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ABSTRACT 
The combination of Zernike moments and curvelet-like transform can bring the most 

significant feature coefficients in pattern recognition. Instead of using Zernike moments in 
the image, we apply Zernike moments on every corona of curvelet-like transform. This 
combination brings special properties when we can represent the shape of each the corona 
through Zernike moments. More especially, we use orientation of wedge of curvelet-like 
transform at specific scale for Zernike moments instead of using uniformly partition angle 
as in normal Zernike moments. The experiment on classification of sub-cellular location 
protein images with these coefficients has shown the advance points in comparing to 
normal Zernike moments in whole image. 

Keywords: curvelet transform, pattern recognition, Zernike moments.  
TÓM TẮT 

Moment đa vành tròn trên miền biến đổi tựa curvelet và ứng dụng trong nhận dạng ảnh 
Trong bài viết này, chúng tôi đề xuất một giải pháp trong bài toán nhận dạng mẫu 

thuộc lĩnh vực thị giác máy tính. Đề xuất xây dựng Zernike moments trên biến đổi trường 
Curvelet. Thay vì sử dụng Zernike moment trên dữ liệu ảnh trực tiếp, chúng tôi tận dụng 
đặc điểm tạo vành tròn của biến đổi Curvelet, sau đó áp Zernike trên từng vành để xây 
dựng tập đặc trưng cho tập mẫu. Như vậy, hướng của Zernike moment cũng chính là 
hướng của vành tròn của biến đổi curvelet. Thí nghiệm được thực hiện trên phân tích tập 
ảnh vi ảnh huỳnh quang cho thấy độ chính xác tương đối cao so với việc chỉ sử dụng 
Zernike moment gốc.  

Từ khóa: biến đổi curvelet, nhận dạng pattern, Zernike moments. 
 

1. Introduction 
The invention of Scanning Tunneling Microscopy and its advanced various forms 

have opened a new research on surface characterization at a nanometer scale. We know 
that nanoscale or micro-scale images usually do not contain explicit features as the 
other normal images such as face, landscape, etc. 

   
Fig. 1. Some nanoscale images in semiconductor with unclear features 
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The recent research on bioinformatics gains many achievements through Sub-

cellular’s Location Fluorescence (SLF) microscopy [7], [8]. The information of 
location proteomics can provide accuracy sub-cellular distribution of protein in given 
cell. Knowledge of a protein’s sub-cellular distribution can contribute to a complete 
understanding of its function. The dynamic properties of protein sub-cellular 
distribution in different environmental conditions can also provide significant 
information about protein function. Fluorescence microscopy permits rapid collection 
of images with excellent resolution. It is convenient condition to analyze protein. The 
problem is that, we need the good feature vectors and automated classification to 
classify the new microscopy images based on trained samples. 

Wavelet transform was an important achievement in 1980’s and after that it has 
been applied in many fields from 1D digital signal processing to 2D image analysis. 
However, there are some disadvantages in 2D wavelet transform, especially to work 
with the curves in image. It is because the wavelet coefficients cannot represent the 
relationship in which they are in a line or curve in an image. Therefore, it is necessary 
to find a good transform that can represent a linear or curve features in 2D images. By 
this improvement, we can challenge to problems of nanoscale images captured in 
semiconductor and biology fields. With good features through coefficients of the 
transformations, we can move ahead to the problem of image recognition in 
semiconductor or biology fields. The ability to analysis the images at many scales is 
really essential requires. It is because, some features occurs at specific scale and 
disappears at other scales and vice versa. These transform with their significant 
coefficients must ‘see’ the line or curve existing in image. Together with these 
transformations, we also suggest the recognition or classification models to explore at 
most the property of multi-scales, and ‘see line or curve of the coefficients’ 

The most significant problem in classification or recognition is set of features that 
represent the main properties of image or object. The 2D or 3D features are suitable for 
cell-level recognition. The Zernike moment, Haralick textures, wavelet, Gabor are 
often used for SLF recognition. Together with these features, some other features such 
as Euler number, morphology, fractal dimension were also developed by biology 
experts [1].  

In this research we represent advanced points for feature set through 
combination of curvelet-like coefficients and Zernike moments together with multi-level 
SVM classification algorithm. The main idea is that, we apply Zernike moments in 
every corona from coarsest to finest scale of curvelet transform to represent the shape 
of each corona instead of whole image. After that, the values of Zernike moments in 
every corona will be the vector for SVM classification engine in recognition phase. 

Part 2 briefly introduces localized direction multi-scale transform. Part 3 
represents general Zernike moments. Part 4 represents the combination between 
Zernike moments and curvelet-like transform. Part 5 demonstrates the experiment 
results in microscopy images of HELA cells. 
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2. The summary of curvelet transform 

The curvelet transform was introduced by Candès and David Donoho [4] and 
upgraded by Duncan (2000) and Starck (2002) to represent the curved objects in an 
image. Basically, curvelet transform is based on local anisotropic multi-scale 
transform. Similar to Fourier, Radon, or Wavelet transform, the authors have developed 
the complete background in both continuous and discrete domain, and they have 
developed the fast algorithm for curvelet transform. The curvelet-like transforms can 
represent the curved features with localization and anisotropic properties. These 
methods use few coefficients to represent curves. In wavelet transform, the 
decomposition only use squares at every direction or scale, while the local anisotropic 
transforms use rectangles with different sizes and directions. The figure 1 demonstrates 
the difference between wavelet transform and global directional multi-scale 
decomposition called local directional multi-scale curvelet-like. 

 
Fig. 2. Wavelet transform uses squares, while the local anisotropic transforms use 

rectangles with different sizes and directions in image decomposition 
Primarily, the first form of curvelet transform is based on multi-scale filters and 

orthogonal ridgelet transform in the unite blocks of the partition at each scale. The 
second form of curvelet transform is introduced in [5] with main properties: does not 
based on orthogonal; only use three-parameter vector to represent curvelet coefficients. 
The curvelet form II is developed in discrete domain with fast algorithm called FDCT 
(Fast discrete curvelet transform) [2].  

Given ),,( lkj=µ , in which K,1,0=j  is decomposition level,  
represents angle index and 

⎣ ⎦ 12,,1,0 2/ −= jl K

),( 21 kkk = represents the position in 2D space.  The 
algorithm is summarized in Algorithm 1. 
Algorithm 1. The algorithm of fast discrete curvelet transform form II 

S1. Convert the original data to Fourier domain. 
S2. Localize the relationship between decomposition level and angle index. The 

angle at level j and angle index l is determined by .  ( )
⎣ ⎦ lj

lj .2.2 2/
,

−= πθ
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S3. The diagonal matrix is defined by . The value α is defined 
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S4. The location: ( )2211 ,. δδδ kkk = , with 9/10;3/14 21 πδδ == . 

S5. Determine curvelet coefficients by formula  (1) 

)(2)(
),()(

4/3
δθµ γγ kxRDx

ljjj
j −=  

(1) 

In which, )( jγ can be defined by: )()(),( 2121 xxxx ϕψγ = , ϕ  is any scale filter, ψ  
is wavelet filter. For example, some scale filters ϕ  can be 

Table 1. Some popular filters used in wavelet transform 
 
 

Daubechies 7-9 

High: (0.037828, -0.023849, -0.11062, 0.3774, 0.8527, 0.3774, 
-0.11062, -0.023849, 0.037828) 
Low: (-0.064539, -0.040689, 0.41809, 0.78849, 0.41809, -
0.040689 -0.064539) 

Daubechies-4 

High: (-0.23038, 0.71485, -0.63088, -0.027984, 0.18703, 
0.030841 -0.032883, -0.010597) 
Low:  (-0.010597, 0.032883, 0.030841, -0.18703, -0.027984 
0.63088, 0.71485, 0.23038) 

Burt 
High: (-0.070711, 0.35355, 0.84853, 0.35355, -0.070711) 
Low: (-0.015152, -0.075761, 0.36871, 0.85863, 0.36871, -
0.075761, -0.015152) 

 

In original data, each wedge is applied to a part of data that has been sketched by  
the matrix  Dj, and limitation of angle width is 2j/2, and they are normalized to   
domain,  therefore the size of wedge satisfies: (by orientation 

]1,0[
2/2 jlength −≈ ( )lj ,θ ), 

. Every wedge satisfies the anisotropic rule, more particularly it satisfies 
parabolic partition property: . 

jwidth −≈ 2
2lengthwidth ≈

In Fourier domain, the curvelet coefficients have compact support and µγ̂ is 
localized for the wedge which is determined by: 

⎣ ⎦{ }2/
,

1 2.,22, j
lj

jj −+ ≤−≤≤± πθθξξ  
(2) 

That means, the curvelet coefficients has a support in the domain of length 2j, and 
width 2j/2. This shows that, at the decomposition scale , closure compound of j−2
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curvelet coefficients is in shape of thin trip with length 2j/2 and width 2j (figure 3). The 
details of curvelet form II are introduced in [3]. 

 
Fig. 3. The partition of curvelet coefficients in frequency domain 

The curvelet coefficients of 2D data are arranged in wedges in coronas (figure 3). 
Observing that, if there is data existing in the partition window, then there are 
significant curvelet coefficients in the correspondence wedge (the white color in figure 
4). This is a base that we use crude curvelet coefficients or together with Zernike 
moments for SLF classification. 

   
Fig. 4. The original microtubules image and curvelet form II coefficients with 03 

decomposition levels using wavelet Db4 
3. The Zernike moments 

The next feature style for SLF classification is Zernike moment. These features 
are considered as orthogonal moments and can be used to represent image. The Zernike 
features are rotation invariant and can be built through polynomial functions. In 
particular, Zernike polynomials can be used to represent grey-level contribution. The 
Zernike polynomial order n with m repeats in image f(x,y) is determined by 

θρθρ jm
mnnmnm eRVyxV )(),(),( ,== , 22 yx +=ρ  

(3) 
nm <|| ,  is even,|| mn− nl ≤≤0 , . R)/(tan 1 xy−=θ nm is Zernike polynomial in 

polar coordinate system 
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−
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(4) 

nmV  is a set of complex polynomials and determine the orthogonal base in 
. Zernike moment are determined by 122 ≤+ yx
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Fig. 5. The original image and its Zernike moments degree 9 

4. Combination of curvelet transform and Zernike moments 
In this paper, we suggest the combination between curvelet-like coefficients and 

Zernike moment to build the feature vectors in recognition. The main idea is that we 
apply the Zernike moment in the corona of curvelet-like transform to get multi-corona 
Zernike features. More specially, instead of using uniform rotation as in original 
Zernike moments for the angles which is determined by (3), we use the same directions 
of the wedges at different levels. Beside it, lengths of vectors ρ in (3) is limited by the 
size of corona in curvelet-like transform at different decomposition levels. In this case, 
the original image is decomposed to the dyadic coronas. Then, the Zernike moments 
are determined in those coronas instead of the whole image. The distinguishing point 
for Zernike moments in this case is that we use the radius  ρ limited for image region in 
corona instead of using  as in original Zernike. The rotations in Zernike 
calculations are a rotation angle of the wedges in the curvelet-like transform at specific 
decomposition level. This is a merit point in our method because the curvelet-like 
transforms have already determined optimized cover grid. Therefore, we do not need to 
use uniform grid as in original Zernike moments. Figure 6 demonstrates the Zernike 
moments on the corona. 

122 ≤+ yx

 
Fig. 6. Schema of Zernike moments in the coronas of curvelet-like transform 
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In particular, if we use the curvelet transform, then Zernike orders of n and m are 
repeated in the curvelet coefficients µα of specific corona is determined as follows: 

θ
µµ γα mi

mnnm eRV .
, )()( =  

(7) 

1,)(1 * ≤
+

= ∑ kVnZ nmnm
µα

µµ γγ
π

 (8) 

Where, ),,( lkj=µ  if using the 2nd form of the curvelet, and 1≤k , αµ is 
determined by formula (1). The rotation θ is fixed at the specific level j and the angle 
index l. That means, with the wedge determined by , the Zernike polynomial is 
calculated in the curvelet coefficients such that 

),( lj

( )
⎣ ⎦ lj

lj .2.2 2/
,

−== πθθ ,  ⎣ ⎦ 12,,1,0 2/ −= jl K
(9) 

5. Experiment results 
We have experimented in 2D fluorescence image sets whish are introduced in [7], 

[8] with.  
Description Quantity Sample image 

The dataset of SLF 
images in 
experiment. 

2598 

 
 

The images represent HELA or CHO cells in low resolution. There are from 73 to 
98 images in a class. The image sets are extracted from the protein research projects in 
[6]. There are 2598 images in experimental set. A number of trained samples occupies 
25-30% in experiment set and has been chosen randomly many times in sample set. A 
number of Zernike moments of each corona is used with Zernike polynomial degree 9, 
that means, ,  in (5) , with 9=n )9..0(=m 8,6,4=l  represents the minimum degree of 
polynomial. Table 2 represents a number of features of Zernike moment vector. We use 
45 features for each corona of curvelet transform. In the coarsest level, we use standard 
Zernike moments as usual. It is because the size of data at this level is small to 
partition. 
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Table 2. A number of Zernike moments at different degrees 

 
 

No Value l Value n Value m Number of 
Zernike 
moments 

1 4 4 
5 
6 
7 
8 
9 

0,1,2,3,4 
0,1,2,3,4,5 
0,1,2,3,4,5,6 
0,1,2,3,5,5,6,7 
0,1,2,3,4,5,6,7,8 
0,1,2,3,4,5,6,7,8,9 

45 

2 6 6 
7 
8 
9 

0,1,2,3,4,5,6 
0,1,2,3,5,5,6,7 
0,1,2,3,4,5,6,7,8 
0,1,2,3,4,5,6,7,8,9 

34 

3 8 8 
9 

0,1,2,3,4,5,6,7,8 
0,1,2,3,4,5,6,7,8,9 

19 

Table 3. The experiment result of pattern recognition on the sub-cellular image 
sets (08 classes) based on multi-coronas curvelet Zernike moments and Zernike 
moments with SVM 

 

Sub-cellular 

Multi-
coronas 
Zernike 

moments on 
curvelet-like 

Zernike 
moments 

filamentous form of the 
cytoskeletal protein actin 

89 81 

endosomal protein transferring 
receptor 

64 67 

endoplasmic reticulum 75 75 
Golgi protein giantin 71 70 
Golgi protein GPP130 71 68 
lysosomal protein ERDAK 62 69 
cytoskeletal protein tubulin 72 71 
mitochondrial protein 75 73 
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The experimental results of our method are worse than normal Zernike in two 
types of class, and better than in the rest classes. It is because in these classes, most 
patterns are in black. The true patterns (white color) are small. Therefore, the curvelet-
like coronas cannot bring the good feature. However, in most classes with the bigger 
and complicated patterns, our suggestion is really better.  
6. Conclusion 

The curvelet-like transforms can contribute in many fields and show the merit 
points in comparison to wavelet. The development of feature set that is based on the 
coefficients of curvelet-like transform is very suitable to classify SLF images. In this 
paper, we suggest the outstanding solution with combination Zernike moments on the 
corona of curvelet-like coefficients. The experimental results show the better 
recognition in comparing to Zernike moments. We believe that our solution can 
achieve the better result when we integrate some basic features such as Haralick, 
geometry, and morphology, and the disadvantage with black images can be passed. 
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