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A NEW PROBABILISTIC ALGORITHM
FOR SOLVING NONLINEAR EQUATIONS SYSTEMS

NGUYEN HUU THONG', TRAN VAN HAO™

ABSTRACT

In this paper, we consider a class of optimization problems having the following
characteristics: there exists a fixed number k (1<k<n) which does not depend on the size n
of the problem such that if we randomly change the value of k variables, it has the ability
to find a new solution that is better than the current one, we call it Oy. We build a new set
of probabilities for controlling changes of the values of the digits and build
Probabilistic-Driven Search algorithm for solving single-objective optimization problems
of the class Oy. We test this approach by implementing the algorithm on nonlinear
equations systems, and we find very good results that are better than results of other
authors.
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TOM TAT
MGt gidgi thudt xdc sudt méi gidai hé phwong trinh phi tuyén

Trong bai nay, ching téi xét mot I6p cdc bai todn t0i wu cé tinh chdt sau: ton tai mot
$6 k ¢6 dinh khéng phu thudc vao kich thuée n cia bai todn (1<k<n) sao cho néu ta thay
doi gid tri cua k bién thi c6 kha néang tim dwoc mét 1oi gidi méi tot hon 1o gidi hién hanh,
ta goi 16p bai todn d6 la Oy. Chiing téi xdy dung mét bg xdc sudt méi cho viéc diéu khién
thay déi gid tri ciia cdc chit s6 ciia cdc bién, va thiét ké mét gidi thudt PDS gidi cdc badi
todn t6i weu mét muc tiéu cia I6p Oy Ching t6i thir nghiém hiedng tiép cdn nay trén cdc bai
todn hé phwong trinh phi tuyén, va chiing téi tim dwgc cdc két qua tot hon cdc két qua da
co cua cdc nha nghién cuu khac.

Tir khéa: t6i wu, hé phuong trinh phi tuyén, x4c sut, giai thuat.

1. Introduction

In the field of evolutionary computation, there are many popular approaches for
solving optimization problems, such as genetic algorithm, particle swarm
optimization,... We have two following remarks:
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1) We suppose that the solution of optimization problems has n variables. These
approaches often simultaneously change values of n variables on each iteration. But in
some cases, if we only need to change values of k (1<k<n) variables then it has the
ability to find a better solution than the current one.

2) We suppose that every variable of the solution of optimization problems has m
digits. The role of left digits is more important than the role of right digits for assessing
values of objective functions, but evolutionary algorithms remove the difference of the
roles of the digits.

In this paper, we build the Probabilistic-Driven Search (PDS) algorithm that
overcomes the two drawbacks mentioned above for solving single-objective
optimization problems. In the experiment we transform nonlinear equations systems
into single-objective optimization problems and apply PDS algorithm to solving them.

2.  The model of optimization problems
We consider a model of single-objective optimization problem as follows:
Minimize  f(x)
subject to g, (x)<0 (j=1,...,r)
where x=(x;),a, <x,<b, (a;,,b,eR,1<i<n).
where g; (1<j<r) are real valued functions.
3.  Probabilistic-Driven Search algorithm

We consider a class of optimization problems having the following
characteristics: there exists a fixed number k (1<k<n) which does not depend on the
size n of the problem such that just randomly changing the values of k variables; we
may find a new solution that is better than the current one, we call it O,. We have
introduced Search Via Probably algorithm with probabilities of change (0.37, 0.41,
0.46, 0.52, 0.61, 0.75, 1) to resolve the problems of O, [7]. But the probabilities of [7]
are only relevant to the problems having no many local optimums. In this paper we
build new probabilities to control changes of values of the solution and design the
Probabilistic-Driven Search algorithm for solving single-objective optimization
problems.

3.1. Probabilities of changes

We suppose that every variable x; (1<i<n) of a solution has m digits that are listed
from left to right xj;, Xp,..., Xim (0=X;=9, 1<j<m). We consider j-digit of a variable x;.
We suppose the values of left digits x; (k=1, 2, ..., j-1) are correct, we have to fix the
values of these left digits and change the value of j-th digit to find a correct value of
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j-th digit. Because the value of j-digit is changed, the values of digits x; (k=j+1,..., m)
can be changed or cannot be changed. Let A; be an event such that the j-digit is selected

to change its value (1<j<m). We consider a following event to find a correct value of
j-digit:

AA,..A_AB, ..B, (1<j<m)

B, ...
We have following remarks:

Remark 1: The role of left digits is more important than the role of right digits of a
variable for assessing values of objective functions. Hence we should find the values of
digits from left digits to right digits one by one. We consider events

BB,B,..B,
where
B,=A,0ord, (1<j<m).

We classify these events according to typical events in the table below:

Table 1. Frequencies and probabilities of events

Event Frequency Probability
AB,B,..B, ol 2;”1 _ %
A AB,.B, o2 2;2 _ 2%
AA4,.. .4, A, 1 2%

The probability of selecting j-digit from n digit is

o (1<j<m)

We have a set of probabilities for selecting digits as follows:

111
2747 gm

It means that number of searches for correct values of left digits is more than
number of searches for correct values of the right digits.
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Remark 2: Let p; be the probability of the event A; (1<j<m). In some iteration we have
a below event occurring:

Ady.. A A, (1< j<m)

= Pr(4)=...=Pr(4, ) =0;
Pr(4,) =1,
Pr(4,,)=...=Pr(4,) :%

Hence we have probabilities of changes after selecting j-digit as follows:
n=0,....p,,=0,p,=Lp,, =l,...,pm =l
2 2

Remark 3: According to papers [7], we consider two digits a;.; and a; (2<j<m). Letr, 1,
and r; be probabilities of events below:

r;: probability of choosing a random integer number between 0 and 9 for j-th
digit.

1,: probability of j-th digit incremented by one or a certain value (+1,...,+5).

r3: probability of j-th digit decremented by one or a certain value (-1,...,-5).

We have the average probabilities ry, r, and r; of both two cases as follows:

r,=0.5, r,=r;=0.25

Probabilities of the other cases for finding correct values of three, four digits side
by side are very small; hence we do not consider these cases. In next section we use
three sets of probabilities above to build the changing procedure that transforms a
solution x into a new solution y.

3.2. The changing procedure

Without loss of generality we suppose that a solution of the problem has n
variables, every variable has m digits, one digit is displayed to the left of the decimal
point and m-1 digits are displayed to the right of the decimal point. We use a function
random (num) that returns a random number between 0 and (num-1). The Changing
Procedure changing values of a solution x under the control of probability to create a
new solution y is described as follows:

The Changing Procedure
Input: a solution x
Output: a new solution y

S1. yx;
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S2. Select j-th digit according to probabilities

[1 1 1}
274772
S3. Set

1 1
P=0pi =00 =Ly =2 Pu =3

S4. Select randomly k variables of solution y and call these variables y; (1<i<k).
The technique for changing values of these variables is described as follows:

For i=1 to k do
Begin 1
yi=0;
For j=1 to m do
Begin 2
If (a random event with probability p; occurs) then
Begin 3
Choose one of the following three cases according to the set of
probabilities (0.5, 0.25, 0.25)
Case 1: y;=y;+ random (10)*10'7;
Case 2: y;= yi+ (x; +1)*10'7;
Case 3: yi= b*y; + (x;; -1)*10'7;
End 3
Else yi=y; +x;*1 0'7;
End 2
If (yi<a;) then y=a;; If (y;i>b;) then y;=b;;
End 1;
S5. Return y; S6. The end of Changing Procedure;
The Changing Procedure has the following characteristics:

1) The central idea of the Changing Procedure is that variables of the solution x are
separated into discrete digits, and then they are changed with the guide of probabilities
and combined to a new solution y.

2) Because the role of left digits is more important than the role of right digits for
assessing values of objective functions. The Procedure finds values of each digit from
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left digits to right digits of every variable with the guide of probabilities and the
newly-found values may be better than the current ones (according to probabilities).

3) The parameter k: In practice, we do not know the true values of k for each
problem. According to statistics of many experiments, the best thing is to use k in the
ratio 50%-100% of n with 1<n<5, 20%-80% of n with 5<n<10, and 10%-60% of n with
10<n.

3.3. Probabilistic-Driven Search algorithm

We use the Changing Procedure to build PDF algorithm for solving
single-objective optimization problems. The PDS algorithm uses one solution in each
execution of the algorithm, so the starting solution affects the rate of convergence of
the algorithm. We improve the speed of convergence by implementing the algorithm in
two phases. Phase 1: Search and select a solution that is able to optimize number the
fastest. Phase 2: Optimize the solution of Phase 1 to find an optimal solution. Set
M1=10 and M2=30000, PDS algorithm is described with general steps as follows:

PDS algorithm:

Phase 1: Generate randomly M1 solutions and each solution is optimized by M2
iterations, then we pick out a best solution for phase 2.

S1. Select a random feasible solution x;

S2. L1«1;

S3. Select a random feasible solution y;

S4. L2«1;

S5. Use the Changing Procedure to transform the solution y into a new solution z;

S6. If the solution z is not feasible then return S5;

S7. If f(z) <= f(y) then y«z;

S8. If L2 < M2 then L2«L2+1 and return S5;

S9. If f(y) <=f(x) then x«y;

S10. If L1 <M1 then L1«<L1+1 and return S3;

S11. Return the solution x;
Phase 2: Numerical optimization.

S12. Use the Changing Procedure to transform the solution x into a new solution
y;

S13. Ify is not a feasible solution then return S12

S14. If f(y) <=f(x) then x«y;
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S15. If the condition of stop is not satisfied then return S12;
S16. The end of PDF algorithm;

To cite a few instances of single-objective optimization problems, we consider
system of equations and apply PDS algorithm to solving nonlinear Equations System.

4. Nonlinear Equations System
4.1. The model of nonlinear equations system

A general nonlinear equations system can be described as follows

fi(x,xy,,x,)=0
(X, %y,,x,)=0

fo (X, %,5,..,x,)=0
a, <x,<b,a,beR (i=1,.,n)

where f; (1<j<m) are nonlinear functions.
4.2. Popular approaches for solving nonlinear Equations System

There are several standard known techniques to solve nonlinear equations system.
Some popular techniques are as follows: Newton-type techniques [4], trust-region
method [2], Broyden method [1], secant method [3], Halley method [10]. It is to be
noted that the techniques of Effati and Nazemi are only applied for two equations
systems.

In the field of evolutionary computation, recently Grosan et al. [6] have
transformed the system of equations into a multi-objective optimization problem as
follows:

Minimize abs(f,(x,,X,,...,X,))

Minimize abs(f,(x,,%,,...,X,))

Minimize abs(f, (x,,x,,...,X,))
a,<x,<b,a,b.eR (i=1,..,n).
and they wuse an evolutionary computation technique for solving this

multi-objective optimization problem. It is to be noted that solutions found by this
approach are Pareto optimal solutions.
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4.3. PDS algorithm for solving Equations System

Because there are many equality constraints, the system of equations usually has
no solution x such that fi(x)=0 (1<j<m). Thus we find an approximate solution of
simultaneous equations such that |fj(x)|<e (1<j<m) with € is an arbitrary small positive
number. In order to do so, we transform the system of equations into a single-objective
optimization problem as follows:

Minimize £(x) = max {‘f1 (%)

L@ 0}

x=(x,%Xy,...,%, ),a, <x;<b,a,beR (i=1,..,n)

) gecey

We use PDS algorithm to solve the single-object optimization problem. In next
sections, we use two examples and six benchmark problems for nonlinear equations
systems to examine the PDS algorithm. Using PC, Celeron CPU 2.20GHz, Borland
C++ 3.1. We performed 30 independent runs for each problem. The results for all test
problems are reported in Tables.

5. Two examples

We considered two examples used by Effati and Nazemi [5]. PDS algorithm is
compared with Newton’s method, the Secant method, Broyden’s method, and
evolutionary approach [6]. Only systems of two equations were considered by Effati
and Nazemi.

Example 1:

J,(x,,x,) =cos(2x,)—cos(2x,)-0.4=0
1o (x,x,) =2(x, —x;) +sin(2x, ) —sin(2x,) -1.2=0

Example 2:
fi(x,x)=e"+xx,-1=0
fo(x,x,) =sin(x,x,)+x, +x,-1=0

The evolutionary approach has the average running time of 5.14 seconds for
example 1 and 5.09 for example 2 [6]. PDS algorithm has the running time of 5
seconds for both examples.
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Table 2. Comparison of results for example 1 and example 2

Example 1 Example 2
Method Solution Functions values Solution Functions values
Newton (0.15, 0.49) (-0.00168,
0.01497)
Secant (0.15, 0.49) (-0.00168,
0.01497)
Broyden | (0.15, 0.49) (-0.00168,
0.01497)
Effati (0.1575, (0.005455, (0.0096, (0.019223, 0.016776)
0.4970) 0.00739) 0.9976)
E. A. [6] (0.15772, (0.001264, (-0.00138, (-0.00276,-0.0000637)
0.49458) 0.000969) 1.0027)
PDS (0.156520, (-0.0000005815, (0.0, 1.0) (0, 0)
Alg. 0.493376) -0.0000008892)

6.  Six benchmark problems

Six problems of nonlinear equations systems considered in the following sections

arc¢ as

follows:

Interval Arithmetic,

Neurophysiology Application,

Chemical

Equilibrium Application, Kinematic kin2, Combustion Application and Economics
Modeling Application.

6.1. Problem 1: Interval Arithmetic Benchmark

The Interval Arithmetic Benchmark [8] is described as follows:

£i(x) = x, —0.25428722 —0.18324757 x,x,x, = 0;
£, (x)=x, —0.37842197 — 0.16275449x,x,,x, = 0;
fi(x) =x,—0.27162577-0.1695507 1x,x,x,, = 0;
fi(x)=x, —0.19807914 —0.15585316x,x,x, = 0;
f2(x) = x, —0.44166728 — 0.19950920x, x, x, = 0;
fu(x) =x, —0.14654113-0.18922793x,x,x,, = 0;
f2(x)=x, —0.42937161-0.21180486x,x,x, = 0;
fi(x) = x, —0.07056438 — 0.17981208x,x. x, = 0;
£o(x) = x, —0.34504906 — 0.19612740x, ,x, X, = 0;
fio(¥) = x,, —0.42651102 - 0.21466544x,x,X,

-2<x,<2(i=1..,10)

0;
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There are 8 solutions found by evolutionary approach for the Interval Arithmetic
Benchmark with the average running time of 39.07 seconds [6]. We choose the solution
1 that is displayed below to compare with the solution found by PDS algorithm.

Table 3. Comparison of results for Interval Arithmetic Benchmark

E. A. [6] PDS algorithm fi(x) -0.2077959241 | -0.0000003959
x; | 0.046491 0.257833 f,(x) -0.2769798847 | -0.0000001502
x, |0.101357 | 0.381097 fi(x) |-0.1876863213 | 0.0000000010
x3 | 0.084058 | 0.278745 f,(x) -0.3367887114 | 0.0000000365
x4 |-0.138846 | 0.200669 fs(x) |0.0530391321 -0.0000004290
x5 | 0.494391 0.445251 fe(x) |-0.2223730535 | 0.0000000763
X¢ | -0.076069 | 0.149184 f,(x) |-0.1816084752 | 0.0000002966
x; | 0.247582 | 0.432010 fg(x) |-0.0874896386 | 0.0000002231
xg | -0.017075 | 0.073403 fo(x) -0.3447200367 | 0.0000001704
Xo | 0.000367 | 0.345967 fio(x) |-0.2784227490 | -0.0000002774
X9 | 0.148112 | 0.427326 e(x) 0.0000004290

6.2. Problem 2: Neurophysiology Application

The Neurophysiology Application [11] is described as follows:
[ =x +x7-1=0;

f(x)=x +x; —1=0;

Sfi(x) = xsxs3 + xé‘xi —¢ =0

Ja(x) = x5X13 + XGX; —¢,=0;

fi(x) = x5x1x32 + xéxjx2 —c, =0;

Jo(x) = xsxfx3 + x6x22x4 —¢, =0;

-10<x, <10 (i = 1,...,6)

The constants ¢; can be randomly chosen. In our experiments, we considered ¢; =
0G=1,...,4).

There are 12 solutions found by evolutionary approach for the Neurophysiology
Application with the average running time of 28.9 seconds [6]. We choose the solution
1 of [6] that is displayed below to compare with two solutions found by PDS algorithm.

10
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Table 4. Comparison of results for Neurophysiology Application

E. A. [6] Sol. 1 Sol. 2 fi(x) | -0.3139636071 | -0.0000000060 | 0.0000000722
x; | -0.8282192996 | 0.703475 | 0.820345 f,(x) | -0.1206333343 | 0.0000000091 | 0.0000000722
Xz | 0.5446434961 | 0.667647 | 0.820345 fi(x) | 0.0652332757 | 0.0000000000 | 0.0000000000
x3 | -0.0094437659 | 0.710720 | 0.571869 fy(x) | 0.0123681793 | 0.0000000000 | 0.0000000000
x4 | 0.7633676230 | 0.744478 | 0.571869 fs(x) | 0.0465408323 | 0.0000000000 | 0.0000000000
X5 | 0.0199325983 | 0.000000 | -2.689698 fe(x) | 0.0330776356 | 0.0000000000 | 0.0000000000
X | 0.1466452805 | 0.000000 | 2.689698 &(x) 0.0000000091 | 0.0000000722

6.3. Problem 3: Chemical Equilibrium Application

The chemical equilibrium system [8] is described as follows:

Si(x)=xx,+x,—3x, =0;

~10<x, <10 (i=1,...,5)

f1(x)=2x,x] + 2R x] —8x, + R.x, + R,x,x; =0,
f,(x) = Ryx,x, +2x; —4Rx, = 0;

Ss(x)=x,(x, +1)+ Rmxj + )62)c32 + Ryx, + R5x32 + xj —1+Rx+ R, x,x; + Ryx,x, = 0;

So(x)=2xx, + x, + x2x32 + Rgx, — Rxs + 2R10x22 + R, %, + Ryx,x, = 0;

There are 12 solutions found by evolutionary approach for the Chemical
Equilibrium Application with a running time of 32.71 seconds [6]. We choose the
solution 1 of [6] that is displayed below to compare with two solutions found by PDS
algorithm.

Table 5. Comparison of results for Chemical Equilibrium Application

E. A. [6] Sol. 1 Sol. 2 fi(x) | -0.1525772444 | 0.0038723421 | 0.0036961619
x; | -0.0163087544 | 0.011212 | 0.010762 fr(x) | -0.3712483541 | -0.0038723448 | -0.0036961549
Xz | 0.2613604709 | 9.155043 | 9.579740 f3(x) | -0.0265535274 | 0.0038688806 | 0.0036932686
x3 | 0.5981559224 | 0.125929 | 0.123221 fy(x) | -0.2784694038 | 0.0038717720 | 0.0034008286
X4 | 0.8606983883 | 0.857346 | 0.857893 fs(x) | -0.1168649340 | -0.0018247861 | -0.0007101592
X5 | 0.0440020125 | 0.036662 | 0.036721 &(x) 0.0038723448 | 0.0036961619

6.4. Problem 4: Kinematic Application

The kinematic application kin2 [8] describes the inverse position problem for a

six-revolute-joint problem in mechanics. The equations describe a denser constraint
system and are given as follows:

11
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f6) = 22, ~1=0

St (X) = @2, X5 + @y, X, X, + Gy, X5 + @y X, X, + 5 XX+ XXy + 00, X X + g XeXg +

Ao, X; + Ay, Xy + Ay Xy + QX+ @ Xs + Ay X + A5, X + A Xg +a,, =0

1<i<4;

~10<x, <10 (j=1,...,8)

The coefficients a,;, 1 <k <17, 1 <1<4, are given in the table below:

Table 6. Coefficients ay; for the kinematic application kin2

- 0.249150680

+0.125016350

-0.635550077

+1.48947730

+1.609135400

-0.686607360

-0.115719920

+0.23062341

+0.279423430

-0.119228120

-0.666404480

+1.32810730

+1.434801600

-0.719940470

+0.110362110

-0.25864503

+0.000000000

-0.432419270

+0.290702030

+1.16517200

+0.400263840

+0.000000000

+1.258776700

-0.26908494

- 0.800527680

+0.000000000

-0.629388360

+0.53816987

+0.000000000

-0.864838550

+0.581404060

+0.58258598

+0.074052388

-0.037157270

+0.195946620

-0.20816985

- 0.083050031

+0.035436896

-1.228034200

+2.68683200

-0.386159610

+0.085383482

+0.000000000

-0.69910317

- 0.755266030

+0.000000000

-0.079034221

+0.35744413

+0.504201680

-0.039251967

+0.026387877

+1.24991170

- 1.091628700

+0.000000000

-0.057131430

+1.46773600

+0. 000000000

-0.432419270

-1.162808100

+1.16517200

+0.049207290

+0.000000000

+1.258776700

+1.07633970

+0.049207290

+0.013873010

+2.162575000

-0.69686809

There are 10 solutions found by evolutionary approach for the Kinematic
Application Kin2 with the average running time of 221.29 seconds [6]. We choose the
solution 1 of [6] that is displayed below to compare with two solutions found by PDS
algorithm.

12
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Table 7. Comparison of results for Kinematic Application kin2

E. A. [6] Sol. 1 Sol. 2 fi(x) | -0.3911967825 | -0.0000003846 | -0.0000059644
x; | -0.0625820337 | 0.953447 | 0.958991 f5(x) | -0.3925758964 | -0.0000003846 | -0.0000059644
x; | 0.7777446281 | -0.301560 | -0.283426 f3(x) | -0.8526542738 | 0.0000002185 | 0.0000065068
x3 | -0.0503725828 | 0.953447 | 0.958991 fy(x) | -0.5424213099 | 0.0000002185 | -0.0000069190
x4 | 0.3805368959 | 0.301561 | -0.283448 fs(x) | 0.7742116224 | 0.0000004085 | 0.0000069818
X5 | -0.5592587603 | 0.953447 | 0.958984 fo(x) | -0.3828834764 | -0.0000002465 | 0.0000069099
Xg | -0.6988338865 | 0.010363 | -0.136180 f;(x) | -0.7843806421 | 0.0000005466 | -0.0000070056
x7 | 0.3963927675 | 0.094760 | 0.856105 fg(x) | 0.4655985543 | -0.0000004874 | 0.0000060584
xg | 0.0861763643 | -0.099564 | -0.198128 &(x) 0.0000005466 | 0.0000070056

6.5. Problem 5:

Combustion Application

The combustion problem for a temperature of 3000 -C [8] is described by the

system of equations:

Ji(x)=x, +2x, + x5 +2x,,—10
fr(x)=x;+x,—3.107 =0;
F(X) =3, + X, + 20 + 2%, + X, +x,, —5.107 = 0;
fi(x)=x,+2x,-107 =0;
f:(x)=0.5140437.10" x, = 2x] = 0;
£.(x)=0.1006932.10° x, —2x2 = 0;
£2(x)=0.7816278.10""x, — x; =0;

£ (x)=0.1496236.10"° x, — x,x, = 0;
£o(x)=0.6194411.10" x, — x,x, = 0;
fi0(x)=0.2089296.10"x,, — x,x; = 0;

-5

~10<x, <10 (i=1,...,10)

There are 8 solutions found by evolutionary approach for the Combustion

Application with the average running time of 151.12 seconds [6]. We choose the

solution 1 of [6] that is displayed below to compare with two solutions found by PDS

algorithm.

13
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Table 8. Comparison of results for Combustion Application

E. A. [6] Sol. 1 Sol. 2 fi(x) 0.0274133880 | 0.0000000000 | 0.0000000000
x; | -0.0552429896 | 0.000353 | 0.000003 f5(x) 0.0841848522 | 0.0000000000 | 0.0000000000
x, | -0.0023377533 | 0.000190 | 0.000486 fi(x) 0.1482418892 | 0.0000000000 | 0.0000000000
x3 | 0.0455880930 | -0.000537 | 0.242296 f4(x) 0.0839188566 | 0.0000000000 | 0.0000000000
x4 | -0.1287029472 | 0.000000 | 0.000020 fs5(x) -0.0030517851 | -0.0000000881 | 0.0000000685
x5 | 0.0539771728 | 0.710649 | 1.332765 fo(x) -0.0000109317 | -0.0000000753 | -0.0000003553
X¢ | -0.0151036079 | -0.030582 | 1.163017 f(x) -0.0165644486 | 0.0000000000 | -0.0000000004
x; | 0.1063159019 | 0.000005 | -0.000005 f(x) 0.0025184283 | 0.0000001896 | -0.0000007631
xg | 0.0386267592 | 0.000567 | -0.242266 fo(x) -0.0001291516 | -0.0000002470 | -0.0000001576
Xo | -0.1144905135 | -2.905380 | -2.519984 f1o(x) | 0.0000003019 | 0.0000000000 | 0.0000000000
Xqo | 0.0872294353 | 1.483182 | 0.096737 £(x) 0.0000002470 | 0.0000007631

6.6. Problem 6: Economics Modeling Application

The Economics Modeling Application [9] is described by the following system of

equations:

|

n—k—1

X, + Z XiXivk

i=1

fn(x):nz_lxl.+1:0

~10<x <10 (i=1,...,n)

)xn—ck =0(1<k<n-1);

The constants ¢, (1<k<n-1) can be randomly chosen. We choose the value 0O for
the constants and the case of n=20 equations in our experiments.

There are 4 solutions found by evolutionary approach for the Economics

Modeling Application with the average running time of 640.92 seconds [6]. We choose
the solution 1 of [6] that is listed below to compare with three solutions found by PDS

algorithm. Here the solution 1 of [6]:

14

x=(-0.1639324, -0.3813209, 0.2242448, -0.0755094, 0.1171098, 0.0174083,
-0.0594358,

-0.2218284, 0.1856304, -0.2653962, -0.3712114, -0.3440810, -0.1060168,
0.0218564,

-0.2028748, 0.0533728, -0.0587111, 0.0057098, -0.0149290, -0.0004102);
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£,(x)=0.0000194318;
£,(x)=-0.0000239671;

f5(x)=-0.0000561734;
f3(x)=0.0000931186;

f5(x)=-0.0001293920;
f1,(x)=0.0001601619;
f15(x)=0.0000766372;

£,(x)=0.0000973461;

fs(x)=-0.0000389625;

f,4(x)=0.0000501015;
f,3(x)=0.0000063289;
f,4(x)=-0.0000235752;
£,5(x)=-0.0000033461; f,4(x)=0.0000061239;£5(x)=-0.6399149000;

There are many solutions found by PDS algorithm and we choose three typical
solutions and have them reported in the table below:

£3(x)=-0.0001201028;

£7(x)=0.0000390795;

£11(x)=0.0001008920;
£14(x)=-0.0000079648;
f17(x)=0.0000221321;

Table 9. Three solutions for Economics Modeling Application found by PDS

algorithm

Solution 1 Solution 2 Solution 3 X11 2.393839 1.180002 -18.129335
X; 0.000000 0.000000 0.000000 X1z 2.252797 -4.508342 0.872400
X, 3.925449 -1.202601 17.900721 X13 0.999758 2.401042 21.346998
X3 8.198609 1.780396 8.762006 X14 | -60.296144 | 2.509700 1.192238
X4 1.142585 -1.621697 1.542122 X15 1.550240 0.301906 | -48.850780
xs | 4.018893 0.378331 2.591941 X16 3.936614 -0.363198 1.199675
Xg | 6.066942 -4.568556 -43.326052 X17 1.073389 -1.820998 1.953207
x; | 6.675788 0.407040 6.300063 X18 0.483159 0.372841 28.668058
Xg 14.851930 0.334111 8.884638 X19 4.109741 0.542521 0.561242
Xo | -3.925542 1.619517 -1.067976 X290 0.000000 0.000000 0.000000
xyp | 1.541953 1.257985 8.598834 gx) |0 0 0

The solutions above have g;(x)=0.0 (1<i<n=20) and 30 digits after decimal point
are zero.

Table 10. Statistics of results of the objective function &(x) in 30 trials for each

problem of PDS algorithm
Problem 1 Problem 2 Problem 3 Problem 4 Problem S | Problem 6

Min 0.0000004290 | 0.0000000091 | 0.0036961619 | 0.0000005466 | 0.0000002470 0
Max 0.0000004290 | 0.0000005529 | 0.0052934327 | 0.2580684087 | 0.0000376137 0
IAverage | 0.0000004290 | 0.0000001870 | 0.0042505633 | 0.0443614392 | 0.0000126718 0
Median | 0.0000004290 | 0.0000001084 | 0.0040423263 | 0.0052189659 | 0.0000091598 0
St. dev. 0 0.0000001755 | 0.0005960323 | 0.079379872 | 0.0000110185 0
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Table 11. Comparison of the running times (second) of evolutionary approach [6]
and PDF algorithm

Problem 1| Problem 2 | Problem 3 | Problem 4 | Problem 5 | Problem 6

Evolutionary | 5, ) 28.90 32.71 221.09 | 15112 | 640.92
Approach [6]
PDS algorithm | 30 30 30 30 30 20

Remarks:

For each problem, solutions that are found by PDS algorithm dominate solutions
of [6]. That means, solutions of [6] are dominated and NOT Pareto optimal solutions!

PDS algorithm is very efficient for solving equations systems. The algorithm has
the abilities to overcome local optimal solutions and to obtain global optimal solutions.

7. Conclusions

We consider a class of optimization problems having the following
characteristics: there exists a fixed number k (1<k<n) which does not depend on the
size n of the problem such that just randomly changing the values of k variables; we
may find a new solution that is better than the current one, we call it the class of
optimization problems O,. We have introduced Search Via Probably algorithm with
probabilities of change (0.37, 0.41, 0.46, 0.52, 0.61, 0.75, 1) to resolve the problems of
Oy [7], but the probabilities of [7] are only relevant to the problems having no many
local optimumes. In this paper we build new probabilities to control changes of values of
the solution and design the PDS algorithm for solving single-objective optimization
problems. For application of PDS algorithm we transform the nonlinear equations
system into a single-objective optimization problem. PDS algorithm is very efficient
for solving nonlinear equations systems. PDS algorithm has the abilities to overcome
local optimal solutions and to obtain global optimal solutions.

Many optimization problems have very narrow feasible domains that require the
algorithm having an ability to search values of two or more consecutive digits
simultaneously to find a feasible solution. We study this case and the results will be
reported in the next paper. We also compare Search via Probability algorithm of papers
[7] with PDS algorithm of this paper for solving engineering optimization problems.
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