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THE STRUCTURE OF CONNES’ C* - ALGEBRAS
ASSOCIATED TO A SUBCLASS OF MDs—- GROUPS
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ABSTRACT

The paper is a continuation of the authors’ works [18], [19]. In [18], we consider
foliations formed by the maximal dimensional K-orbits (MDs-foliations) of connected
MDs-groups that their Lie algebras have 4-dimensional commutative derived ideals and
give a topological classification of the considered foliations. In [19], we study K-theory of
the leaf space of some of these MDs-foliations, analytically describe and characterize the
Connes’ C*-algebras of the considered foliations by the method of K-functors. In this
paper, we consider the similar problem for all remains of these MDs-foliations.
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TOM TAT
Cdu triic cdc C* — dgi s6 Connes lién két véi mét I6p con cdc MDs— nhom

Bai b&o nay la cong trinh tiép noi hai bai bao [18], [19] ciia cdc tic gia. Trong [18],
chiing toi da xét cac phan la tao thanh boi cac K — quy dao chiéu cuc dai (cdic MDs - phan
1a) cua cic MDs — nhom lién théng ma cdc dai so Lie cia ching c6 ideal dan xudt giao
hoan 4 chiéu va dwa ra mét phan loai t6 pé tat ca cac MDs— phan la dwoc xét. Trong [19],
chung toi da nghién ciu K — ly thuyet doi voi khong gian la ciia mét vai MDs — phan la
trong so do, mo ta giai tich dong thoi dac trung cac C* — dai so Cia Connes lién ket voi
mét so phan la dé bang phuwong phip K — ham tir. Trong bai nay, ching t6i xét bai toan
twong tw doi voi tat ca cac MDs— phan 14 con lgi.

Tir khéa: Nhom Lie, Pai s6 Lie, MD5-nhém, MD5-dai s6, K-quy dao, Phan 14, Phan
la do dugc, C*-dai s0, C*-dai so Connes lién két v&i mot phan 1a do duogc.

1. Introduction

In the years of 1970s-1980s, the works of Diep [4], Rosenberg [10], Kasparov
[7], Son and Viet [12], ... showed that K-functors are well adapted to characterize a
large class of group C*-algebras. In 1982, studying foliated manifolds, Connes [3]
introduced the notion of C*-algebra associated to a measured foliation. Once again, the
method of K-functors has been proved as very effective in describing the structure of
Connes’ C*-algebras in the case of Reeb foliations (see Torpe [14]).
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Kirillov’s method of orbits (see [8, Section 15]) allows to find out the class of Lie
groups MD, for which the group C*-algebras can be characterized by means of suitable
K- functors (see [5]). Moreover, for every MD-group G, the family of K- orbits of
maximal dimension forms a measured foliation in terms of Connes (see [3, Section 2,
5]). This foliation is called MD-foliation associated to G. Recall that an MD-group of
dimension n (for short, an MD,-group), in terms of Diep, is an n-dimensional solvable
real Lie group whose orbits in the co-adjoining representation (i.e., the K-
representation) are the orbits of zero or maximal dimension. The Lie algebra of an
MD,-group is called an MD,-algebra (see [5, Section 4.1]).

Combining methods of Kirillov and Connes, the first author studied MD,-
foliations associated with all indecomposable connected MD,4-groups in [16]. Recently,
Vu and Shum [17] have classified, up to isomorphism, all the 5-dimensional MD-
algebras having commutative derived ideals.

In [18], we have given a topological classification of MDs-foliations associated to
the indecomposable connected and simply connected MDs-groups, such that MDs-
algebras of them have 4-dimensional commutative derived ideals. There are exactly 3
topological types of considered MDs-foliations which are denoted by F;, F,, Fs. All
MDs-foliations of type F; are the trivial fibrations with connected fibre on 3-
dimensional sphere S*, so Connes’ C*-algebras C*( F,) of them are isomorphic to the

C*-algebra C(83)®K following [3, Section 5], where K denotes the C*-algebra of
compact operators on an (infinite dimensional separable) Hilbert space.

In [19], we study K-theory of the leaf space and to characterize the structure of
Connes’ C*-algebra C*(F,) of all MDs-foliations of type F, by method of K-functors.
The purpose of this paper is to study the similar problem for all MDs-foliations of type
Fs. Namely, we will express C*(F;) for all MDs-foliations of type F; by a single
extension of the form

05 Cy(X)®K »>C*(F,)>C,(Y)®K >0,
then we will compute the invariant system of C*(F3) with respect to this extension.
Note that if the given C*-algebra is isomorphic to the reduced crossed product of the
form C,(V)XH , where H is a Lie group, then we can use the Thom-Connes
isomorphism to compute the connecting map &, 9.

2.  The MDs-foliations of type F;

Originally, we recall geometry of K-orbits of MDs-groups which associate with
MDs-foliations of type F; (see [17]).

In this section, G will be always one of connected and simply connected MDs-
groups 65'4'14(,1'#'4,) which are studied in [17] and [18]. Then, the Lie algebra G of G

will be the one of the Lie algebras G5,4,14 (.u0) (see [17] or [18]). Namely, G is the
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Lie algebra generated by {X0 X, Xg, Xy, X} With
G'=[G,G]=0 X, ®1.X,®1 X, @1 X, =" and ad, End(G!)=Mat, (1) as
follows

cosp —sing 0 O
_|sinp cosp O O |
ad, = 0 0 PR Auel, u>0,pe(0,7).
0 0 HoA

We now recall the geometric description of the K-orbits of G in the dual space G*
of G. Let {X;,X;,X;,X;, X} be the basis in G* dual to the basis {X,,X,, X;, X,, X;}

in G. Denote by Q. the K-orbit of G including F=(a,B+iy,8+ic) in
G =l x[ x0 =05,
- If B+iy=6+ic =0 then Q_ ={F} (the O-dimension orbit),

- If B+ i;/|2 +|6+ ia|2 #0 then Q_ is the 2-dimension orbit as follows
Q. :{(x,(,B+i;/).e(a'e_w),(5+ia).ea“i”)), X,ael] }

In [18], we show that, the family F of maximal-dimension K-orbits of G forms
measure foliation in terms of Connes on the open sub-manifold

V :{(x, y,2,t,5)e G ry? + 22 17+ ;tO};D x(D 4)* .

Furthermore, all the foliations{(v,FSAVMWVM), Auell ,u>0,(oe(0;7r)}, are

topologically equivalent to each other and we denote them by F; . So we only choose a
“envoy” among them to describe the structure of C*(F;) by K-functors. In this case, we

ey

In [18], we also describe the foliation [V,F

choose the foliation [V F

5,4,14[0,1,5]
2

] by suitable action of 0.

Namely, we have the following assertion.

Proposition 2.1. The foliation [V,F } can be given by an action of the

5,4,14[0,1,5]
2

commutative Lie group [ * on the manifold V.
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Proof. One needs only to verify that the foliation [V,F [ ”]} iS given by the action
5,414 0,1,5

A:02xV > VofJ?onV as follows
A ((r,a),(x,y +iz,t+ IS)) T = (X“‘r,(y-i'iZ).e_ia,(t—i-iS).e"ia),

where  (r,a)el? and (x,y+izt+is)eV =0 x(0 x0) =0 x(O 4)*. Hereafter, for

o)

It is easy to see that the graph of F is identified with V x[] 2, so by [3, Section 5],
it follows from Proposition 2.1 that

Corollary 2.2. (Analytical description of C*(F3)) The Connes’ C*-algebra C*(F3) can
be analytically described by the reduced crossed product of C, (V) by [ * as follows

simply, we write F; instead of [V,F

C*(F3)=C, (V)X ,0°%.
. C*(F3) as a single extension
3.1. LetV,, W, be the following sub-manifolds of V
V, ={(x, y+iz,t+is)eV it+is =0} =0 x x[ 7,
W, =V \V, :{(x,y+iz,t+is)ev :t+is:0} =[] x[]".
It is easy to see that the action A in Proposition 2.1 preserves the subsets V,, W, .
Let i, u be the inclusion and the restriction
i:Cy(V,)>Cy(V), p:Cy(V)—Cy(W,).
where each function of C,(V,) is extended to the one of C, (V) by taking the value of
zero outside V.

It is known a fact that i, x4 are A- equivariant and the following sequence is
equivariantly exact:

(3.1) 0——C,y (V) ——>C, (V)—£>C, (W, )—0.

3.2. Now we denote by (V,,F,), (W,,F,) restrictions of the foliations F; on V,, W,,
respectively.
Theorem 3.1. C*( F3) admits the following canonical extension

(%) 0——J —>C*(F,)—“>B—0,
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where J=C*(V1,F1)ECO(V1)>41DZECO(D x[J +)®K,
B=C"(W,F,)=C,(W,)x,0%2=C,(J,)®K,
C*(F,)=C, (V) X,0 2.

and the homomorphism i, i is defined by

(if)(r,s):if(r,s), (sz)(r,s):yf(r,s),

Proof. Note that the graph of F; is identified with V x[1?, so by [3, section 5], we have:
J=C"(V,F)=C,y(V,) X ,0°2,
B=C"(W,F,)=C,(W,) X ,0°2.

From A-equivariantly exact sequence in 3.1 and by [2, Lemma 1.1] we obtain the
single extension (y,). Furthermore, the foliations (V,,F,) and (W,,F,) can be come
from the submersions

p:VaOxOx0">0x0, andq :W=0x0" -0,
(x,re”,r'e” )i (re,r') (x,re”)>r
Hence, by a result of [3, p.562], we get
J=C"(V,F,)=Co (V) x,02=C,(0x0,)®K,
B=C (W,F,)=Cy(W,)x,0%=C,(0,)®K.
4.  Computing the invariant system of C*(F3)

Definition 4.1. The set of element {y,} corresponding to the single extension (y,) in

the Kasparov group Ext(B, J) is called the system of invariant of C*(F3) and denoted
by Index C*(F,).

Remark 4.2. Index C*(F;) determines the so-called table type of C*(F;) in the set
of all single extension

0—J—E——>B—0.

The main result of the paper is the following
Theorem 4.3. Index C*(F;)={y,}, where

7, =(0,1) in the group Ext(B,J)=Hom(U,[ )® Hom(U,0).
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To prove this theorem, we need some lemmas as follows
Lemma4.4. Set |=C,(0°xS") and A=C(S").

The following diagram is commutative

= K(1) — K(C(8*)) —> K (A) —> K

2 s, s m

K (Cy (V) =K (Cy (V) — K, (Cy (W,))— K,

l

where g, is the Bott isomorphism, jel /21 .
Proof. Let

k:Cy(D?xS")——>C(S%), viC(s*)—C(s!).
be the inclusion and restriction defined similarly as in 3.1.

One gets the exact sequence

0— 1 —C(s°)——>A—0.

Note that

Cy (Vi) =Cy (0 <0 ,)®C, (0°x81)=Cy (U < ,)®1

Cy(V)=Cy(D %0, xS%)=C, (I xU,)®C(S?)

Cy(W,)=C,y (0 x1,)®C(S")=Cy (U x,)®A

So, the extension (3.1) can be identified to the following one

0 Cy(0, x0)®1—1%5C, (0, x0 )®C(S*)—125C, (I, x0 )® A0,

So, the assertion of lemma is derived from the naturalness of Bott isomorphism.
Remark 4.5.

i) K (Co(07%8")) =K, (Cy(8Y)) =00, jel /21
ii) K;(C(s%))=0, jen/an.
iii) KO(C(SI));D is generated by ¢,5,[1], Kl(C(Sl));D is generated
by ¢,,[1d] (where 1 is a unit element in C(Sl); ¢;, jell 120, is the Thom-Connes
isomorphism; Id is the identity of S*).

Proof of Theorem 4.3. Recall that the extension (y,) in theorem 3.1 gives the rise to a
six-term exact sequence
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Ko (J)—— K, (C*(F,))— K, (B)
(4.1) 51T %50
K, (B)«—K, (C*(F,))«—K,(J

By [11, Theorem 4.14], the isomorphism

Ext(B,J) = Hom, (K, (B),K,(J))®Hom, (K,(B),K,(J))
associates the invariant y, e Ext(B, J) to the pair

(8,:6,) € Hom, (K, (B),K,(J))®Hom, (K,(B),K,(J)).

Since the Thom-Connes isomorphism commutes with K-theoretical exact sequence
(see [14, Lemma 3.4.3]), we have the following commutative diagram (jel /20 ):

.— K;(J) — K;(C*(F;))—K,;(B) —> K,

j+l

j P, Q; T‘PM

J)—>...

K (Cy (V) — K (Co (V) — K (Co (W) — K 4 (Co (Vy))—— .
In view of Lemma 4.4, the following diagram is commutative
K (Cy (V) — K (Co (V) — K (Cy (W) — K 1 (Co (V) ——> .

{2 15, T8, 2

— K (1) —> K{(C(8%)) —> K (A) —> K,

(1) —.

Consequently, instead of computing the pair (5,,6,) from the direct sum
Hom (K,(B),K,(J))®Hom (K, (B),K,(J)), it is sufficient to compute the pair

(8,:6,) e Hom_ (K, (A), K, (1))@®Hom, (K, (A),K,(1)). In other words, the six-
term exact sequence (4.1) can be identified with the following one

Ko (Co (0 2x5*))——Ky(C(5?))—— K, (C(8Y))
(4.2) 51T 0,

K, (C(8"))¢—K, (C(8°))e—K,(C, (1 ?x8"))
By remark 3.5, this sequence becomes

0 — [ —> [

(4.3) (ﬁ lao

U «—0U «—10
By the exactness, the sequence (4.3) will be the one of the following ones
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0 1
> [J >

0 0
51=1T la():o
0 0

0 1
< [l <

or [ s —%5 ]

51=0T iéoz
0

1 0
< [ < [

Now we choose a =e€" eGLi(C(Sl)), b=a™". Then

a@bz{e: egw}eGLg(C(Sl)).

Letu = u(x,Y,z,t)=u(cos6,cosd,cose,cos s, cosb,sinp,cos6,sinb,,sinb,)

ip Ai6; e
_|e .e. .cos 0, ] ilene2 eGL‘;(C(SS))
sing, e ”.e"".cosb,

e e cosf,  sind,
—siné, ee" cos@, |

is a pre-image of a®b. So, U™ ={
10
Letq=1,®0, = . We get
q 1 1 |:O O:| g

cos? 6 e cos@ sing +
=uqut=| . 2 2 2eP [12x&t
b=t [e"‘”e"al 0086, siné, sin 4, } G S)

Then rank (p) = 1. Sos,([a])=[p]-[l,]#0e KO(CO(Dszl)). Therefore, K-

theoretical exact sequence associate to (y,) is

0 250 250

51=1T laozo

0«20 «*-0
The proof is completed.
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