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LIMITATIONS OF APPLICATION OF YUKAWA
POTENTIAL TO FLUID OCP PLASMAS

DO XUAN HOI', NGUYEN THI THANH THAO"

ABSTRACT

After a brief introduction to the Poisson — Boltzmann equation acquired for the one-
component-plasmas (OCP), we carry out a careful treatment of the numerical data
concerning the radial distribution function given by the Monte Carlo and the Hyper Netted
Chain simulations for this kind of plasmas, especially, the weakly correlated ones. Based
on some latest results for the screening potential at the near zero inter-nuclear distance,
we propose the formulae to compute this potential by combining the Yukawa potential with
a certain greater distance than a limit, called Debye-Hiickel distance, and the Widom
expansion with the lesser one. By this way, we show the limits of application of Yukawa
potential to plasmas OCP.

TOM TAT
Gidi han dp dung ciia thé Yukawa cho Plasma OCP lwu chit

Sau khi gidi thiéu ngdn gon phirong trinh Poisson — Boltzmann thu dwoc cho plasma
mét thanh phan (OCP), ching téi xit li chi tiét cdc dit liéu s6 lién quan dén ham phan bo
xuyén tam cho boi cac mé phong Monte Carlo va HyperNetted Chain cho loai plasma nay,
ddc biét la cac plasma lién két yéu. Duea trén mét vai két qud maoi nhét cho thé man chdn &
khodng cach lién hat nhan gan bang khéng, ching t6i @é nghi cac cong thire tinh thé man
chdn nay bang cach phéi hop thé Yukawa cho khodng cdch 16n hon mét gi6i han goi la
khodng cich Debye-Hiickel, va khai trién Widom cho khodng cdich nhé hon. Bang cdch
nay, ching téi ciing da chi ra nhitng gi6i han dp dung ciia thé Yukawa cho plasma OCP.

1. Introduction

The Yukawa potential was first introduced into the particle physics to describe
the interaction between two nucleons and led to predict the existence of mesons [16].
However, the notion of Yukawa form potential has been widely used in from chemical
process to others concerning the astrophysics, and especially considered as a
generalization of Debye-Hiickel (D-H) potential in the study of the effective potential
between two ions separated by the distance R of a fluid plasma system:

VOCR, )

wherein « is a positive parameter characterizing the screening effect of the
environment on the two ions under consideration. But the interaction of the form (1)
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above can only be used with some conditions for R and for the fluidity of the plasmas,
as shown in [5, 15]. In this work, by using new computing tools, we will suggest the
limits of applying the Yukawa potential (1) for the one component plasmas (OCP)
concerning the interionic distance as well as the coupling parameter.

The content of this article will be presented in the following order: Firstly, we
remind briefly the model used and the base of D-H theory beginning with the Poisson-
Boltzmann equation along with the specifications of applying this theory. Next, we will
mention the latest international works related to this subject and indicate at the same
time some useful comments for the computations in this work. The following part of
this publication will focus on the method used for the treatment of the screening
potential in fluid OCP and also on the new results obtained from this study. The
conclusion is reserved for the remarks and also for the suggestions.

2. Yukawa potential and radial distribution function for fluid OCP plasmas

Within the scope of this work, we consider the model of OCP, that is a physical
system at the temperature 7, composed of N ions, each of +Ze electrical charge,
imbedded in a homogeneous medium of ZN electrons. This model is suitable for the
study of the structure of some astrophysical objects such as the white dwarf or the
neutron star,...[9]. An OCP system may be seen as a collection of N spheres, each
centered at one ion and having Z electrons neutralizing electrical charge. The radius of

-1/3
this ionic sphere is done by: a = (%) , with n indicating the ion density. In order

to measure the fluidity of such a OCP system, one uses the coupling parameter, defined

S C
T

Coulomb potential outweighs the thermal energy in magnitude. For some OCP, this
parameter has relatively low value, for example, one has I' = 0.76 for brown dwarf and
I'=0.072+0.076 for the solar interior. Especially, in the ICF (Inertial Confinement
Fusion) experiments, the magnitude of I" is only about 0.002 +0.010,... [9]. In these
fluid plasmas, the D-H theory is often used to describe the screening effect. The base of
this theory will be briefly presented below.

as , and dense plasmas the ones which have I' >1, meaning that the

V(R)

We call r :E the reduced distance and y = R =rV(r), V(r) being the

a e/
mean potential at each point of the system, the Poisson-Boltzmann for the OCP system
can be described in the compact form [5]:

d;y(zr) = 31{1 —exp[—FMH,

r r
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with the limit conditions: lim y(»)=1 and lim y(r) =0, expressing the interaction
r—0 r—0

potential becomes Coulombian when two ions are near enough so that there no
screening effect and it tends to zero when they are too far.

Above some distance, we get this approximative equation:

d’y (2”) =30y(r). )
dr

The solution satisfying those conditions has the expression:

-r3T
Ypu =€ >

called Debye-Hiickel solution and we have

e—rJ3_r

Vou = : 3)
r

a special case of Yukawa potential (1).

At that time, the radial distribution function is described by means of this mean
potential:

BT
Gy (r) =PI = exp{—r ¢ ] 4)

r

and if the screening potential is defined as the result of influence of the environment on
) . . 1 :
the interaction between two test ions: H(r)=V(r)——, we get the following
r

expression for the D-H screening:
3T
l-e
H,, (=" 5)

r

According to (4), the radial distribution function is an strictly increasing function
with respect to the distance 7, in accordance with the numerical results of Monte Carlo
simulations performed by many authors [1, 8, 13]. On the other hand, those results
show that the behavior of this function changes to a kind of damped oscillation from
some value of the parameter I'c, signature of short-range order effect.

3.  The conditions of applications of Yukawa potential in fluid OCP plasmas

In order to obtain the equation (2), the condition of linearization must be satisfied,
i.e. the distance » must be greater than a certain value rpy for each I'. According to [5],

. Iy e T
we can use the criterion: ¢ =— =
2r 2r

other hand, for each value of I', with <7, ,

<1 to evaluate this linearization. On the

the screening potential H(r) must have
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the form of a polynomial whose degree is pair and the coefficient of #* is h = %, as

demonstrated in [10, 14]:
H(r)y=hy—hr’ +hr' —hg® +... (©6)

We see that the functions (5) and (6) must satisfy the continuity condition at point
rpy for each value of I, that means:

khi r>r,,
H(r)= d (7)
D (=D'hr* khi r<r,,
i=0
4. Determine the Widom polynomial coefficients
The data concerning the coefficient 4, of the polynomial (6) have been the subject
of many discussions for its important role in the enhancement of the pycnonuclear
reaction rate in some stellar objects with great mass density as white dwarfs, neutron

stars,... (See, for example, [3, 9, 12]). The latest MC simulations implemented by A. I.
Chugunov et al [2] supply the value of 4, in a analytic form:

oA A BU BT ®)
b J4,+T 14T ) B+ B +T"

with:

A =2,7822, A, =98,34, 4, =~[3—4/[4, =1,4515,

B, =-1,7476, B, =66,07, B, =1,12,va B, =65.

One of the characteristics of this expression is one can obtain the asymptotic form
hocry = V3" with small values of T'. We recognize that the value of 4, of those two

expressions coincide (with errors 0.3%) from I" <0.0032, i.e. for very fluid plasma.

In opposition to the MC simulations that give us the relatively exact of the radial
distribution function for the dense plasmas, the HyperNetted Chain (HNC) calculations
are more reliable for the fluid OCP systems [11]. An elaborate study of the MC and
HNC data [1, 4, 13] show that for not too important magnitude of the coupling
parameter: I' <10, we can write the Widom polynomial of degree eight with the error
about 0.2%, equivalent to that of MC simulations, that means we accept:

H(r)=h —lr2+hr4—hr6+hr8—i(—l)ihrzi 9)

— " 4 2 3 4 - P i :

as the expression for the screening potential for enough small interionic distances.
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By optimizing the accordance between the polynomial (9) and the MC as well as
the HNC data given by [1, 4, 13], one gets all the numerical values of the coefficients /;
in (9). Especially, the numerical value of 4, presented in Table 1, can be expressed in a
analytic form:

5
h0=g+;ailni(l+l“) (10)
with the coefficients a; given by:
a,=0,031980; a, =0,232300; a, =-0,084350;
a,=0,011710; a, =-0,000579.
The error between (8) and (10) is shown in Table 1. We notice that those both
expressions give: }_lilg hy = V3T as we can see on the Figure 2.

Table 1. Numerical values of A4, in function of I'. The values of h, directly
obtained from the optimization the accordance between (6) and MC and HNC data,
and computed from (9) are shown in the second and third columns. In the fourth

column, we have the values of hy according to Chugunov et al [2].

r hovc ho hocru (3)-(2) 4 -@2) 3)-@
2) (€)) “4)

0,1 0,5150 0,5030 0,5050 -0,0120 -0,0100 -0,0020
0,2 0,6615 0,6589 0,6645 -0,0029 0,0030 -0,0059
0,5 0,8741 0,8623 0,8776 -0,0118 0,0035 -0,0152
1 0,9586 0,9743 0,9958 0,0157 0,0372 -0,0215
3,1748 1,0570 1,0586 1,0788 0,0016 0,0218 -0,0201
5 1,0780 1,0735 1,0922 -0,0045 0,0142 -0,0187
10 1,0920 1,0888 1,1007 -0,0032 0,0087 -0,0119
20 1,0910 1,0940 1,0950 0,0030 0,0040 -0,0010
40 1,0860 1,0882 1,0878 0,0022 0,0018 0,0004
80 1,0810 1,0782 1,0804 -0,0028 -0,0006 -0,0022
160 1,0750 1,0757 1,0737 0,0007 -0,0013 0,0020
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Figure 1. The solid line expresses the formula (10) compared
with the dashed line for (8). The circles are values directly
acquired from optimizing the agreement between (7) and MC and
HNC data.

Figure 2. The solid line expresses (10). The circles are MC and
HNC values given in Table 1. The dashed line is the asymptotic

behavior \/f .
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We can notice that another expression for 4, is also proposed for dense plasmas in
[6]. However, the formula (10) satisfies the particular conditions for the fluid plasmas
we shall need for the use of the Yukawa potential for this category of plasmas.

The method mentioned above give us at the same time the numerical values for
the other coefficients 4,, &3, and A, as seen in Table 2.

Table 2. Numerical values of the coefficients in the Widom polynomial (9).

r h, h; hy
0,1 0,285915 0,155198 0,0298883
0,2 0,184492 0,077716 0,0122415
0.5 0,074081 0,0127690 0,00088438
1 0,051772 0,0062949 0,00033008
2 0,040241 0,0032605 0,00009693
3,174802 0,035570 0,0020166 0,00000154

All the numerical values of these coefficients can be found by the general analytic

expression:

5
h=>b(nl)" ;i=2,3,4
k=0

Table 3. The coefficients in the formula (11) computing h;.

(11)

with values of b, shown in Table 3. A study of the variation of 4; in function of I
demonstrates that their behavior is uniformly decreasing without any unusual point.

I, h, h,
by 0,05177 0,006295 0,0003301
b, -0,01518 -0,0004388 0,0005552
b, 0,007324 0,0004114 -0,0002833
b, -0,02167 -0,01502 -0,002602
by 0,008098 0,006594 0,001285
bs 0,005127 0,003445 0,0005493

With the numerical values obtained from the formulae (10) and (11), we can

compute the function of screening potential (9) and from that point, return to evaluate
the radial distribution function g(r). The comparison of this with the MC and HNC
results is given on Figure 3 for some values of I'. The data concerning ['=2 are
quoted from [8]. We notice on the Figure 3 that the errors between the proposed

15
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analytical formulae and the simulation data are about some thousandths, equivalent to

that of MC results.

* 10"
5 x 10 : : 20 X

Figure 3. Errors g(r)-guc(r) or g(r)-gunc(r) between the radial distribution function g(r)
deduced from (10) and (11) and MC or HNC data for each value of I

5.  Limit rpy for each value of coupling parameter

When one accepts that the D-H potential can only be used from interionic
distance rpy for each I', the continuity conditions (7) will be applied for the amplitude
of the functions:

1- eirDH\/S_r 8 6 4 2
=————=hrpy — Wiy + oty =i +hy (12)

DH

H(r)

I'=I'py

16
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to find those values rpy. An example is given on the Figure 4a and 4b for ' =0,5: We see
that only from points with 7 > 7, =2,01509, an expression of the form (5) can be
consistent to the numerical data offered by HNC method. This remark shows that for

the distance smaller than 7, =2,01509, D-H potential is not suitable to describe the
screening effect

The common results of 7py for each value of I' are presented on Table 4, which
show more clearly the limit of application of D-H theory.

005 ‘l
0.48
0.46

0.44

0.42

1.9 2 2.1 2.2

Figure 4b. At the point whose abscissa is
2,01509, two line representing H(r) and
Hpp(r) intersect and have almost the same
slope.

0 0.5 1 1.5 2 2.5 3 3.5

Figure 4a. From the points whose abscissa is
smaller than 2,01509, the D-H potential (dash
line) must be replaced by the Widom expansion
(solid line). The circles are HNC data.
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Table 4. The numerical value of the joint points between the D-H potential and

Widom polynomial.
r FpH
0,1 1,29072
0,2 1,40899
0,5 2,01509
1 2,09863
2 2,12295

The numerical values on Table 4 can be expressed by analytic function:
oy =1,6940,3059arctan(3,394In1" +4,156). (13)

In order to see more [ further] the importance of the Widom polynomial in
representing the screening potential, we can observe on the Figure 5 the variation of
rpy With respect to I' according to (13): The value of rpy increasing in function of "
shows that the Yukawa potential expresses accurately the screening effect only for
fluid plasmas and, and even then, this form of potential can be applied only with large
enough distances 7.

The expression (13) presented above has a simpler form, more easily applied than
the one proposed in [5], while the maximum error between them is only about 9% for

r=0,1.

FpH

Figure 5. The variation of rpn with respect to 1. We
see that the influence of the Yukawa potential
decreases when the plasmas are denser.

It is interesting to notice that apart from the condition (12) expressing the
continuity of the amplitude, one should verify the continuity of the slope of the two
functions (5) and (9) as well as insure they have the same concavity at the joint point
'DH, ie.:

18
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The more concrete calculations show that the first and second derivatives for each
value of I of the two functions (5) and (9) at the point » =7, have the same values

with very small errors (the maximum error is about 10" ). This affirms the accuracy of
the numerical values of 7p; on the Table 4 and of the expression (13).

6. Conclusion

We consider in detail the D-H potential, a special case of Yukawa potential,
applied to the fluid OCP system and mention the conditions for the application of this
theory.

After an elaborate study of the MC and HNC data as well as of the newest
publications, we perform the numerical calculations and suggest the formula (13) for
the limit distance of application of the D-H potential indicating that for each value of
the parameter I, at the interionic distances smaller than this limit, this form of potential
should be replaced by a Widom polynomial of degree eight (9) with the coefficients
also expressed by the analytic formulae (10) and (11). The results obtained from the
proposed expressions have also been compared with the numerical data for the
distribution function g(r); the discrepancy between those two values is conform to the
expected exactitude.

In the following works, we will especially consider the short-range order effect in
the various plasmas, that is the onset of damped oscillations of the distribution
function, and then, to study the apparition of this effect in function of the coupling
parameter I'. At the same time, we will focus on the determination of the value of I for
which the Yukawa potential can accurately express the screening potential in plasmas.
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