T (X, y,7) : p(F(¥,1,, p);int C(X, 1)}
Clearly Ser(A, 7, 1) © Z,,(A,y,4). Throughout the paper we assume that

L, (Ay,)#< and S (A, v, i) for each (A,y,u) in the neighborhood of

(Ay> Vo> My) EAXT XM .

By the definition, the following relations are clear:

Zsp mep c pr and isp c imp c iw.

The parametric generalized quasiequilibrium problems is more general than many
following problems.

(@ If T(x,y,y)={x},A=T=M,A=B,X=Y,K,=K,=K,p=p,,p=p, and
replace C(x,4) by —intC(x,4). Then, (QEP apj) and (QEP aE) becomes to (PGQVEP)
and (PEQVEP), respectively, in Kimura-Yao [7].

(PGQVEP): Find x € K(x,4) such that

F(x,y,A) & —intC(x,A)), forall y e K(x, ).
and

(PEQVEP): Find x € K(x,4) such that

F(x,y,A)N(=intC(x,4)) =9, forall y € K(x,1).
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(b)) If T,y,y)={x},A=T,4=B,X=Y,K, =clK.K,=K,p=p,p=p, and
replace C(x,4) by Z\—intC with C = Z be closed and intC # & . Then, (QEP ) and
(QEP, ) becomes to (QEP) and (SQEP), respectively, in Anh - Khanh [1].

(QEP): Find X € cIK(x,4) such that

F(x,y,A))Nn(Z\-intC) = J, forall y € K(x, 1).
and

(SQEP): Find x € K(x,4) such that

F(x,y,A)cZ\—-intC, forall y e K(x,A).

() If T(x,y,y)={x},A=T=M,A=B,X=Y,K,=K,=K,p=p, and replace
C(x,4) by —intC(x,4), replace F by f be a vector function. Then, (QEP )
becomes to (PVQEP) in Kimura-Yao [6].

(PQVEP): Find x € K(x,4) such that

f(x,y,A)¢—-intC(x, 1)), forall y e K(x,A).

Note that generalized quasiequilibrium problems encompass many optimization-
related models like vector minimization, variation inequalities, Nash equilibrium, fixed
point and coincidence-point problems, complementary problems, minimum
inequalities, etc. Stability properties of solutions have been investigated even in models
for vector quasiequilibrium problems [1, 2, 3, 6, 7, 8], variation problems [4, 5, 9, 10]
and the references therein.

In this paper we establish sufficient conditions for the solution sets ¥, to have

the stability properties such as the lower semicontinuity and the Hausdorff lower
semicontinuity with respect to parameter A,y,u under relaxed assumptions about

generalized convexity of the map F .

The structure of our paper is as follows. In the remaining part of this section, we
recall definitions for later uses. Section 2 is devoted to the lower semicontinuity and the
Hausdorff lower semicontinuity of solution sets of problems (QEP ).

Now we recall some notions. Let X and Z be as above and G: X —2” be a
multifunction. G 1is said to be lower semicontinuous (Isc) at x, if G(x,)NU = for

some open set U < Z implies the existence of a neighborhood N of x, such that, for all
xeN,G(x)NU = . An equivalent formulation is that: G is Isc at x, if Vx, - x,,
Vz, € G(x,),3z, € G(x,),z, > z,. G is called upper semicontinuous (usc) at x, if for
each open set U o G(x,), there is a neighborhood N of x, such that U o G(N). Q is

said to be Hausdorff upper semicontinuous (H-usc in short; Hausdorff lower
semicontinuous, H-Isc, respectively) at x, if for each neighborhood B of the origin in

Z, there exists a neighborhood N of x, such that, O(x)cQO(x,)+B,Vxe N
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(O(x,) cQ(x)+B,Vxe N). G is said to be continuous at x, if it is both Isc and usc at
x, and to be H-continuous at x, if it is both H-lsc and H-usc at x,. G is called closed
at x, if for each net {(x,,z,)} < graphG = {(x,z) | z € G(x)},(x,,z,) = (x,,2,), Z, Must
belong to G(x,). The closeness is closely related to the upper (and Hausdorff upper)

semicontinuity. We say that G satisfies a certain property in a subset Ac X if G
satisfies it at every points of 4.1f 4=X we omit in X " in the statement.

Let 4 and Z be as above and G: 4 — 2 be a multifunction.
(1) If G isuscat x, then G is H -usc at x,. Conversely if G is H -usc at x, and
if G(x,) compact, then G usc at x,;

(1) If G 1s H-Isc at x, then G is Isc. The converse is true if G(x,) is compact;

(1) If G has compact values, then G 1is usc at x, if and only if, for each net
{x,} < A which converges to x, and for each net{y_ } < G(x,), there are y € G(x) and
a subnet {y,} of {y,} such that y, — y.

Definition. (See [1], [11]) Let X andZ be as above. Suppose that 4 is a nonempty
convex set of X and that G: X — 2” be a multifunction.

(1) G 1ssaid to be convex in A if for each x,,x, € 4 and ¢ €[0,1]
G(tx, + (1-1)x,) D tG(x,) +(1-1)G(x,)
(i1) G is said to be concave A if for each x,,x, € 4 and ¢ €[0,1]
G(tx, +(1-1)x,) ctG(x) + (1-1)G(x,)

2. Main results

In this section, we discuss the lower semicontinuity and the Hausdorff lower
semicontinuity of solution sets for parametric generalized quasiequilibrium problems

(QEP ap )'
Definition 2.1

Let 4 and Z be as above and C: 4 — 2” with a proper solid convex cone values.
Suppose G:A4—2”. We say that G is generalized C-concave in A if for each
xlaxz € A ’ p(G(xl)’ C(xl )) and p(G(xz)’ iIlt C(xz )) lmply

p(G(tx, + (1-1)x,),int C(tx, + (1-1)x,)), forall e (0,1).
Theorem 2.2
Assume for problem (QEP ) that

(i) E islscat A,, K, is usc and compact-valued in K (A,A)x{A,} and E(4,) is

convex,
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(ii) in K, (A,AN)xK,(K,(4,A),AN)x{y,}, T is usc and compact-valued if a=s,
and lscif a=w (or a=m);

(iii) VteT(K,(4,AN)xK,(K,(4,A),N),T),Yu,e M,Vi, e\, K,(.,4) is concave
in K, (4,A) and F(.,t,., 1) is  generalized C(.,4)-concave  in
K (A4, A)x K, (K, (4,A),A);

(iv) the set {(x,t,y, 1, A) € K (A, AN)xT(K (4, A), K, (K, (4,A),N),)x K, (K,(4,A),A)x

{IUO} x {2’0} : E(F(X, ta yv ,Ll), C(-xa i))} iS Closed‘

Then %,
Proof.

Since o ={w,m,s} and p={p,p,}, we have in fact six cases. However, the

is lower semicontinuous at (A, 7,, t,)-

proof techniques are similar. We consider only the cases a =s, p = p,. We prove that

S, is lower semicontinuous at (497> H,) - Suppose to the contrary that S, is not Isc

at (ﬂ“oayoaluo) ’ i'e'a EIxo € Zspz(ﬂosyonuo) ’ El(ﬂ'naj/nnun) - (ﬂ“ovj/oaluo) ,Vxn € zSPz (ﬂ’nvj/n:/un)v
x, »x,. Since E 1is Isc at 4,, there is a net x € E(4,)), x, - x,. By the above
contradiction assumption, there must be a subnet x/ of x such that,Vm,

X & S (A7, 40,),1.e, Ay, €K, (x,A ), 3t €T(x,y, ,7,) such that
F(x .t ,y, ,u)gcintC(x ,A). (2.1)
As K, 1s usc at (x,,4,) and K,(x,,4,) 1s compact, one has y, € K,(x,,4,) such
that y — y, (taking a subnet if necessary). By the lower semicontinuity of 7 at
(%05 Y05 70) »
onehas ¢t €T(x,,y,,7,) suchthat z —¢,.

Since (X, .V, .4, Vs k) = (Xort5s Vor Ay Vo» 1) and by condition (iv) and (2.1)
yields that

F(xy,85, Y5 ) €It C(xy, 4,)
which is impossible since x, € ispz (47> M,) - Therefore, ispz 1s Isc at (4,7, 44,) -
Now we check that
2, (osVos o) € SlEap. (Bys Voo o)):
Indeed, let x, €2 (4,7, ) > X, € Zop(As¥ostty) and x, =(1=0x,+1x,,t€(0,1).

By the convexity of E, we have x, € E(4,). By the generalized C(.,4,)-concavity of
F(.,t,y,u,), we have

F(x,,t,y,u,) cintC(x,,4,),
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and since K,(.,4,) is concave, one implies that for each y €K, (x,,4,), there exist
» €K, (x,4) and y,eK,(x,,4,) such that y =#, +(1-7)y,. By the generalized
C(.,4,) -concavity of F(.,t,.,1,), we have

F(x,,t,y,, 1) cintC(x,,4,),
ie., x, € i-?ﬂz (Ao 700 44y) - Hence X, (4,74, 1) = Cl(iwz (Ao %45 £y)) - By the lower

semicontinuity of S, at (Ay5 705 M) » We have

Zspz (/10’707/10) - Cl(isljz (ﬂ“()ﬂ}/()uuo)) - hmlnf i5[’2 (/Ina}/na;un) - hmlnf ngz (ﬁ“naynn,un)a
Le., X is lower semicontinuous at (4,7, ). [

The following example shows that the lower semicontinuity of £ is essential.
Example 2.3

Let A=B=X=Y=Z=U,A=I'=M =[0,1],4,=0,C(x,4)=[0,+0) and let
F(x,t,y,A)=2"T(x,y,A) = {x},K,(x,4)=[0,1]
and

{[-1,1] if 1=0,
K (x,A)= ]
[-1-4,0]  otherwise.

We have E(0)=[-1,1], E(1)=[-4-1,0],¥vA1e(0,1]. Hence K, is usc and the
condition (ii), (iii) and (iv) of Theorem 2.2 is easily seen to be fulfilled. But X, is not
upper semicontinuous at A, =0. The reason is that £ is not lower semicontinuous. In

fact =, (0,0,0)=[1,1] and =, (4,7, 1) =[~A—1,0], YA € (0,1].

The following example shows that in this the special case, assumption (iv) of
Theorem 2.2 may be satisfied even in cases, but both assumption (ii,) and (iii,) of

Theorem 2.1 in Anh-Khanh [1] are not fulfilled.
Example 2.4
Let A4,B,X.,Y,Z,T,A,I''M,4,,C as in Example 2.3, and let K (x,A)=
K,(x,4)=[0,1] and
[-4,0] if 1=0,
K (x,A)= .
[-1-4,0] otherwise.
We shows that the assumptions (i), (i1) and (ii1) of Theorem 2.2 satisfied and
z,, (4,7, 1)=[0,1],v1 €[0,1]. But both assumption (ii,) and (iii, ) of Theorem 2.1
in Anh-Khanh [1] are not fulfilled.
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The following example shows that in this the special case, assumption of
Theorem2.2 may be satisfied even in cases, but Theorem 2.1 and Theorem 2.3 in Anh-
Khanh [1] are not fulfilled.

Example 2.5
Let 4,B,X,Y,T,A,,M,A,,C as in Example 2.4, and let K (x,4)=K,(x,4)=

A
0,=~] and
[0~ 1 an

[0,1] if 1=0,
[2,4] otherwise.

Kl(x,/l)z{

We shows that the assumptions (1), (ii) and (iii) of Theorem 2.2 satisfied and
A :
X, (Ay,m)= [O,E]Nﬂ €[0,1]. Theorem 2.1 and Theorem 2.3 in Anh-Khanh [1] are

not fulfilled. The reason is that F' is neither usc nor Isc at (x, y,0).

Remark 2.6

In special cases, as in Section 1 (a) and (c). Then, Theorem 2.2 reduces to
Theorem 5.1 in Kimura-Yao [7, 6]. However, the proof of the theorem 5.1 is in a
different way. Its assumption (i) - (v) of Theorem 5.1 coincides with (i) of Theorem 2.2
and assumption (vi), (vii) coincides with (iii), (iv) of Theorem 2.2 Theorem 2.2 slightly
improves Theorem 5.1 in Kimura-Yao [7, 6], since no convexity of the values of E is
imposed.

The following example shows that the convexity and lower semicontinuity of K
is essential.

Example 2.7

Let 4,X,Y,Z,C,A,M,T', /4, as in Example 2.5 and let
{(-1,0,1} if 2=0,
{0,1} otherwise.

K (x,4) ={

Then, we shows that K, is usc and has compact-valued K, (X, A)x{4,} and assumption
(i), (ii1) and (iv) of Theorem 2.2 are fulfilled. But X (4,7,4)) is not Isc at (0,0,0).

The reason is that £ is not Isc at 4, =0 and E(0) is also not convex. Indeed, let
x,=—1,x,=0€ E(0) and ¢ =%e (0,1) but tx, +(1-1)x, ¢ E(0).

In fact, =, (0,0,0)={~1,0,1} and £ (4,7, 4)={0,1},¥ 1 (0,1].

The following example shows that the concavity of F(.,z., 4,) is essential.
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Example 2.8

Let 4,X,Y,Z,C,A,M,T',4, as in Example 2.6 and let K (x,4)=K,(x,A)
=[4,A+3] and F(x,t,y,u)=F(x,y,A)=x"—(1+A)x. We show that K,(,4,) is
concave and the assumptions (i), (i1), (iv) of Theorem 2.2. are satisfied. But £ is not

Isc at (0,0,0). The reason is that the concavity of F is violated. Indeed, taking

x, =0,x, = % € E(0)=[0,3], then for all y€K,(4,0)=[0,3], we

have F(x,,y,0)=0,F(x,,y,0)=3/4, but F(%x1 +%x2,y,0)=—%$(0,+oo).

Theorem 2.9
Impose the assumption of Theorem 2.2 and the following additional conditions:
(v) K, is Iscin K,(4,A)x{4,} and E(A,) is compact;
(vi) the set {(x,t,y) € K, (4,A)xT(K,(4,A),K,(K,(4,A),A),T)xK,(K,(4,A),A):
P(F(x,t,y,14);C(x,4,))} is closed.
Then X, is Hausdorff lower semicontinuous at (2,7, i) -
Proof.

We consider only for the cases: a =s,p=p,. We first prove that X (4,7, 4,)
is closed. Indeed, we let x, € X, (4,7y,4,) suchthat x, > x,. If x, €X (4,7, 4)),

Ay, € K, (x,,4,),3t, € T(x,,¥,,%,) such that

F(xy,t), Y0, 1) € C(xy,4,)- (2.2)

By the lower semicontinuity of K,(.,4,) at x,, one has y, € K,(x,,4,) such that
Y, = Y- Since x, €X (4,75, 44) > V1, €T(x,,,,7,) such that

F sty 0,0 1y) € C (5,0 Ay (2.3)

By the condition (vi), we see a contradiction between ( 2.2) and (2.3). Therefore,
z, o (47> H4,) 18 closed.

On the other hand, since X, (4,7, 4,) < E(4)1s compact by E(4,) compact.
Since X, is lower semicontinuous at (4,7,,4,) and X (4,7, 4,) compact. Hence
., is Hausdorff lower semicontinuous at (4,7, ). So we complete the proof.

The following example shows that the assumed compactness in (V) is essential.
Example 2.10

LetX=Y=A=B=0227Z=0,A=M=T=[0,1],C(x,A)=0,,4,=0, and for
x=(x-1x)el’ K (x,A) =K (x,A)={(x,Ax)} and F(x,t,y,u)=1+1. We shows
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that the assumptions of Theorem 2.8 are satisfied, but the compactness of E(4,) is not

satisfied. Direct computations give X, (4,7, ) =1{(x,x,) €l ?|x, =Ax,} and then z,

is not Hausdorff lower semicontinuous at (0,0,0) (although £ is Isc at (0,0,0)).

10.

11.
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