1859-3100 Tập 14, Số 3 (2017): 12-17

KHOA HOC TƯ NHIÊN VÀ CÔNG NGHỀ

HO CHI MINH CITY UNIVERSITY OF EDUCATION

JOURNAL OF SCIENCE

NATURAL SCIENCES AND TECHNOLOGY Vol. 14, No. 3 (2017): 12-17

Email: tapchikhoahoc@hcmue.edu.vn; Website: http://tckh.hcmue.edu.vn

A NEW MONOAROMATIC COMPOUND FROM THE LICHEN PARMOTREMA TSAVOENSE (KROG & SWINSCOW) KROG & SWINSCOW (PARMELIACEAE)

Duong Thuc Huy*

Ho Chi Minh City University of Education Received: 23/12/2016; Revised: 28/12/2016; Accepted: 24/3/2017

ABSTRACT

A new monoaromatic compound, methyl (E)-2,4-dihydroxy-6-methyl-3-(3-oxobut-1-en-1-yl)benzoate (1), together with two common lichen metabolites atranol (2), 2-O-methylatranol (3) were isolated from the lichen Parmotrema tsavoense (Krog & Swinscow) Krog & Swinscow. Their chemical structures were established by 1D NMR, 2D NMR, high resolution ESI-MS spectroscopic analysis and comparison with those reported in the literatures.

Keywords: atranol, lichen metabolites, monoaromatic compound, *Parmotrema tsavoense*. **TÓM TẮT**

Một hợp chất đơn vòng mới từ loài địa y Parmotrema tsavoense (Krog & Swinscow) Krog & Swinscow (Parmeliaceae)

Một hợp chất đơn vòng mới, methyl (E)-2,4-dihydroxy-6-methyl-3-(3-oxobut-1-en-1-yl)benzoate (1), cùng với hai hợp chất địa y phổ biến khác, atranol (2), 2-O-methylatranol (3), đã được cô lập từ loài địa y Parmotrema tsavoense (Krog & Swinscow) Krog & Swincow. Cấu trúc hóa học của chúng được xác định bằng các phương pháp phổ nghiệm cũng như so sánh với các tài liêu tham khảo.

Từ khóa: atranol, hợp chất đơn vòng thơm, hợp chất từ địa y, Parmotrema tsavoense.

1. Introduction

Our previous phytochemical study on the lichen *Parmotrema tsavoense* (Duong 2015) led to the isolation of new phenolic compounds such as depsidones and diphenyl ethers.³ Some monoaromatic compounds were also reported from this lichen and these metabolites possess various biological activities such as cytotoxicity, antibacterial activity according to Boustie & Grube (2007) [1], Boustie *et al.* (2010) [2], Muller (2001) [5].

In this paper, we reported the isolation of one new compound, methyl (*E*)-2,4-dihydroxy-6-methyl-3-(3-oxobut-1-en-1-yl)benzoate (1), together with two known ones, atranol (2), 2-*O*-methylatranol (3), from the lichen *Parmotrema tsavoense*. Their chemical structures were elucidated by spectroscopic data analysis and comparison with those reported in the literature.

_

^{*} Email: thuchuy84@yahoo.com

Figure 1. Chemical structures of 1-3

2. Experimental

General experimental procedures

The NMR spectra were measured on a Bruker Avance III (500 MHz for 1 H NMR and 125 MHz for 13 C NMR) and Varian Mercury-400 Plus NMR (400 MHz for 1 H NMR and 100 MHz for 13 C NMR) spectrometers with TMS as internal standard. Proton chemical shifts were referenced to the solvent residual signal of CDCl₃ at $\delta_{\rm H}$ 7.26, of CD₃COCD₃ at $\delta_{\rm H}$ 2.05, of DMSO- $d_{\rm 6}$

Figure 2. Parmotrema tsavoense on rock

at δ_{H} 2.50. The 13 C-NMR spectra were referenced to the central peak of CDCl₃ at δ_{C} 77.1, of CD₃COCD₃ at δ_{C} 29.4, of DMSO- d_{6} at δ_{C} 39.5. The HR-ESI-MS were recorded on a Bruker micrOTOF Q-II. TLC was carried out on precoated silica gel 60 F₂₅₄ or silica gel 60 RP-18 F₂₅₄S (Merck) and spots were visualized by spraying with 30% H₂SO₄ solution followed by heating. Gravity column chromatography was performed with silica gel 60 (0.040–0.063 mm, Himedia).

Plant material

Parmotrema tsavoense (Krog & Swinscow) Krog & Swinscow was collected on the surface of rocks on Ta Cu mountain, Binh Thuan province (August-September 2012). Its scientific name was determined by Dr. Wetchasart Polyiam, Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand. A voucher specimen (No US-B027) was deposited in the herbarium of the Department of Organic Chemistry, University of Science.

Extraction and isolation

The clean, air-dried and ground material (1350 g) was extracted by methanol at ambient temperature, and the filtrated solution was concentrated under reduced pressure. While the methanolic solution was being evaporated, a precipitate (79.7 g) occurred and was filtered off. The rest of the solution was evaporated to dryness to obtain a crude methanol extract (249.8 g). This crude extract was applied to normal phase silica gel

column chromatography, eluted with the solvent system of *n*-hexane–ethyl acetate (9:1) to afford fraction **P1** (9.9 g). Consecutive elution of the column with the same solvent system but increasing polarity (8:2, 7:3, 6:4, 5:5, 4:6) yielded five fractions, **P2** (2.8 g), **P3** (3.3 g), **P4** (3.1 g), **P5** (16.1 g), and **P6** (9.9 g), respectively. Finally, the remaining residue was eluted with ethyl acetate–methanol in the ratios (9:1) and (0:10), respectively, to afford two fractions, **P7** (5.1 g) and **M** (80.1 g). A part of the extract **P1** (1.0 g) was applied to silica gel column chromatography, eluted with *n*-hexane–ethyl acetate–acetic acid (9:1:0.02) to give two compounds, **2** (10.7 mg) and **3** (3.4 mg).

The dry lichen material after macerating by methanol as described above was continuously macerated in acetone at ambient temperature to afford a crude acetone extract (42.1 g). This crude extract was applied to normal phase silica gel column chromatography, eluted with the solvent system of *n*-hexane–ethyl acetate–acetone–acetic acid (20:10:0.1) to afford five fractions **AC1–5**. Purifying fraction **AC1** (341.6 mg) by preparative TLC, eluted with *n*-hexane–chloroform–ethyl acetate–acetone–acetic acid (5:1:2:2:0.1) afforded compound **1** (3.2 mg).

- Methyl (*E*)-2,4-dihydroxy-6-methyl-3-(3-oxobut-1-en-1-yl)benzoate (1): White amorphous powder. HR-ESI-MS m/z 249.0754 [M-H]⁻ (calcd. for C₁₃H₁₃O₅–H, 249.0763). The ¹H- (500 MHz) and ¹³C- NMR (125 MHz) data (Acetone- d_6): see Table 1. HMBC correlations: see Figure 3.
- **Atranol (2)**: White amorphous powder. The ¹H-NMR (400 MHz) data (CDCl₃): see Table 1. These spectroscopic data were suitable with with those reported in the literatures [4].
- **2-O-Methylatranol (3):** White amorphous powder. The 1 H-NMR (400 MHz) data (DMSO- d_6): see Table 1. These spectroscopic data were suitable with those reported in the literature [4].

3. Results and discussion

Compound **1** was isolated as an amorphous powder. The molecular formula of **1** was determined to be $C_{13}H_{14}O_5$ using HRESIMS. The 1H and ^{13}C spectra revealed the presence of one aromatic methine (δ_H 6.45, δ_C 111.6), two olefinic methine groups (δ_H 7.94, δ_C 133.5, C-8; δ_H 7.22, δ_C 129.3, C-9), two methyls (δ_H 2.48, δ_C 23.6, C-12; δ_H 2.40, δ_C 14.3, C-11), one methoxy group (δ_H 3.96, δ_C 51.8), two carbonyl groups (δ_C 172.2, 197.9), and five aromatic quaternary carbons. From these data, **1** was presumed to be an orcinol derivative containing a 3-oxobuta-2-enyl side chain at C-3. The large coupling constants of H-8 (δ_H 7.94, d, J = 16.5 Hz) and H-9 (δ_H 7.22, d, J = 16.5 Hz) proved that this alkene possessing a *trans* configuration. Proton H-8 shifted to the low field indicating the conjugated system of the double bond at C-8/C-9 and a methylketone group at C-10 (δ_C 197.9). This finding was supported by HMBC correlations of H-8, H-9, and CH₃-11 to C-10 (Figure 3).

In the HMBC spectrum, the correlations of H-5 to C-1 (δ_C 103.3), C-12 (δ_C 23.6), of CH₃-6 to C-1 (δ_C 103.3), C-5 (δ_C 111.6) deduced the adjacent positions of H-5, CH₃-6 and 1-CO₂CH₃ groups. Moreover, the proton H-8 showed the HMBC cross peaks to C-2 (δ_C 165.0), C-3 (δ_C 107.5), and C-4 (δ_C 161.0) and proton H-5 showed cross peaks to C-3 and C-4 indicated the attachment of the side chain at C-3. The assignment of the chelated hydroxyl group was determined at C-2 due to HMBC correlations of 2-OH to C-1 and C-2. Further HMBC correlations confirmed the chemical structure of **1**. Accordingly, **1** was elucidated as methyl (E)-2,4-dihydroxy-6-methyl-3-(3-oxobut-1-en-1-yl)benzoate.

Table 1. ¹ H NMR data of 1–3				
	$\frac{1^{a} \text{ (Acetone-} d_{6})}{\text{(multi, J, Hz)}}$		2 ^b (CDCl ₃) (<i>multi</i> , <i>J</i> , <i>Hz</i>)	3 ^b (DMSO- <i>d</i> ₆) (<i>multi</i> , <i>J</i> , <i>Hz</i>)
N	$\delta_{ m H}$	$\delta_{ m H}$	$\delta_{ m H}$	$\delta_{ m H}$
1		6.20 (br)	6.20 (br)	6.15 (br)
2				
3		6.20 (br)	6.20 (<i>br</i>)	6.15(br)
4				
5	6.45(s)			
6				
7		10.29(s)	10.29(s)	10.68 (s)
8	7.94 (<i>d</i> , 16.5)	2.26 (br)	2.26 (br)	2.27(s)
9	7.22 (<i>d</i> , 16.5)			
10				
11	2.27(s)			
12	2.48(s)			
7 -OCH $_3$	3.96 (s)			
2-OCH_3				3.79(s)
2-OH	12.86 (<i>br</i>)			

^a recorded in 500 MHz, ^b recorded in 400 MHz

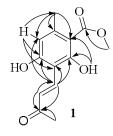


Figure 3. HMBC correlations of 1

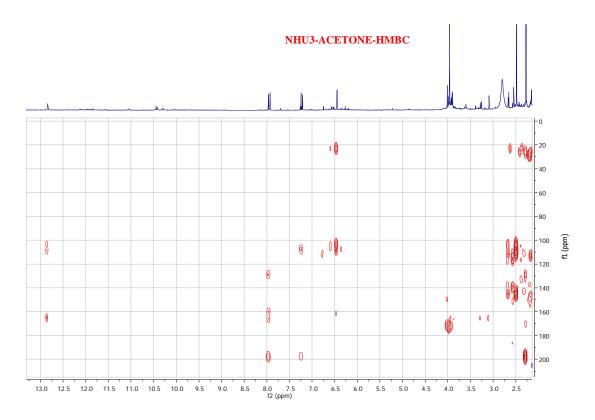


Figure 4. HMBC spectrum of 1

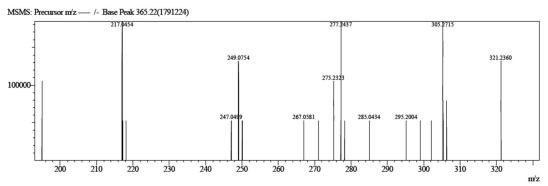


Figure 5. HR-ESI-MS spectrum of 1

4. Conclusion

A new compound methyl (E)-2,4-dihydroxy-6-methyl-3-(3-oxobut-1-en-1-yl)benzoate (1), together with two known ones, atranol (2) and 2-O-methylatranol (3), were isolated from the lichen *Parmotrema tsavoense* collected in Binh Thuan province. This is the first time the two compounds 2 and 3 were found in this lichen. Further studies on this lichen are in progress.

REFENCES

- [1] Boustie J., Grube M., "Lichens a promising source of bioactive secondary metabolites," *Plant Genetic Resources*, 3(2), 273–287, 2007.
- [2] Boustie J., Tomasi S., Grube M., "Bioactive lichen metabolites: alpine habitats as an untapped source," *Phytochemistry Reviews*, 10(3), 287–307, 2010.
- [3] Duong T. H., Warinthorn Chavasiri, Joel Boustie, Nguyen K. P. P., "New *meta*-depsidones and diphenyl ethers from the lichen *Parmotrema tsavoense* (Krog & Swinscow) Krog & Swinscow, Parmeliaceae," *Tetrahedron*, 71, 9684–9691, 2015.
- [4] Huneck S., Yoshimura I., *Identification of lichen substances*. Springer Verlag, Berlin, 1997.
- [5] Muller K., "Pharmaceutically relevant metabolites from lichens," *Applied Microbiology and Biotechnology*, 56, 9–16, 2001.