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ABSTRACT 

In this paper, we consider a class of optimization problems having the following 
characteristics: there exists a fixed number k (1≤k<n) which does not depend on the size n 
of the problem such that if we randomly change the value of k variables, it has the ability 
to find a new solution that is better than the current one, we call it Ok. We build a new set 
of probabilities for controlling changes of the values of the digits and build 
Probabilistic-Driven Search algorithm for solving single-objective optimization problems 
of the class Ok. We test this approach by implementing the algorithm on nonlinear 
equations systems, and we find very good results that are better than results of other 
authors. 

Keywords: optimization, nonlinear equations system, probability, algorithm. 

TÓM TẮT 
Một giải thuật xác suất mới giải hệ phương trình phi tuyến 

Trong bài này, chúng tôi xét một lớp các bài toán tối ưu có tính chất sau: tồn tại một 
số k cố định không phụ thuộc vào kích thước n của bài toán (1≤k<n) sao cho nếu ta thay 
đổi giá trị của k biến thì có khả năng tìm được một lời giải mới tốt hơn lời giải hiện hành, 
ta gọi lớp bài toán đó là Ok. Chúng tôi xây dựng một bộ xác suất mới cho việc điều khiển 
thay đổi giá trị của các chữ số của các biến, và thiết kế một giải thuật PDS giải các bài 
toán tối ưu một mục tiêu của lớp Ok. Chúng tôi thử nghiệm hướng tiếp cận này trên các bài 
toán hệ phương trình phi tuyến, và chúng tôi tìm được các kết quả tốt hơn các kết quả đã 
có của các nhà nghiên cứu khác. 

Từ khóa: tối ưu, hệ phương trình phi tuyến, xác suất, giải thuật. 
 

1. Introduction  
In the field of evolutionary computation, there are many popular approaches for 

solving optimization problems, such as genetic algorithm, particle swarm 
optimization,… We have two following remarks: 
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1) We suppose that the solution of optimization problems has n variables. These 
approaches often simultaneously change values of n variables on each iteration. But in 
some cases, if we only need to change values of k (1≤k<n) variables then it has the 
ability to find a better solution than the current one. 

2) We suppose that every variable of the solution of optimization problems has m 
digits. The role of left digits is more important than the role of right digits for assessing 
values of objective functions, but evolutionary algorithms remove the difference of the 
roles of the digits.  

In this paper, we build the Probabilistic-Driven Search (PDS) algorithm that 
overcomes the two drawbacks mentioned above for solving single-objective 
optimization problems. In the experiment we transform nonlinear equations systems 
into single-objective optimization problems and apply PDS algorithm to solving them. 

2. The model of optimization problems 
We consider a model of single-objective optimization problem as follows: 
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where gj (1≤j≤r) are real valued functions. 

3. Probabilistic-Driven Search algorithm 
We consider a class of optimization problems having the following 

characteristics: there exists a fixed number k (1≤k<n) which does not depend on the 
size n of the problem such that just randomly changing the values of k variables; we 
may find a new solution that is better than the current one, we call it Ok. We have 
introduced Search Via Probably algorithm with probabilities of change (0.37, 0.41, 
0.46, 0.52, 0.61, 0.75, 1) to resolve the problems of Ok [7]. But the probabilities of [7] 
are only relevant to the problems having no many local optimums. In this paper we 
build new probabilities to control changes of values of the solution and design the 
Probabilistic-Driven Search algorithm for solving single-objective optimization 
problems.  

3.1. Probabilities of changes 
We suppose that every variable xi (1≤i≤n) of a solution has m digits that are listed 

from left to right xi1, xi2,…, xim (0≤xij≤9, 1≤j≤m). We consider j-digit of a variable xi. 
We suppose the values of left digits xik (k=1, 2, …, j-1) are correct, we have to fix the 
values of these left digits and change the value of j-th digit to find a correct value of 
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j-th digit. Because the value of j-digit is changed, the values of digits xik (k=j+1,…, m) 
can be changed or cannot be changed. Let Aj be an event such that the j-digit is selected 
to change its value (1≤j≤m). We consider a following event to find a correct value of 
j-digit: 

1 2 1 1... (1 )j j j mA A A A B B j m− + ≤ ≤K  

We have following remarks: 

Remark 1: The role of left digits is more important than the role of right digits of a 
variable for assessing values of objective functions. Hence we should find the values of 
digits from left digits to right digits one by one. We consider events  

1 2 3... mB B B B  

where  

(1 )j j jB A or A j m= ≤ ≤ . 

We classify these events according to typical events in the table below: 

Table 1. Frequencies and probabilities of events 

Event Frequency Probability 

1 2 3... mA B B B  12m−  
12 1

2 2

m

m

−

=  

1 2 3... mA A B B  22m−  
2

2

2 1
2 2

m

m

−

=  

M  M  M  

1 2 1... m mA A A A−  1 1
2m

 

The probability of selecting j-digit from n digit is  

( )mjj ≤≤1
2
1  

We have a set of probabilities for selecting digits as follows:  

⎟
⎠
⎞

⎜
⎝
⎛

m2
1,,

4
1,

2
1

K
 

It means that number of searches for correct values of left digits is more than 
number of searches for correct values of the right digits.  
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Remark 2: Let pj be the probability of the event Aj (1≤j≤m). In some iteration we have 
a below event occurring: 

1 2 1

1 1

1

(1 )

Pr( ) Pr( ) 0;

Pr( ) 1;

1Pr( ) Pr( )
2

j j

j

j

j m

A A A A j m

A A

A

A A

−

−

+

≤ ≤

⇒ = = =

=

= = =

K

K

K

 

Hence we have probabilities of changes after selecting j-digit as follows: 

2
1,,

2
1,1,0,,0 111 ===== +− mjjj ppppp KK

 
Remark 3: According to papers [7], we consider two digits aj-1 and aj (2≤j≤m). Let r1, r2 
and r3 be probabilities of events below:  

r1: probability of choosing a random integer number between 0 and 9 for j-th 
digit.  

r2: probability of j-th digit incremented by one or a certain value (+1,…,+5).  

r3: probability of j-th digit decremented by one or a certain value (-1,…,-5).  

We have the average probabilities r1, r2 and r3 of both two cases as follows:  

r1=0.5, r2=r3=0.25 
Probabilities of the other cases for finding correct values of three, four digits side 

by side are very small; hence we do not consider these cases. In next section we use 
three sets of probabilities above to build the changing procedure that transforms a 
solution x into a new solution y. 

3.2. The changing procedure 
Without loss of generality we suppose that a solution of the problem has n 

variables, every variable has m digits, one digit is displayed to the left of the decimal 
point and m-1 digits are displayed to the right of the decimal point. We use a function 
random (num) that returns a random number between 0 and (num-1). The Changing 
Procedure changing values of a solution x under the control of probability to create a 
new solution y is described as follows:  

The Changing Procedure 
Input: a solution x 

Output: a new solution y 

S1. y←x;  
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S2. Select j-th digit according to probabilities  

⎟
⎠
⎞

⎜
⎝
⎛

m2
1,,

4
1,

2
1

K
 

S3. Set  

2
1,,

2
1,1,0,,0 111 ===== +− mjjj ppppp KK

 
S4. Select randomly k variables of solution y and call these variables yi (1≤i≤k). 

The technique for changing values of these variables is described as follows: 
For i=1 to k do 

Begin_1     

  yi=0;  
  For j=1 to m do 

    Begin_2 

      If (a random event with probability pj occurs) then 

      Begin_3 

    Choose one of the following three cases according to the set of  

   probabilities (0.5, 0.25, 0.25) 
          Case 1: yi = yi + random (10)*101-j;  

     Case 2: yi = yi + (xij +1)*101-j;  

     Case 3: yi= b*yi + (xij -1)*101-j; 

     End_3 

      Else yi= yi +xij*101-j; 

    End_2 
  If (yi<ai) then yi=ai; If (yi>bi) then yi=bi; 

 End_1; 

S5. Return y;  S6. The end of Changing Procedure; 

The Changing Procedure has the following characteristics:  

1) The central idea of the Changing Procedure is that variables of the solution x are 
separated into discrete digits, and then they are changed with the guide of probabilities 
and combined to a new solution y.  

2) Because the role of left digits is more important than the role of right digits for 
assessing values of objective functions. The Procedure finds values of each digit from 
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left digits to right digits of every variable with the guide of probabilities and the 
newly-found values may be better than the current ones (according to probabilities).  

3) The parameter k: In practice, we do not know the true values of k for each 
problem. According to statistics of many experiments, the best thing is to use k in the 
ratio 50%-100% of n with 1≤n≤5, 20%-80% of n with 5≤n≤10, and 10%-60% of n with 
10≤n.  

3.3. Probabilistic-Driven Search algorithm  
We use the Changing Procedure to build PDF algorithm for solving 

single-objective optimization problems. The PDS algorithm uses one solution in each 
execution of the algorithm, so the starting solution affects the rate of convergence of 
the algorithm. We improve the speed of convergence by implementing the algorithm in 
two phases. Phase 1: Search and select a solution that is able to optimize number the 
fastest. Phase 2: Optimize the solution of Phase 1 to find an optimal solution. Set 
M1=10 and M2=30000, PDS algorithm is described with general steps as follows: 

PDS algorithm: 
Phase 1: Generate randomly M1 solutions and each solution is optimized by M2 
iterations, then we pick out a best solution for phase 2.  

S1. Select a random feasible solution x;  

S2. L1←1; 
S3. Select a random feasible solution y; 

S4. L2←1;  

S5. Use the Changing Procedure to transform the solution y into a new solution z; 

S6. If the solution z is not feasible then return S5;   

S7. If f(z) <= f(y) then y←z; 

S8. If L2 < M2 then L2←L2+1 and return S5;   
S9. If f(y) <=f(x) then x←y; 

S10. If L1 < M1 then L1←L1+1 and return S3;  

S11. Return the solution x; 

Phase 2: Numerical optimization. 

S12. Use the Changing Procedure to transform the solution x into a new solution 
y; 

S13. If y is not a feasible solution then return S12   
S14. If f(y) <=f(x) then x←y; 
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S15. If the condition of stop is not satisfied then return S12;  

S16. The end of PDF algorithm; 

To cite a few instances of single-objective optimization problems, we consider 
system of equations and apply PDS algorithm to solving nonlinear Equations System. 

4. Nonlinear Equations System 
4.1. The model of nonlinear equations system 

A general nonlinear equations system can be described as follows 
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where fj (1≤j≤m) are nonlinear functions.  

4.2. Popular approaches for solving nonlinear Equations System 
There are several standard known techniques to solve nonlinear equations system. 

Some popular techniques are as follows: Newton-type techniques [4], trust-region 
method [2], Broyden method [1], secant method [3], Halley method [10]. It is to be 
noted that the techniques of Effati and Nazemi are only applied for two equations 
systems. 

In the field of evolutionary computation, recently Grosan et al. [6] have 
transformed the system of equations into a multi-objective optimization problem as 
follows: 

1 1 2

2 1 2

1 2

( ( , ,..., ))
( ( , ,..., ))

( ( , ,..., ))
, , ( 1,..., ).

n

n

n n

i i i i i

Minimize abs f x x x
Minimize abs f x x x

Minimize abs f x x x
a x b a b R i n≤ ≤ ∈ =

M  

and they use an evolutionary computation technique for solving this 
multi-objective optimization problem. It is to be noted that solutions found by this 
approach are Pareto optimal solutions.  
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4.3. PDS algorithm for solving Equations System 
Because there are many equality constraints, the system of equations usually has 

no solution x such that fj(x)=0 (1≤j≤m). Thus we find an approximate solution of 
simultaneous equations such that |fj(x)|<ε (1≤j≤m) with ε is an arbitrary small positive 
number. In order to do so, we transform the system of equations into a single-objective 
optimization problem as follows: 

{ }1 2

1 2

( ) max ( ) , ( ) , , ( )

( , , , ), , , ( 1,..., )
n

n i i i i i

Minimize x f x f x f x

x x x x a x b a b R i n

ε =

= ≤ ≤ ∈ =

K

K
 

We use PDS algorithm to solve the single-object optimization problem. In next 
sections, we use two examples and six benchmark problems for nonlinear equations 
systems to examine the PDS algorithm. Using PC, Celeron CPU 2.20GHz, Borland 
C++ 3.1. We performed 30 independent runs for each problem. The results for all test 
problems are reported in Tables. 

5. Two examples 
We considered two examples used by Effati and Nazemi [5]. PDS algorithm is 

compared with Newton’s method, the Secant method, Broyden’s method, and 
evolutionary approach [6]. Only systems of two equations were considered by Effati 
and Nazemi. 

Example 1:  

1 1 2 1 2

2 1 2 2 1 2 1

( , ) cos(2 ) cos(2 ) 0.4 0
( , ) 2( ) sin(2 ) sin(2 ) 1.2 0

f x x x x
f x x x x x x

= − − =⎧
⎨ = − + − − =⎩

 

Example 2: 

1
1 1 2 1 2

2 1 2 1 2 1 2

( , ) 1 0
( , ) sin( ) 1 0

xf x x e x x
f x x x x x x

⎧ = + − =
⎨

= + + − =⎩
 

The evolutionary approach has the average running time of 5.14 seconds for 
example 1 and 5.09 for example 2 [6]. PDS algorithm has the running time of 5 
seconds for both examples. 
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Table 2. Comparison of results for example 1 and example 2 

 Example 1 Example 2 

Method Solution Functions values Solution Functions values 

Newton (0.15, 0.49) (-0.00168, 
0.01497) 

  

Secant (0.15, 0.49) (-0.00168, 
0.01497) 

  

Broyden (0.15, 0.49) (-0.00168, 
0.01497) 

  

Effati (0.1575, 
0.4970) 

(0.005455, 
0.00739) 

(0.0096, 
0.9976) 

(0.019223, 0.016776) 

E. A. [6] (0.15772, 
0.49458) 

(0.001264, 
0.000969) 

(-0.00138, 
1.0027) 

(-0.00276,-0.0000637)

PDS 
Alg.  

( 0.156520, 

0.493376) 

(-0.0000005815, 

-0.0000008892) 

(0.0, 1.0) (0, 0) 

6. Six benchmark problems 
Six problems of nonlinear equations systems considered in the following sections 

are as follows: Interval Arithmetic, Neurophysiology Application, Chemical 
Equilibrium Application, Kinematic kin2, Combustion Application and Economics 
Modeling Application. 

6.1. Problem 1: Interval Arithmetic Benchmark 
The Interval Arithmetic Benchmark [8] is described as follows: 

1 1 4 3 9

2 2 1 10 6

3 3 1 2 10

4 4 7 1 6

5 5 7 6 3

6

( ) 0.25428722 0.18324757 0;
( ) 0.37842197 0.16275449 0;
( ) 0.27162577 0.16955071 0;
( ) 0.19807914 0.15585316 0;
( ) 0.44166728 0.19950920 0;
(

f x x x x x
f x x x x x
f x x x x x
f x x x x x
f x x x x x
f

= − − =
= − − =

= − − =
= − − =
= − − =

6 8

7 7 2 5 8

8 8 1 7 6

9 9 10 6 8

10 10 4 8 1

) 0.14654113 0.18922793 0;
( ) 0.42937161 0.21180486 0;
( ) 0.07056438 0.17981208 0;
( ) 0.34504906 0.19612740 0;
( ) 0.42651102 0.21466544 0;

x x x x x
f x x x x x
f x x x x x
f x x x x x
f x x x x x

⎧
⎪
⎪

⎨ = − − =
= − − =
= − − =
= − − =

= − − =

( )2 2 1,...,10ix i

⎪
⎪
⎪
⎪⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩
− ≤ ≤ =

5 10
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There are 8 solutions found by evolutionary approach for the Interval Arithmetic 
Benchmark with the average running time of 39.07 seconds [6]. We choose the solution 
1 that is displayed below to compare with the solution found by PDS algorithm. 

Table 3. Comparison of results for Interval Arithmetic Benchmark 

 E. A. [6] PDS algorithm  f1(x) -0.2077959241 -0.0000003959 

x1 0.046491 0.257833  f2(x) -0.2769798847 -0.0000001502 

x2 0.101357 0.381097  f 3(x) -0.1876863213 0.0000000010 

x3 0.084058 0.278745  f4(x) -0.3367887114 0.0000000365 

x4 -0.138846 0.200669  f 5(x) 0.0530391321 -0.0000004290 

x5 0.494391 0.445251  f 6(x) -0.2223730535 0.0000000763 

x6 -0.076069 0.149184  f 7(x) -0.1816084752 0.0000002966 

x7 0.247582 0.432010  f 8(x) -0.0874896386 0.0000002231 

x8 -0.017075 0.073403  f9(x) -0.3447200367 0.0000001704 

x9 0.000367 0.345967  f 10(x) -0.2784227490 -0.0000002774 

x10 0.148112 0.427326   ε(x)  0.0000004290 

6.2. Problem 2: Neurophysiology Application 
The Neurophysiology Application [11] is described as follows: 

( )

2 2
1 1 3

2 2
2 2 4

3 3
3 5 3 6 4 1

3 3
4 5 1 6 2 2

2 2
5 5 1 3 6 4 2 3

2 2
6 5 1 3 6 2 4 4

( ) 1 0;

( ) 1 0;

( ) 0;

( ) 0;

( ) 0;

( ) 0;

10 10 1,..., 6i

f x x x

f x x x

f x x x x x c

f x x x x x c

f x x x x x x x c

f x x x x x x x c

x i

⎧ = + − =
⎪

= + − =⎪
⎪ = + − =⎪
⎨

= + − =⎪
⎪ = + − =⎪
⎪ = + − =⎩
− ≤ ≤ =

 

The constants ci can be randomly chosen. In our experiments, we considered ci = 
0 (i= 1, . . . , 4).  

There are 12 solutions found by evolutionary approach for the Neurophysiology 
Application with the average running time of 28.9 seconds [6]. We choose the solution 
1 of [6] that is displayed below to compare with two solutions found by PDS algorithm.  
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Table 4. Comparison of results for Neurophysiology Application 
 E. A. [6]  Sol. 1 Sol. 2  f1(x) -0.3139636071 -0.0000000060 0.0000000722 

x1 -0.8282192996  0.703475 0.820345  f2(x) -0.1206333343 0.0000000091 0.0000000722 

x2 0.5446434961 0.667647 0.820345  f 3(x) 0.0652332757 0.0000000000 0.0000000000 

x3 -0.0094437659 0.710720 0.571869  f4(x) 0.0123681793 0.0000000000 0.0000000000 

x4 0.7633676230 0.744478 0.571869  f 5(x) 0.0465408323 0.0000000000 0.0000000000 

x5 0.0199325983 0.000000 -2.689698  f 6(x) 0.0330776356 0.0000000000 0.0000000000 

x6 0.1466452805 0.000000 2.689698   ε(x)  0.0000000091 0.0000000722 

6.3. Problem 3: Chemical Equilibrium Application 
The chemical equilibrium system [8] is described as follows: 

1 1 2 1 5

2 2
2 1 2 1 2 3 8 2 5 10 2 7 2 3 9 2 4

2 2
3 2 3 5 3 5 6 3 7 2 3

2
4 9 2 4 4 5

2 2 2 2
5 1 2 10 2 2 3 8 2 5 3 4 6 7 2 3 9 2 4

( ) 3 0;

( ) 2 2 0;

( ) 2 2 8 0;

( ) 2 4 0;

( ) ( 1) 1

f x x x x x

f x x x x x x R x Rx R x R x x R x x

f x x x R x x R x R x x

f x R x x x Rx

f x x x R x x x R x R x x R x R x x R x x

= + − =

= + + + − + + + =

= + − + + =

= + − =

= + + + + + + − + + + = 0;
10 10 ( 1,...,5)ix i

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩
− ≤ ≤ =

 

There are 12 solutions found by evolutionary approach for the Chemical 
Equilibrium Application with a running time of 32.71 seconds [6]. We choose the 
solution 1 of [6] that is displayed below to compare with two solutions found by PDS 
algorithm.  

Table 5. Comparison of results for Chemical Equilibrium Application 
 E. A. [6] Sol. 1 Sol. 2  f1(x) -0.1525772444 0.0038723421 0.0036961619 

x1 -0.0163087544 0.011212 0.010762  f2(x) -0.3712483541 -0.0038723448 -0.0036961549 

x2 0.2613604709 9.155043 9.579740  f3(x) -0.0265535274 0.0038688806 0.0036932686 

x3 0.5981559224 0.125929 0.123221  f4(x) -0.2784694038 0.0038717720 0.0034008286 

x4 0.8606983883 0.857346 0.857893  f5(x) -0.1168649340 -0.0018247861 -0.0007101592 

x5 0.0440020125 0.036662 0.036721  ε(x)  0.0038723448 0.0036961619 

6.4. Problem 4: Kinematic Application 
The kinematic application kin2 [8] describes the inverse position problem for a 

six-revolute-joint problem in mechanics. The equations describe a denser constraint 
system and are given as follows: 
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2 2
1

4 1 1 3 2 1 4 3 2 3 4 2 4 5 2 7 6 5 8 7 6 7 8 6 8

9 1 10 2 11 3 12 4 13 5 14 6 15 7 16 8 17

( ) 1 0
( )

0
1 4;

10 10 ( 1,...,8)

i i i

i i i i i i i i i

i i i i i i i i i

j

f x x x
f x a x x a x x a x x a x x a x x a x x a x x a x x

a x a x a x a x a x a x a x a x a
i

x j

+

+

⎧ = + − =
⎪

= + + + + + + +⎪
⎨

+ + + + + + + + =⎪
⎪ ≤ ≤⎩
− ≤ ≤ =

+

 The coefficients aki, 1 ≤ k ≤ 17, 1 ≤ i ≤ 4, are given in the table below: 

Table 6. Coefficients aki for the kinematic application kin2 

- 0.249150680 +0.125016350 -0.635550077 +1.48947730 

+1.609135400 -0.686607360 -0.115719920 +0.23062341 

+0.279423430 -0.119228120 -0.666404480 +1.32810730 

+1.434801600 -0.719940470 +0.110362110 -0.25864503 

+0.000000000 -0.432419270 +0.290702030 +1.16517200 

+0.400263840 +0.000000000 +1.258776700 -0.26908494 

- 0.800527680 +0.000000000 -0.629388360 +0.53816987 

+0.000000000 -0.864838550 +0.581404060 +0.58258598 

+0.074052388 -0.037157270 +0.195946620 -0.20816985 

- 0.083050031 +0.035436896 -1.228034200 +2.68683200 

- 0.386159610 +0.085383482 +0.000000000 -0.69910317 

- 0.755266030 +0.000000000 -0.079034221 +0.35744413 

+0.504201680 -0.039251967 +0.026387877 +1.24991170 

- 1.091628700 +0.000000000 -0.057131430 +1.46773600 

+0. 000000000 -0.432419270 -1.162808100 +1.16517200 

+0.049207290 +0.000000000 +1.258776700 +1.07633970 

+0.049207290 +0.013873010 +2.162575000 -0.69686809 

There are 10 solutions found by evolutionary approach for the Kinematic 
Application Kin2 with the average running time of 221.29 seconds [6]. We choose the 
solution 1 of [6] that is displayed below to compare with two solutions found by PDS 
algorithm.  
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Table 7. Comparison of results for Kinematic Application kin2 
 E. A. [6] Sol. 1 Sol. 2  f1(x) -0.3911967825 -0.0000003846 -0.0000059644 

x1 -0.0625820337 0.953447 0.958991  f2(x) -0.3925758964 -0.0000003846 -0.0000059644 

x2 0.7777446281 -0.301560 -0.283426  f3(x) -0.8526542738 0.0000002185 0.0000065068 

x3 -0.0503725828 0.953447 0.958991  f4(x) -0.5424213099 0.0000002185 -0.0000069190 

x4 0.3805368959 0.301561 -0.283448  f5(x) 0.7742116224 0.0000004085 0.0000069818 

x5 -0.5592587603 0.953447 0.958984  f6(x) -0.3828834764 -0.0000002465 0.0000069099 

x6 -0.6988338865 0.010363 -0.136180  f7(x) -0.7843806421 0.0000005466 -0.0000070056 

x7 0.3963927675 0.094760 0.856105  f8(x) 0.4655985543 -0.0000004874 0.0000060584 

x8 0.0861763643 -0.099564 -0.198128  ε(x)  0.0000005466 0.0000070056 

6.5. Problem 5: Combustion Application 
The combustion problem for a temperature of 3000 ◦C [8] is described by the 

system of equations: 

5
1 2 6 9 10

5
2 3 8

5
3 1 3 5 8 9 10

5
4 4 7

7 2
5 5 1

6 2
6 6 2

15 2
7 7 4

8

( ) 2 2 10 0;

( ) 3.10 0;

( ) 2 2 5.10 0;

( ) 2 10 0;

( ) 0.5140437.10 2 0;

( ) 0.1006932.10 2 0;

( ) 0.7816278.10 0;

( )

f x x x x x

f x x x

f x x x x x x x

f x x x

f x x x

f x x x

f x x x

f x

−

−

−

−

−

−

−

= + + + − =

= + − =

= + + + + + − =

= + − =

= − =

= − =

= − =
6

8 1 3

7
9 9 1 2

14 2
10 10 1 2

0.1496236.10 0;

( ) 0.6194411.10 0;

( ) 0.2089296.10 0;
10 10 ( 1,...,10)i

x x x

f x x x x

f x x x x
x i

−

−

−

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ = − =
⎪

= − =⎪
⎪

= − =⎩
− ≤ ≤ =

 

There are 8 solutions found by evolutionary approach for the Combustion 
Application with the average running time of 151.12 seconds [6]. We choose the 
solution 1 of [6] that is displayed below to compare with two solutions found by PDS 
algorithm.  
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Table 8. Comparison of results for Combustion Application 
 E. A. [6] Sol. 1 Sol. 2  f1(x) 0.0274133880 0.0000000000 0.0000000000 

x1 -0.0552429896 0.000353 0.000003  f2(x) 0.0841848522 0.0000000000 0.0000000000 

x2 -0.0023377533 0.000190 0.000486  f 3(x) 0.1482418892 0.0000000000 0.0000000000 

x3 0.0455880930 -0.000537 0.242296  f4(x) 0.0839188566 0.0000000000 0.0000000000 

x4 -0.1287029472 0.000000 0.000020  f 5(x) -0.0030517851 -0.0000000881 0.0000000685 

x5 0.0539771728 0.710649 1.332765  f 6(x) -0.0000109317 -0.0000000753 -0.0000003553 

x6 -0.0151036079 -0.030582 1.163017  f 7(x) -0.0165644486 0.0000000000 -0.0000000004 

x7 0.1063159019 0.000005 -0.000005  f 8(x) 0.0025184283 0.0000001896 -0.0000007631 

x8 0.0386267592 0.000567 -0.242266  f9(x) -0.0001291516 -0.0000002470 -0.0000001576 

x9 -0.1144905135 -2.905380 -2.519984  f 10(x) 0.0000003019 0.0000000000 0.0000000000 

x10 0.0872294353 1.483182 0.096737   ε(x)  0.0000002470 0.0000007631 

6.6. Problem 6: Economics Modeling Application 
The Economics Modeling Application [9] is described by the following system of 

equations:  

( )
1

1

1

1

( ) 0 1 1 ;

( ) 1 0

10 10 ( 1,..., )

n k

k k i i k n k
i

n

n i
i

i

f x x x x x c k n

f x x

x i n

− −

+
=

−

=

⎧ ⎛ ⎞= + − = ≤ ≤ −⎪ ⎜ ⎟⎪ ⎝ ⎠
⎨
⎪ = + =⎪⎩
− ≤ ≤ =

∑

∑  

The constants ck (1≤k≤n-1) can be randomly chosen. We choose the value 0 for 
the constants and the case of n=20 equations in our experiments. 

There are 4 solutions found by evolutionary approach for the Economics 
Modeling Application with the average running time of 640.92 seconds [6]. We choose 
the solution 1 of [6] that is listed below to compare with three solutions found by PDS 
algorithm. Here the solution 1 of [6]: 

x=(-0.1639324, -0.3813209, 0.2242448, -0.0755094, 0.1171098, 0.0174083, 
-0.0594358,  

   -0.2218284, 0.1856304, -0.2653962, -0.3712114, -0.3440810, -0.1060168, 
0.0218564,  

   -0.2028748, 0.0533728, -0.0587111, 0.0057098, -0.0149290, -0.0004102);  
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f1(x)=0.0000194318; f2(x)=0.0000973461; f3(x)=-0.0001201028; 
f4(x)=-0.0000239671;  

f5(x)=-0.0000561734; f6(x)=-0.0000389625; f7(x)=0.0000390795; 
f8(x)=0.0000931186;  

f9(x)=-0.0001293920; f10(x)=0.0000501015; f11(x)=0.0001008920; 
f12(x)=0.0001601619; f13(x)=0.0000063289; f14(x)=-0.0000079648; 
f15(x)=0.0000766372; f16(x)=-0.0000235752; f17(x)=0.0000221321; 
f18(x)=-0.0000033461; f19(x)=0.0000061239;f20(x)=-0.6399149000; 

There are many solutions found by PDS algorithm and we choose three typical 
solutions and have them reported in the table below: 

Table 9. Three solutions for Economics Modeling Application found by PDS 
algorithm 

 Solution 1 Solution 2 Solution 3  x11 2.393839 1.180002 -18.129335 

x1 0.000000 0.000000 0.000000  x12 2.252797 -4.508342 0.872400 

x2 3.925449 -1.202601 17.900721  x13 0.999758 2.401042 21.346998 

x3 8.198609 1.780396 8.762006  x14 -60.296144 2.509700 1.192238 

x4 1.142585 -1.621697 1.542122  x15 1.550240 0.301906 -48.850780 

x5 4.018893 0.378331 2.591941  x16 3.936614 -0.363198 1.199675 

x6 6.066942 -4.568556 -43.326052  x17 1.073389 -1.820998 1.953207 

x7 6.675788 0.407040 6.300063  x18 0.483159 0.372841 28.668058 

x8 14.851930 0.334111 8.884638  x19 4.109741 0.542521 0.561242 

x9 -3.925542 1.619517 -1.067976  x20 0.000000 0.000000 0.000000 

x10 1.541953 1.257985 8.598834  ε(x) 0 0 0 

The solutions above have gi(x)=0.0 (1≤i≤n=20) and 30 digits after decimal point 
are zero.  

Table 10. Statistics of results of the objective function ε(x) in 30 trials for each 
problem of PDS algorithm 

 Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

Min 0.0000004290 0.0000000091 0.0036961619 0.0000005466 0.0000002470 0 

Max 0.0000004290 0.0000005529 0.0052934327 0.2580684087 0.0000376137 0 

Average 0.0000004290 0.0000001870 0.0042505633 0.0443614392 0.0000126718 0 

Median 0.0000004290 0.0000001084 0.0040423263 0.0052189659 0.0000091598 0 

St. dev. 0 0.0000001755 0.0005960323 0.079379872 0.0000110185 0 
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Table 11. Comparison of the running times (second) of evolutionary approach [6] 
and PDF algorithm 

 Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

Evolutionary 
Approach [6] 

39.07 28.90 32.71 221.09 151.12 640.92 

PDS algorithm 30 30 30 30 30 20 

Remarks:  
For each problem, solutions that are found by PDS algorithm dominate solutions 

of [6]. That means, solutions of [6] are dominated and NOT Pareto optimal solutions!  
PDS algorithm is very efficient for solving equations systems. The algorithm has 

the abilities to overcome local optimal solutions and to obtain global optimal solutions. 

7. Conclusions 
We consider a class of optimization problems having the following 

characteristics: there exists a fixed number k (1≤k<n) which does not depend on the 
size n of the problem such that just randomly changing the values of k variables; we 
may find a new solution that is better than the current one, we call it the class of 
optimization problems Ok. We have introduced Search Via Probably algorithm with 
probabilities of change (0.37, 0.41, 0.46, 0.52, 0.61, 0.75, 1) to resolve the problems of 
Ok [7], but the probabilities of [7] are only relevant to the problems having no many 
local optimums. In this paper we build new probabilities to control changes of values of 
the solution and design the PDS algorithm for solving single-objective optimization 
problems. For application of PDS algorithm we transform the nonlinear equations 
system into a single-objective optimization problem. PDS algorithm is very efficient 
for solving nonlinear equations systems. PDS algorithm has the abilities to overcome 
local optimal solutions and to obtain global optimal solutions.  

Many optimization problems have very narrow feasible domains that require the 
algorithm having an ability to search values of two or more consecutive digits 
simultaneously to find a feasible solution. We study this case and the results will be 
reported in the next paper. We also compare Search via Probability algorithm of papers 
[7] with PDS algorithm of this paper for solving engineering optimization problems.  
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