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THE FK OPERATOR METHOD FOR TWO-DIMENSIONAL
SEXTIC DOUBLE WELL OSCILLATOR

HOANG DO NGOC TRAM'

ABSTRACT
The FK operator method is used for solving the Schrddinger equation of a two
dimensional sextic double well oscillator. We obtain the exact numerical energies for any
quantum states with the precision of up to six decimal places. The FORTRAN program for
automatically calculating the solutions is made and tested for the states of the principal
quantum number up to hundreds.
Keywords: operator method, Schrédinger equation, energy, sextic double well
oscillator.
TOM TAT
Phwong phép toan ti FK cho dao dgng ti dang hé thé doi
Vi s6 hang phi diéu hda bic sdu hai chiéu
Phuong phdp todn tir FK dwge sir dung dé giai phirong trinh Schrodinger cho dao
dong tir dang hé thé déi véi sé hang phi diéu hda bdc sdu hai chiéu. Chung t6i thu dwoc
nghiém $6 cho bai 10an Véi do chinh xdc dén sau chir s6 thap phdn cho trang thdai luong tie
bdt ki va gid tri bdt ki ciia tan sé dao déng. Chuong trinh tinh toan tu déng trén ngbn ngi
Idp trinh FORTRAN duoc xdy dung va dwroc kiém chung cho cac trang thai co 56 luwong tr
chinh 1én dén hang tram.
Tar khéa: phuong phap toan tir, phuong trinh Schrodinger, nang lwong, dao dong tir
hé thé doi bac sau.

1. Introduction

The anharmonic oscillator is one of the simplest quantum models which finds
extensive application in various areas of physicsas well as chemistry: atomic and
molecular physics, quantum chemistry, condensed matter physics, particle physics,
statistical physics, quantum field theory and cosmology. However, solutions of the
above problems cannot be found using exact calculation methods. Hence, developing
approximate calculation methods for these systems interests many physicists [4].
Among anharmonic oscillator models, the double well oscillator, obtained by changing
the harmonic term 1 w’x? into —1w’x?, can be used for modeling of two-state systems,

such as the interpretation of the infrared spectra of the NH; molecule, infrared and
Raman spectra of the hydrogen-bonded systems, inversion characteristics of isomers,
structural phase transitions, polarizability of perovskite ferroelectrics, formation of
noble-gas monolayers on a graphite substrate, macroscopic quantum coherence in
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superconducting Josephson devices, switching and storage devices in computers, and
so on [1, 3, 10]. Various methods have been applied for finding the energy of the
system in the case of one-dimensional space [2, 3, 9, 10]. In addition, the work [3]
showed an interesting point that the exact analytical solutions exist for the case of one-
dimensional sextic double well oscillator in some constrained conditions. For the case
of higher dimensional spaces, the less attention has been given because of the presence
of angular-momentum states that make the problem more complicated [2].

The FK operator method (FK-OM) [5, 6] is an ab initio method for solving the
Schrodinger equation of non-perturbative systems. It allows to obtain exact numerical
solutions (energies and wave-functions) for systems with arbitrary intensity of external
field. This method was development successfully for various systems in atomic
physics, condense matter physics, field theory, and so on [6-8].

In this work, we apply the FK-OM to solving the Schrédinger equation of a two-
dimensional sextic double well oscillator (2D-SDWO) in order to obtain the exact
numerical solutions. These results are also the base for the follow-up research to find if
the problem has exact analytical solutions similarly to the case one-dimensional space,
and if have, what conditions it must satisfy to have these solutions.

The paper is divided into three main sections. In section 2 we present the FK-OM
and apply the method to the problem of 2D-SDWO. Section 3 is for the obtained results
and discussion. Section 4 concludes the paper.

2. FKoperator method for two-dimensional sextic double well oscillator

The 2D-SDWO potential has the form:

V(xy)=—""

2

Oy + 04y, &
2 8

in which the harmonic term is negative —mw?/2<0; here m, ® and A are the mass,

the oscillation frequency and the coefficient of sextic anharmonic term of the 2D-
SDWO, respectively.

For convenience, the dimensionless Schrodinger equation has been used:

1 o’ 2 o, 1,2 2\3 _
{—EAWT(X )+ (¢ +Y) }‘P(x,y)_E‘P(x,y), @

in which the units of mass, energy and frequency are &#2/Am, ¥in°/m* and
YAn® Im® | respectively.

We will apply the FK-OM with four basic steps to obtain the exact numerical
solution for the problem as follows: (1) rewrite the Schrddinger equation in the
algebraic representation of the two-dimensional Dirac creation and annihilation
operators. Note that the considered system is two-dimensional on the surface Oxy, so
the projectile of angular momentum on the axis Oz is conservative. Hence, we will use
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such new creation and annihilation operators that the operator I; is diagonalized; (2)

use the idea of the perturbation theory to find the zero-order approximate solutions, in
which the Hamiltonian is divided into two parts. The main part contains only the terms
of neutral operators which have the same number of creation and annihilation
operators. The eigen-functions of this part are those of harmonic oscillator. The rest
terms belong to the perturbative part; (3) establish the basic set of eigen-functions in
the form of the wave-functions of the two-dimensional harmonic oscillator. This set is

also the wave-function of L, because the creation and annihilation operators are chosen

in order that this operator is diagonalized. Note that in step (1), we put a free parameter
a into the creation and annihilation operators. So the two divided parts of the
Hamiltonian depend on the value of « but the total Hamiltonian does not, which helps
to regulate the rate of convergence of the method via choosing appropriate value of « ;
(4) Use the perturbation theory schemes to obtain exact numerical solutions. The
calculation results will be presented in bellows.

First, we will transform the Schrédinger equation (2) into the algebraic form. We
use the two-dimensional Dirac creation and annihilation operators defined as follows:

A a 10 ~r a 10
a=,—| X+——— y a =,[—| X——— ,
2 a OX 2 a OX

5_\/2 1o Go_ fef, 12
_Zyaay’ _Zyaﬁy'

in which « is a free parameter. These operators satisfy the following commutative
relation:

[a,a+]:[6,6+]=1, (4)

other commutators equal zero.

©)

The projectile of angular momentum on Oz-axis has the form:
L, =-i x2_y 2| li@ah-ap). (5)
oy ~ oXx
For diagonalizing this operator, we choose new creation and annihilation
operators so that I; can be rewritten under the form of neutral operator:

~ 1 ,.. .~ ~ 1 . .~
0" =——=(a" +ib*), U=——=(a-ib),

R aepth

. . (6)
Vi=—(a"-ib"), v=—=(a+ib

\/5( ) 2( )
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These new operators also satisfy the commutative relations similar to the formula

4):
[ﬁ,ﬁ*]z[\?,\?*]:l. @)

Now, the projectile of the angular momentum on Oz-axis can be rewritten as
follow:

[ =G'G-0'. ©)

Thus, we obtain the Hamiltonian in algebraic representation of creation and
annihilation operators (6):

A== (N )2 (N0 )L (0 i) ©)
in which M*=2G"0", N=20"0+20"V+2 and M =20V. These operators are the
elements of a closed algebra with the commutative relations as follows:

[V,K]=am, [W,Ni*]=28, [K,M*]=ani", (10)
which are the tools for latter algebraic calculation.

Next, we will establish an orthogonal basic set of wave function for calculation of
matrix element of Hamiltonian. The eigen-functions of two-dimensional harmonic
oscillator will be used:

1 A\ A\
|”1’n2>=m(“ ) (V)

in which |O(a)> is vacuum state defined as follows:

0(a)), (11)

(]0(a)) =0, V|0())=0, (0(a)|0(ex))=1. (12)

The wave-functions (11) are also the eigen-functions of the angular momentum
I:Z with the eigen-value m which is the quantum magnetic number:

L,|n,n,)=m|n,n,), (m=0,£1,%2,..). (13)

For convenience, we use two basic sets of wave function depending on the value
of m as follows:

- For m>0: we use two quantum numbers m and n=n,, then the wave functions
(11) become:

nm)=——— (@) " (o)

n!(n+|m|)!

0(a)), (14)
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- For m<0: we use two quantum numbers m and n = n,, then the wave functions
(11) become:

)= () (7)""

n!(n+|m|)!

0(a)), (15)

inwhich n=0,1,2,..;jm/=0,1,2,....

For further calculation, we use the following action formulae:

l\7|*|n,m>=2\/(n+1)(n+|m|+1)|n+1, m),
M |n,m) =2,/n(n+|m[) |n—1,m), (16)
N |n,m) =2(2n+|m|+1)|n,m).

Finally, we obtain the non-zero matrix elements of Hamiltonian for calculation
the exact numerical solutions as follows:

HI = (2n+|m|+1){a2 —o”

1
+8a—3[6n(n+|m|)+(2n +|m|+2)(2n +|m|+3)]},

m 3 2 2
e =[g[n(nﬂmb+(2n+|m|+2)(2n +|m[+3) |- = ZJ;(O j\/(n +1)(n+|m|+1),

a2 =8—33(2n+|m|+3)\/(n +)(n+|m[+1)(n+2)(n+|m|+2), (17)
o

HM =i3\/(n +1)(n+|m|+2)(n+2)(n+|m|+2)(n +3)(n +|m|+3).
' 8a

The other non-zero matrix elements can be deduced based on the symmetric
property: H" . =H"

n,n+s n+s,n *
3. Results and analysis

The computational program in FORTRAN 90 permits to obtain exact numerical
energies and wave-functions of 2D-SDWO for any state and any oscillation frequency.
This program is tested for the quantum number of up to 500. Some results are shown in
the Table 1 with the precision of up to six decimal places. For this problem, the
convergence zone of the free parameter « are rather wide. The precision of obtained
solutions can be increased if the value of this parameter is investigated more carefully
as in the work [7, 8]. The program with these improvements will be published in the
journals specified for publishing codes.
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Table 1. The energies of 2D-SDWO in different states and with different values of
oscillation frequency. The energies in bold text are predicted the exact analytical solutions
of the problem

n m=0, o=2 m=0, o=+/5 Im/=3, w=3 |[m[ =100, @ =100.
0 -1.414214E+00 -2.000000E+00 -6.000000E+00 -3.847569E+05
1 1.414214E+00 2.000000E+00 3.521549E-07 -3.845569E+05
2 5.315649E+00 6.605241E+00 6.000000E+00 -3.843569E+05
3 1.052921E+01 1.223973E+01 1.246183E+01 -3.841570E+05
4 1.675396E+01 1.880020E+01 1.958590E+01 -3.839571E+05
5 2.384386E+01 2.617903E+01 2.739994E+01 -3.837572E+05
6 3.170412E+01 3.429697E+01 3.587924E+01 -3.835574E+05
7 4.026593E+01 4.309356E+01 4.498910E+01 -3.833576E+05
8 4.947621E+01 5.252089E+01 5.469567E+01 -3.831578E+05
9 5.929236E+01 6.253985E+01 6.496834E+01 -3.829580E+05
10 6.967924E+01 7.311776E+01 7.577999E+01 -3.827583E+05
11 8.060717E+01 8.422677E+01 8.710661E+01 -3.825586E+05
12 9.205067E+01 9.584280E+01 9.892689E+01 -3.823589E+05
13 1.039876E+02 1.079448E+02 1.112218E+02 -3.821593E+05
14 1.163983E+02 1.205140E+02 1.239744E+02 -3.819597E+05
15 1.292654E+02 1.335338E+02 1.371691E+02 -3.817601E+05
16 1.425733E+02 1.469892E+02 1.507920E+02 -3.815606E+05
17 1.563079E+02 1.608665E+02 1.648303E+02 -3.813610E+05
18 1.704564E+02 1.751533E+02 1.792723E+02 -3.811615E+05
19 1.850070E+02 1.898383E+02 1.941071E+02 -3.809621E+05
20 1.999488E+02 2.049110E+02 2.093248E+02 -3.807626E+05

In the work [3] for the problem in one-dimensional space, the authors showed that
the states which correspond to the case of exact analytical solutions have the same
values of energies with the opposite signs +E. In the results given above, the energies
printed in bold text are also in the form of +E. In addition, these values compose a
mathematical beauty. For examples, the case m=0, o =2, and n=0,1 corresponding

to the energy E =+1.414214=+/2; the case m=0, =5, and n=0,1
corresponding to the energy E =+2.0; and the case |m[=3, ®=3, and n=0,2

corresponding to the energy E =+6.0. Hence, we predict that these states are also
corresponding to the exact analytical energies of the 2D-SDWO. This prediction will
be confirmed in the follow-up research.
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4. Conclusion

In this work, using the FK-OM, the exact numerical solutions for the 2D-SDWO
are obtained with the precision of up to six decimal places for any state and any value
of oscillation frequency. The program can be upgraded to reach higher precision
results. Some results under the form of +E are expected being the exact analytical of
the problem, which need further research.
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