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UPPER SEMICONTINUITY AND CLOSEDNESS OF THE SOLUTION
SETS TO PARAMETRIC QUASIEQUILIBRIUM PROBLEMS
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ABSTRACT

In this paper we establish sufficient conditions for the solution mappings of
parametric generalized vector quasiequilibrium problems to have the stability properties
such as upper semicontinuity and closedness. Our results improve recent existing ones in
the literature.
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TOM TAT
Tinh chdt nita lién tuc trén va tinh déng ciia cdc tdp nghi¢m
ciia cdc bai todn twa cin bing tong qudt phu thudc tham sé

Trong bai bdo nay, chung t6i thiét lgp d‘léu kién du cho cac tdp nghiém cua cdac bai
todn tira cdn bang tong qudt phy thugc tham $6 ¢6 cdc tinh chdt 6 on dinh nhu: tinh nica lién
tuc trén va tinh déng. Két qua cua chiing t6i la cdi thién mdt sé két qua ton tai gan ddy
trong danh sdch tai liéu tham khdo.

Tir khoa: cac bai toan tua can béng téng quat phu thudc tham sb, tinh ntra lién tuc
trén, tinh dong.

1. Introduction and Preliminaries

Let X,Y,A,T,M be Hausdorff topological spaces, let Z be a Hausdorff
topological vector space, Ac X and BcY be nonempty sets. Let K, :AxA — 2",
K,:AxA—2", T:AxAxT —»2%, C:AxA—2° and F:AxBxAxM —2° be
multifunctions with C(x, 1) is a proper convex cone values and closed.

Now, we adopt the following notations. Letters w, m and s are used for a weak,
middle and strong, respectively, kinds of considered problems. For subsets U and V
under consideration we adopt the notations.

(u,vy wUxV means VuelU,Ivel,
(u,v)y mUxV means 3dvel ,VuelU,
(u,v)sUxV means VueU,Vvel,

(u,v)y wUxV means JueU,VvelV and similarly for m,s .
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Let ae{w,m,s} and ae{wm,s}. We consider the following parametric
quasiequilibrium problem (in short, (QEP 7*)):

(QEP7*): Find X € K,(x,4) such that (y,t)aK,(x,A)xT(X,y,y) statisfying

F(x,t,y, u) ¢ —intC(x, ).

For AeA,yel,ueM consider the following parametric extended
quasiequilibrium problem (in short, (QEEP ~*)):

(QEEP *): Find x € K,(X, 1) such that (y,0)aK,(xX,1)xT(X,y,y) statisfying

F(x,t,y, u) n—intC(X, 1)=L.

For each AeA,yel,ueM, we let E(l)={xed|xeK (x,4)} and let
T,,E,:AxITxM — 2" be set-valued mappings such that = _(1,y,u) and Z_ (4,7, u)
are the solution sets of (QEP #) and (QEEP /), respectively.

Throughout the paper we assume that X _(4,y,u)#3 and E (A,y,u)# for
each (4,y,u) in the neighborhoods (A,,7,,4,) € AXxI'xM .

By the definition, the following relations are clear:

T, cX cX andE cE cCXE,.

Special cases of the problems (QEP ) and (QEEP /*) are as follows:

(@ If T(x,y,p)={},A=T'=M,A=B,X=Y,K,=K,=K and a=m, then
(QEP7*) and (QEEP*) become to (PGQVEP) and (PEQVEP), respectively in
Kimura-Yao [8]

(PGQVEP): Find x € K(x,A) such that

F(%,y,A) & —int C(x, 1)), forall y e K(x, ).
and

(PEQVEP): Find x € K(x, ) such that

F(%,y,A)n—int C(¥, 1) =@, for all y € K(¥, ).

b) If T(x,y,y)={t},A=T,4=B,X=Y,K, =clK,K,=K,a=m,C(x,A)=C and
replace "¢ —intC(x,4)" by "c Z, —intC" with C < Z be closed and intC =, then
(QEP *) become to (SQEP) in Anh-Khanh [1].

(SQEP): Find x € K(x,4) such that

F(x,y,A)cZ, —intC, forally e K(x,A4).

() If T(x,y,y)={t},A=T=M,A=B,X=Y,K,=K,=K,aa=m and replace F
by f be a vector function, then (QEP /) become to (PVQEP) in Kimura-Yao [7].
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(PQVEP): Find x € K(x, ) such that

f(x,y,A)¢—intC(x, 1)), forall y e K(x,A).

The parametric generalized quasiequilibrium problems include many rather
general problems as particular cases as vector minimization, variational inequalities,
Nash equilibria, fixedpoint and coincidence-point problems, complementarity
problems, minimax inequalities, etc. Stability properties of solutions have been

investigated even in models for vector quasiequilibrium problems [1, 3, 4, 7, 8, 9],
variational problems [5, 6, 10, 11] and the references therein.

In this paper we establish sufficient conditions for the solution sets X_,Z_ to have
the stability properties such as the upper semicontinuity and closedness with respect to
parameter A,y, u.

The structure of our paper is as follows. In the remaining part of this section we
recall definitions for later uses. Section 2 is devoted to the upper semicontinuity and
closedness of solution sets for parametric quasiequilibrium problems (QEP~*) and

(QEEP 7*),

Now we recall some notions in [1, 2, 12]. Let X and Z be as above and
G:X —2” be a multifunction. G is said to be lower semicontinuous (Isc) at x, if
G(x,)NU = for some open set U < Z implies the existence of a neighborhood N of
x, such that, for all xe N,G(x)"U = <. An equivalent formulation is that: G 1is Isc at
x, if Vx, =>x,, Vz,e€G(x,),3z, € G(x,),z, > z,.G 1s called upper semicontinuous
(usc) at x, if for each open set U o G(x,), there is a neighborhood N of x, such that
U 2 G(N). G is said to be Hausdorff upper semicontinuous (H-usc in short; Hausdorff
lower semicontinuous, H-Isc, respectively) at x, if for each neighborhood B of the
origin in Z , there exists a neighborhood N of x, such that, G(x) € G(x,) + B,Vxe N
(G(x,) < G(x)+B,Vxe N). G is said to be continuous at x, if it is both Isc and usc at
x, and to be H-continuous at x, if it is both H-Isc and H-usc at x,. We say that G
satisfies a certain property in a subset 4 X if G satisfies it at all points of 4.
Proposition 1.1. (See [1, 2, 12]) Let A and Z be as above and G:A— 2’ be a
multifunction.

(i) If G is usc at x, then G is H -usc at x,. Conversely if G is H -usc at x, and if

G(x,) compact, then G is usc at x,;
(ii If G is usc at x, and if G(x,) is closed, then G is closed at x,;

(iii) If Z is compact and G is closed at x, then G is usc at x,;
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(iv) If G has compact values, then G is usc at x, if and only if, for each net
{x,} = A which converges to x, and for each net {y,} = G(x,), there are y € G(x,)
and a subnet {y,} of \y,} such that y, — y.

2. Main results

In this section, we discuss the upper semicontinuity and closedness of solution
sets for parametric quasiequilibrium problems (QEP /) and (QEEP 7*).

Theorem 2.1.
Assume for problem (QEP ") that
(i) E isuscat A, and E(4,) i1s compact, and K, is Isc in K,(4,A)x{4,};
(ii) in K (A, AN)xK,(K,(4,A),A)x{y,}, T is usc and compact-valued if a=w (or
a=m),andIscif a=s;
(iii) the set {(x,t,y, 1, A) € K,(4,A)xT(K,(4,A),K,(K,(4,A),\),T")x
K, (K, (4,A), N)x{u, y x{A,} - F(x,t,y, 1) £ —int C(x, A1)} is closed.
Then X, is both upper semicontinuous and closed at (,,7,,H,)-

Proof. Similar arguments can be applied to three cases. We present only the proof for
the cases where o =w. We first prove that X is upper semicontinuous at (4,7, 4,) -
Indeed, we suppose to the contrary that ¥ is not upper semicontinuous at
(Ay» 705 My) » 1.€., there is an open set U of X (4,,7,,4,)such that for all {(4,,7,,x,)}
convergent to {(4,,7,,4,)}, there exists x, €X (4,,7,.4,), x, ¢U, Vn. By the upper
semicontinuity of £ and compactness of E(4,), one can assume that x, — x, for some
x,€E(A). If xy ¢ Z (4,70, 14,) » then Ty, € K, (x,,4,),Vt, € T(x,,¥,,7,) such that

F(xy,ty, Yy, My) < —1nt C(x,, 4) - (2.1)

By the lower semicontinuity of K, at (x,,4,), there exists y, € K,(x,,4,) such
that y, — y,. Since x, €X (4,,7,,4,), 3t, €T(x,,»,,7,) such that

F(x,t,y,,u,)c—-ntC(x,,4,). (2.2)

Since T i1s usc and T'(x,,y,,7,) 1S compact, one has a subnet ¢, €T(x,,,.7,)
such that ¢, — ¢, for some ¢, € T'(x,,¥,,7,) -

By the condition (iii) we see a contradiction between (2.1) and (2.2). Thus,
Xy €Z, (4,70 ty) < U, this contradicts to the fact x, ¢ U, Vn. Hence, X, is upper

semicontinuous at (4, 7,, 4,) -
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Now we prove that X is closed at (4,,7,,4,). Indeed, we suppose that X is not
closed at (A,,7,,4,), 1.e., there is a net (x,A4,7,,4,)—> Xy, A,%>4,) With
x,€X (A,7,,1,) but x,&€Z (A,,7,,4,). The further argument is the same as above.
And so we have X 1sclosed at (A,,7,,4,)- O

The following example shows that the upper semicontinuity and compactness of
E are essential.

Example 2.2.

LetA=B=X=Y=0,A=T=M=[0,1],4,=0,C(x,A) =0,
F(x,t,y,4)=3"""™ K (x,A) = (-4 ~1,AL, K, (x,2) = {0} and T(x,y,A)=[0,2""].

Then, we have E(0)=(-1,0] and E(1)=(-1-1,4],V1<(0,1]. We show that K,
1s Isc and assumption (ii) and (i11) of Theorem 2.1 are fulfilled. But X is neither usc
nor closed at 4, =0 and Z_(0,0,0) is not compact. The reason is that £ is not usc at 0
and E(0) is not compact. In fact %,(0,0,0)=(-1,0] and
(A y,u)=(-1-1,1],Y1(0,1].
Remark 2.3.

The assumption in Theorem 2.1 we have K, islIsc in K,(4,A)x{4,} (which is not
imposed in this Theorem 4.1 of [8] and [7]). Example 2.4 shows that the lower
semicontinuity of K, needs to be added to Theorem 4.1 of [8] and [7].

Example 2.4.

Let X,Y,AI'’'M,Z,,C(x,A) as in Example 2.2 and Ilet A:B:[—%,%],

F(x,t,y,))=x+y+A,K,(x, )= [O,%],T(x,y,i) ={t} . We have
{-1,0,1} if 1=0,
22
1 )
{O,—} otherwise.
2

We have E(1)=][0,1],v4<][0,1]. Hence E is usc at 0 and E(0) is compact and
condition (i1) and (ii1) of Theorem 2.1 are easily seen to be fulfilled.

K,(x,A)=

But ¥ is not upper semicontinuous at 4, =0. The reason is that K, is not lower

semicontinuous. In fact
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{l} if 1=0,
2
Ay ) ==

{O, %} otherwise.

The following example shows that the condition (iii) of Theorem 2.1 is essential.
Example 2.5.

Let A,I',M,T,A,,C asin Example 2.4 andlet X =Y =4=B=[0,1],
K, (x,A)=K,(x,A4)=[0,1] and

XYy
F(xtyA)=] 2

if 1=0,

otherwise.
3 2
We show that assumptions (i) and (ii) of Theorem 2.1 are easily seen to be
fulfilled.

But X, is not usc at A4, = 0. The reason is that assumption (ii1) is violated.

Indeed, taking %,ﬂn = 1 —0 as n—>0, then
n

F(xn:tn:yn:ﬂn):F(0,0,%,l/n):%>0’

x,=0,¢t =0,y =

{(xnﬂyn’/ln)}%(oﬂévo) and

but
1
F(0,0,1,0) == <0.

The following example shows that all assumptions of Theorem 2.1 are fulfilled.
But Theorem 3.4 in Anh and Khanh [1] cannot be applied.

Example 2.6.

Let  A,B,X,Y,AT.M,A,C

Kl(xaﬂ“) :Kz(xaﬂ“) :[0,2],T(X,y,}/) :[071]

0 if 1=0,
F(x’ t’ y’ l) - cos’ x+2

otherwise.

as in Example2.5 and let

We show that assumptions (i), (ii) and (iii) of Theorem 2.1 are easily seen to be

fulfilled. Hence, X, is usc at (0,0,0). But Theorem 3.4 in Anh and Khanh [1] cannot
be applied. The reason is that F is not Isc at (x, y,0).
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Remark 2.7.

(1) In Theorem 4.1 in Kimura-Yao [8] the same conclusion as Theorem 2.1 was
proved in another way. Its assumptions (i)-(iv) derive (i) Theorem 2.1, assumptions
(v)(or (v1)) coincides with (ii1) of Theorem 2.1.

(i1) /n Theorem 4.1 in Kimura-Yao [7] the same conclusion as Theorem 2.1 was
proved in another way. Its assumptions (i)-(iv) derive (i) Theorem 2.1, assumption (V)
coincides with (iii) of Theorem 2.1.

Theorem 2.8.
Assume for problem (QEEP ") that
(i) E isuscat A, and E(A,) is compact, and K, is Iscin K,(A,A)x{4,}
(ii) in K, (A,A)xK,(K,(4,A),A)x{y,}, T is usc and compact-valued if a=w (or
a=m), and Iscif a=s;
(iii) the set {(x,t,y, 1, A) € K, (A,A)xT(K,(A4,A),K,(K,(4,A),A),T")x
K, (K, (A,A), A)x{u, y x {4, ) F(x,t,y, ) n—int C(x,A) =D} is closed.

Then = is both upper semicontinuous and closed at (A,,7,, 1,)-

o

Proof. Similar arguments can be applied to three cases. We present only the proof for
the cases where o =m . We first prove that E  is upper semicontinuous at (4, ,, 4, ) -

m

Indeed, we suppose to the contrary that = is not upper semicontinuous at (4,7, 4,),

1.e., there is an open set V' of E, (4,,7,,4,) such that for all {(4,,y,,4,)} convergent to
{(Ay, 705 M)}, there exists x, eE, (4,,7,,4,), X, ¢V, Vn. By the upper semicontinuity
of E and compactness of E(4,), one can assume that x, — x, for some x, € E(4,). If

Xy €2, (AysVo» o) » then Ve, € T(x,,¥,,7,),3V, € K,(x,,4,) such that
F(xy,t5, ¥y, o) N—1nt C(x,, 4,) = . (2.3)
By the lower semicontinuity of K, at (x,,4,), there exists y, € K,(x,,4,) such
that y — y,. Since x, €E (4,,7,,4,), 3t, €T(x,,v,,7,) such that
F(x,,t,y,,u)Nn—intC(x,,A)=23. (2.4)
Since T 1s usc and T'(x,,y,,7,) 1S compact, one has a subnet ¢, €T(x,,,.7,)
such that ¢, — ¢, for some ¢, € T'(x,, ¥,,7,) -

By the condition (iii) we see a contradiction between (2.3) and (2.4). Thus,
Xy €2, (4,70 M,) <V, this contradicts to the fact x, ¢/, Vn. Hence, Z  is upper

semicontinuous at (4,,7,,4,). Now we prove that = is closed at (4,,7,,4,). Indeed,

m
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we suppose that Z  is not closed at (A,,7,,4,), 1., there is a net

(%, A 70 1) = (X, A0, Voo 1) With x, €5 (4,,7,,1,) but x, &5, (4,7, 4,). The
further argument is the same as above. And so we have = 1s closed at (4,,7,,4,). U

Remark 2.9.

Theorem 2.8 is an extension of Theorem 4.1 in [8]. The Example 2.3 is also
shows that the lower semicontinuity of K, needs to be added to Theorem 4.1 of
Kimura-Yao in [8].
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