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THE STRUCTURE OF CONNES’ C* – ALGEBRAS 
ASSOCIATED TO A SUBCLASS OF MD5 – GROUPS 

 

LE ANH VU*, DUONG QUANG HOA** 
 

ABSTRACT 
The paper is a continuation of the authors’ works [18], [19]. In [18], we consider 

foliations formed by the maximal dimensional K-orbits (MD5-foliations) of connected 
MD5-groups that their Lie algebras have 4-dimensional commutative derived ideals and 
give a topological classification of the considered foliations. In [19], we study K-theory of 
the leaf space of some of these MD5-foliations, analytically describe and characterize the 
Connes’ C*-algebras of the considered foliations by the method of K-functors. In this 
paper, we consider the similar problem for all remains of these MD5-foliations. 
 Key words: Lie group, Lie algebra, MD5-group, MD5-algebra, K-orbit, Foliation, 
Measured foliation, C*-algebra, Connes’ C*-algebras associated to a measured foliation. 

TÓM TẮT 
Cấu trúc các C* – đại số Connes liên kết với một lớp con các MD5 – nhóm 

 Bài báo này là công trình tiếp nối hai bài báo [18], [19] của các tác giả. Trong [18], 
chúng tôi đã xét các phân lá tạo thành bởi các K – quỹ đạo chiều cực đại (các MD5 – phân 
lá) của các MD5 – nhóm liên thông mà các đại số Lie của chúng có ideal dẫn xuất giao 
hoán 4 chiều và đưa ra một phân loại tô pô tất cả các MD5 – phân lá được xét. Trong [19], 
chúng tôi đã nghiên cứu K – lý thuyết đối với không gian lá của một vài MD5 – phân lá 
trong số đó, mô tả giải tích đồng thời đặc trưng các C* – đại số của Connes liên kết với 
một số phân lá đó bằng phương pháp K – hàm tử. Trong bài này, chúng tôi xét bài toán 
tương tự đối với tất cả các MD5 – phân lá còn lại. 
 Từ khóa: Nhóm Lie, Đại số Lie, MD5-nhóm, MD5-đại số, K-quỹ đạo, Phân lá, Phân 
lá đo được, C*-đại số, C*-đại số Connes liên kết với một phân lá đo được. 
 

1. Introduction 
In the years of 1970s-1980s, the works of Diep [4], Rosenberg [10],  Kasparov 

[7], Son and Viet [12], … showed that K-functors are well adapted to characterize a 
large class of group C*-algebras. In 1982, studying foliated manifolds, Connes [3] 
introduced the notion of C*-algebra associated to a measured foliation. Once again, the 
method of K-functors has been proved as very effective in describing the structure of 
Connes’ C*-algebras in the case of Reeb foliations (see Torpe [14]). 
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Kirillov’s method of orbits (see [8, Section 15]) allows to find out the class of Lie 
groups MD, for which the group C*-algebras can be characterized by means of suitable 
K- functors (see [5]). Moreover, for every MD-group G, the family of K- orbits of 
maximal dimension forms a measured foliation in terms of Connes (see [3, Section 2, 
5]). This foliation is called MD-foliation associated to G. Recall that an MD-group of 
dimension n (for short, an MDn-group), in terms of  Diep, is an n-dimensional solvable 
real Lie group whose orbits in the co-adjoining representation (i.e., the K- 
representation) are the orbits of zero or maximal dimension. The Lie algebra of an 
MDn-group is called an MDn-algebra (see [5, Section 4.1]). 

Combining methods of Kirillov and Connes, the first author studied MD4-
foliations associated with all indecomposable connected MD4-groups in [16]. Recently, 
Vu and Shum [17] have classified, up to isomorphism, all the 5-dimensional MD-
algebras having commutative derived ideals. 

In [18], we have given a topological classification of MD5-foliations associated to 
the indecomposable connected and simply connected MD5-groups, such that MD5-
algebras of them have 4-dimensional commutative derived ideals. There are exactly 3 
topological types of considered MD5-foliations which are denoted by F1, F2, F3. All  
MD5-foliations of type F1 are the trivial fibrations with connected fibre on 3-
dimensional sphere S3, so Connes’ C*-algebras C*( F1) of them are isomorphic to the 
C*-algebra  3C S K  following [3, Section 5], where K denotes the C*-algebra of 
compact operators on an (infinite dimensional separable) Hilbert space.  

In [19], we study K-theory of the leaf space and to characterize the structure of 
Connes’ C*-algebra C*(F2) of all MD5-foliations of type F2 by method of  K-functors. 
The purpose of this paper is to study the similar problem for all MD5-foliations of type 
F3. Namely, we will express C*(F3) for all MD5-foliations of type F3 by a single 
extension of the form 

     0 3 00 * 0C X K C C Y K     F , 

then we will compute the invariant system of C*(F3) with respect to this extension. 
Note that if the given C*-algebra is isomorphic to the reduced crossed product of the 
form  0C V ⋊H , where H is a Lie group, then we can use the Thom-Connes 
isomorphism to compute the connecting map 0 1,    . 

2. The MD5-foliations of type F3  
Originally, we recall geometry of K-orbits of MD5-groups which associate with 

MD5-foliations of type F3 (see [17]). 
In this section, G will be always one of connected and simply connected MD5-

groups 5,4,14( , , ) G     which are studied in [17] and [18]. Then, the Lie algebra G of G 

will be the one of the Lie algebras 5,4,14 ( , ,  )   G (see [17] or [18]). Namely, G is the 
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Lie algebra generated by  1 2 3 4 5, , , ,X X X X X with 

  4
2 3 4 5: , . . . .X X X X     � � � � �1G G G  and    

1 4
1

Xad End Mat  �G  as 
follows 

 
1

cos sin 0 0
sin cos 0 0

: ;    , , 0, 0, .
0 0
0 0

Xad

 
 

    
 
 

 
 
    
 
 
 

�  

We now recall the geometric description of the K-orbits of G in the dual space G* 
of G. Let  * * * * *

1 2 3 4 5, , , ,X X X X X  be the basis in G* dual to the basis  1 2 3 4 5, , , ,X X X X X  

in G. Denote by F  the K-orbit of G including  , ,F i i        in 
* 5   � � � �G . 

- If 0i i        then  F F   (the 0-dimension orbit), 

- If 2 2 0i i        then F  is the 2-dimension orbit as follows 

         ., . , . ,  , .
ia e a i

F x i e i e x a


    


    �   

In [18], we show that, the family F of maximal-dimension K-orbits of G forms 
measure foliation in terms of Connes on the open sub-manifold 

    ** 2 2 2 2 4, , , , : 0V x y z t s y z t s       � �G  . 

Furthermore, all the foliations               �5,4,14 , ,, ,  , , 0, 0;V F ,  are 

topologically equivalent to each other and we denote them by F3 . So we only choose a 
“envoy” among them to describe the structure of C*(F3) by K-functors. In this case, we 

choose the foliation
5,4,14 0,1,

2

,V  
 
 

 
  
 

F .  

 In [18], we also describe the foliation 
5,4,14 0,1,

2

,V  
 
 

 
  
 

F  by suitable action of 2� . 

Namely, we have the following assertion. 

Proposition 2.1. The foliation 
5,4,14 0,1,

2

,V  
 
 

 
  
 

F  can be given by an action of the 

commutative Lie group 2�  on the manifold V. 
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Proof. One needs only to verify that the foliation 
5,4,14 0,1,

2

,V  
 
 

 
  
 

F  is given by the action 

  � 2: V V of 2�  on V as follows        

      r a x y iz t is, , , , : =        ia iax r y iz e t is e, . , . , 

where                � � � � � �r a x y iz t is V2 4,  and , , . Hereafter, for 

simply, we write F3 instead of 
5,4,14 0,1,

2

,V  
 
 

 
  
 

F . 

It is easy to see that the graph of F3 is identified with 2V � , so by [3, Section 5], 
it follows from Proposition 2.1 that 
Corollary 2.2. (Analytical description of C*(F3)) The Connes’ C*-algebra C*(F3) can 
be analytically described by the reduced crossed product of  0C V  by 2�  as follows 

C*(F3)  0C V ⋊ 2
 � . 

3. C*(F3) as a single extension 
3.1. Let 1 1,  V W  be the following sub-manifolds of V 

   *
1 , , : 0V x y iz t is V t is        � � � , 

   *
1 1\ , , : 0W V V x y iz t is V t is        � � . 

It is easy to see that the action   in Proposition 2.1 preserves the subsets 1 1,  V W . 
Let ,  i   be the inclusion and the restriction 

   0 1 0:i C V C V ,     0 0 1: C V C W  . 

where each function of   0 1C V  is extended  to the one of  0C V  by taking the value of 
zero outside 1V .  

It is known a fact that ,  i   are - equivariant and the following sequence is 
equivariantly exact: 

(3.1)       0 1 0 0 10 0iC V C V C W    .        

3.2. Now we denote by    1 1 1 1, ,  ,V WF F  restrictions of the foliations F3 on 1 1,  V W , 
respectively. 
 Theorem 3.1. C*( F3) admits the following canonical extension  

    �

1 3              0 * 0iJ C B    


F , 
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where    *
1 1 0 1,J C V C V F ⋊  2

0C K   � � � , 

   *
1 1 0 1,B C W C W F ⋊  2

0C K  � � , 

   3 0*C C VF ⋊ 2
 � . 

and the homomorphism �,  i   is defined by 

     �    , , ,    , ,i f r s if r s f r s f r s   . 

Proof. Note that the graph of F3 is identified with 2V  � , so by [3, section 5], we have:               
    *

1 1 0 1,J C V C V F ⋊ 2
 � , 

   *
1 1 0 1,B C W C W F ⋊ 2

 � . 

From -equivariantly exact sequence in 3.1 and by [2, Lemma 1.1] we obtain the 
single extension  1 . Furthermore, the foliations  1 1,V F  and  1 1,W F  can be come 
from the submersions 

   
*

'

:         and

       , , ' , 'i i i

p V

x re r e re r  

    � � � � �


  

*:

          , i

q W

x re r

  � � �


 

Hence, by a result of [3, p.562], we get 

   *
1 1 0 1,J C V C V F ⋊  2

0C K   � � � , 

   *
1 1 0 1,B C W C W F ⋊  2

0C K  � � . 

4. Computing the invariant system of  3*C F  

Definition 4.1. The set of element  1  corresponding to the single extension  1  in 

the Kasparov group Ext  ,B J  is called the system of invariant of  3*C F  and denoted 

by Index  3*C F . 

Remark 4.2. Index  3*C F  determines the so-called table type of  3*C F  in the set 
of all single extension  

0 0J E B    . 
The main result of the paper is the following 

Theorem 4.3. Index    3 1*C F , where 

 1 0,1   in the group      , , ,Ext B J Hom Hom � � � � . 
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To prove this theorem, we need some lemmas as follows 

Lemma 4.4. Set     2 1 1
0  and  I C S A C S  � . 

The following diagram is commutative 

         3
1...                 ...j j j jK I K C S K A K I      

 
           0 1 0 0 1 1 0 1... ...j j j jK C V K C V K C W K C V      

where 2  is the Bott isomorphism, / 2j� � . 

Proof. Let 

   2 1 3
0:k C S C S � ,     3 1:v C S C S . 

be the inclusion and restriction defined similarly as in 3.1. 
One gets the exact sequence 

 30 0k vI C S A    . 

Note that 

       2 1
0 1 0 0 0C V C C S C I       � � � � �  

       3 3
0 0 0C V C S C C S      � � � �           

       1
0 1 0 0C W C C S C A      � � � �  

So, the extension (3.1) can be identified to the following one 

       3
0 0 00 0Id k Id vC I C C S C A 

           � � � � � � . 

So, the assertion of lemma is derived from the naturalness of Bott isomorphism.  
Remark 4.5. 

i)      2 1 1
0 0 ,  / 2j jK C S K C S j   � � � � . 

ii)   3 ,    / 2jK C S j � � � . 

iii)   1
0K C S  �  is generated by  0 2 1  ,   1

1K C S  �  is generated   

by  1 2 Id   (where 1 is a unit element in  1C S ; ,  / 2j j � � , is the Thom-Connes 

isomorphism; Id is the identity of 1S ). 
Proof of Theorem 4.3. Recall that the extension  1  in theorem 3.1 gives the rise to a 
six-term exact sequence 
 

2
 

2
 

2
 

2
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0  1  

       0 0 3 0*K J K C K B F  

(4.1) 
       1 1 3 1*K B K C K J F                

By [11, Theorem 4.14], the isomorphism  

           0 1 1 0, , ,Ext B J Hom K B K J Hom K B K J � �   

associates the invariant  1 ,Ext B J   to the pair  

           0 1 0 1 1 0, , ,Hom K B K J Hom K B K J   � � . 

Since the Thom-Connes isomorphism commutes with K-theoretical exact sequence 
(see [14, Lemma 3.4.3]), we have the following commutative diagram  / 2j� � : 

        3 1...     *   ...j j j jK J K C K B K J    F  

  
 
In view of Lemma 4.4, the following diagram is commutative 

           0 1 0 0 1 1 0 1... ...j j j jK C V K C V K C W K C V      

 

Consequently, instead of computing the pair   0 1,   from the direct sum 

         0 1 1 0, ,Hom K B K J Hom K B K J� � ,  it is sufficient to compute the pair  

           0 1 0 1 1 0, , ,Hom K A K I Hom K A K I   � � . In other words, the six-
term exact sequence (4.1) can be identified with the following one   

        2 1 3 1
0 0 0 0K C S K C S K C S  �  

 (4.2)              
 

        1 3 2 1
1 1 1 0K C S K C S K C S  �  

By remark 3.5, this sequence becomes 
     � � �  

(4.3) 0        

     � � �  
By the exactness, the sequence (4.3) will be the one of the following ones 

0  
1  

2  2  2  2  

j  j  j  1j   

                0 1 0 0 1 1 0 1... ...j j j jK C V K C V K C W K C V      

        3
1...            ...j j j jK I K C S K A K I      

1  
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1 1   
0 0   

1 0   0 1   

1 1   0 0   

0 1     � � �  
 
 

0 1     � � �  
 

or   1 0     � � �  
 
 

1 0     � � �  

Now we choose    1
1

ia e GL C S  , 1b a . Then  

  0 1
2

0
0

i

i

e
a b GL C S

e





 
   

 
.  

Let u =    1 2 1 2 1 2 1, , , cos cos cos ,cos cos sin ,cos sin ,sinu x y z t u           

  
1

1

0 32 2
2

2 2

. .cos sin
sin . .cos

ii

ii

e e
GL C S

e e





 
 

 
  
 

 

is a pre-image of a b . So, 
1

1

1 2 2

2 2

cos sin
sin cos

ii

ii

e e
u

e e





 
 


  
   

. 

Let 1 1

1 0
0

0 0
q I  
    

 
. We get   

  
1

1

2
1 2 12 2 2

2 02
2 2 2

cos cos sin
cos sin sin

ii

ii

e e
p uqu P C S

e e





  
  




 
    

 
� . 

Then rank (p) = 1. So          2 1
1 1 0 00a p I K C S     � . Therefore, K-

theoretical exact sequence associate to  1  is 

 0 1     � � �  
 
 

0 1     � � �  
The proof is completed.  
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