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ABSTRACT

The inverse problem for the heat equation plays an important area of study and application.
Up to now, the backward heat problem (BHP) in Cartesian coordinates has been arisen in many
articles, but the BHP in different domains such as polar coordinates, cylindrical one or spherical
one is rarely considered. This paper’s purpose is to investigate the BHP on a disk, especially, the
problem is associated with the perturbed diffusivity and the space-dependent heat source. In order
to solve the problem, the authors apply the separation of variables method, associated with the
Bessel’s equation and Bessel’s expansion. Based on the exact solution, the regularized solution is
constructed by using the modified quasi-boundary value method. As a result, a Holder type of
convergence rate has been obtained. In addition, a numerical experiment is given to illustrate the
flexibility and effectiveness of the used method.

Keywords: backward heat problem, modified quasi-boundary value method, polar

coordinates, ill-posed problem.

1. Introduction

The consideration of the forward heat problem aims at predicting the temperature
distribution of a body at a future time from the initial temperature, boundary conditions.
On the contrary, the aim of the backward heat problem (BHP) is to determine the initial
temperature from the final data. The BHP plays a vital role in practical applications such as
image deblurring, mathematical finance, hydrologic inversion, mechanics of continuous
media, so forth. In hydrologic inversion, by reconstructing the contaminant history, sources
of groundwater pollution are sought and this problem is described by a simple form of the
well-known advection-convection equation u, —b(t)Au = f(x,t) (see in (Atmadja &
Bagtzoglou, 2003; Quan et al., 2011; Trong & Tuan, 2008). Very recently, in (Tuan et al.,

2016), Tuan et al. have considered the problem which is more general than the problem in
(Atmadja & Bagtzoglou, 2003; Quan et al., 2011; Trong & Tuan, 2008,).

U, ~b(t)L(u) = f (x,t), (x,t) € Qx (0,T), (1)
u|6920,0<t<T, (2)
u(x,T) = g(x),x e Q, 3)
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where Q is a bounded open domain in R" with smooth boundary 6Q, b(t), g(x),
f(x,t) are known functions, and L is a symmetric elliptic operator. Then, the authors

applied the filter regularization method to get an approximate solution and obtained the
Holder type of error estimate (see in (Tuan et al., 2016)).

Although, there are many works related to the BHP in Cartesian coordinates (Fu et
al., 2007; Quan et al., 2011; Trong et al., 2009; Trong & Tuan, 2008; Tuan & Trong,
2011); Tuan et al., 2016), the studies, associated with the BHP in polar coordinates, are
considered rarely. Recently, an axisymmetric backward heat equation on a disk has been
investigated by Cheng W. and Fu C. L. In the papers (Cheng & Fu, 2009; Cheng & Fu,
2010), Cheng and Fu used the spectral method and the modified Tikhonov method for
regularizing the following problem

a—u:az—ngla—u, 0<r<r, 0<t<T,

ot or ror

u(r,T) = ¢(r), 0<r<r, 4
u(r,,t) =0, 0<t<T,

|u(0,t)| < oo, 0<t<T.

In addition, they got the error estimate of logarithmic type which is presented in
(Cheng & Fu, 2009; Cheng & Fu, 2010). It is remarkable that the measured data ¢(r) in

problem (4) is radially symmetric or axisymmetric, i.e., it depends only on the radius r
but not on 9. Consequently, the solution of problem (4) does not depend on 6. Otherwise,
in practical engineering, the measured data is not always radially symmetric or
axisymmetric. Furthermore, the initial temperature not only depends on the final
temperature distribution but also depends on the heat source. Nevertheless, the papers
(Cheng & Fu, 2009; Cheng & Fu, 2010) are mainly devoted to the homogeneous case of
the heat source. To generalize the problem (4), the authors considered the problem of
finding the initial temperature distribution of the asymmetrically nonhomogeneous
parabolic equation in polar coordinates in (Triet et al., 2019). By the modified quasi-
boundary method (MQBV) in (Quan et al., 2011), the authors constructed the
approximated solution and obtained its convergence of Holder type. However, in (Triet et
al., 2019), the a priori assumption on the exact solution in (Triet et al., 2019) must depend
on a class of Gevrey spaces. In this paper, the authors improve this weak point by
assuming the condition (H1) in Section 3.

Besides that, in reality, the heat coefficient depends on material of the body, but an
arbitrary body is not completely homogeneous. Therefore, the heat coefficient can be
perturbed. Motivated by these reasons, in this article, let T be a positive number, the
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authors are interested in the problem of determining the temperature distribution
u(r,0,t),(r,0,t) e (O,a)x(O,Zn)x(O,T) satisfying the following problem

u, = c? [ZZTEJF%%Jr%g;L:jJrq(r,@),O <r<a0<f<27,0<t<T, (5)

u(a,,t)=0,0<0<27,0<t<T, (6)

u(0,6,t)| <0,0<6<27,0<t<T, 7)
and the final temperature distribution

u(r,0,T)=f(r,0), 0<6<27,0<r<a, (8)

where f(.6), q(-0)el’ [[O;a];r], c e R are the final temperature, the heat source and

the diffusivity, respectively. In reality, the final temperature f, the heat source q and the
diffusivity ¢ are obtained by measurement, so there are always errors. Assume that the
exact data (f,c,q) and the measured data ( f, ,cg,qg) satisfy
[°(.0)-f(-0)], <e, o (-0)-q(-0)|, < (9)
and & is a noise level from a measurement. In our knowledge, the works for a Cauchy
problem for the parabolic equation on a disk are quite scare and even there is no result
dealt with the perturbed case of the diffusivity and the heat source. It is well-known that
the problem (5)-(8) is ill-posed. This means that its solution may not exist, and if it exists,
it does not depend continuously on the given data. In practical engineering, to get the
initial data, it is a must to use equipment to measure, this leads to the error between exact
data and measured data. Thus, small error on the measured data may lead to solutions with
large errors. This makes the numerical computation difficult, so an appropriate
regularization process is required in order to get a stable solution. In this paper, the MQBV
is employed to construct the regularized solution for the problem (5)-(8). An appropriate
“"corrector term™ is added into the boundary condition to get a regularized solution.
Furthermore, a numerical example is given to prove the effectiveness of the used method.

The rest of the paper is organized as follows: In Section 2, some definitions and
propositions are given to solve the problem (5)-(8). In Section 3, the authors propose the
regularized solutions for the problem (5)-(8) and obtain the error estimate between the
regularized solutions and the exact solution. Finally, a numerical experiment is presented
to illustrate the main results in Section 4. Eventually, there is a conclusion in Section 5.
2. Some Definitions and Propositions

Throughout this paper, the authors denote the space of Lebesgue measurable

c, —c|<e,

functions f with weight r on [0;a] by L2 [[O;a];r] through the following definition.
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Definition 2.1.
Let a>0, we define *[[0;a];r]|={f :[0;a] >R f is Lebesgue measurable with

weigh r on [0;a]}. We can see that the above space is normal space with the norm as

follows

I£]l, = U.r|f(|r)|2 drjz, for f e *[[0;a];r].

From here on, definition and some propositions are restated with the helps of the
references (Frank, 1958; Watson, 1944).
Definition 2.2.

Let m be a non-negative integer. Then we have Bessel functions of the 1 — kind of
order m

© 1 Kk X 2k+m

Jn(X) = Zﬁ(—j : (10)
o KI(k +m)I 2

and Bessel functions of the 2™ — kind of order m

m-1 —k=1)! 2k—m
=2 %) erfa,00- 2SO 1)

v/ 7T k=0

_%Z kl((r;lj T h”‘*k}@m ’ o

k=0 K:
in which

¥ = lim [Z%— In n} is Euler’s constant,

n—>+o0\ |7y
k
1
hk = Zf .
i |
Proposition 2.3. Let m be a non-negative integer, the Bessel’s equation of order m is
defined as follows

X’y +xy +(x*-m?)y=0, x>0, (12)
then we have the general solution of equation (12) is
y(x) = ¢ d,, (X) +¢,Y,, (),

where J_(x) and Y, (x) is defined by (10) and (11), respectively.

Proposition 2.4. The equation J_ (x) = 0 has infinite real roots {xﬁm)} " satisfying

m)

0<x™axi™< <xM<. .
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and Jim X" = o,

n—oo
3. Regularizing and main results
By using the method of separation of variables, it can be clear to find out the exact

solution u of the problem (5)-(8) corresponding to the exact data ( f,c) as follows

u(f,cq)(ro.t = iiJ L(£.0.9)(6.1), (13)
where

U (f.c.0)(60,t)= A, [f.c.q](t)cosmo +B,, [f.c,q](t)sinme, (14)
Am[f,c,Q](t):[am [f]- m“[q]jexp{ ¢’ A0 (T =)} + z/l[zq] (15)
am[f]l=—5—— — anwl( H f(r,0)cos(mo)J,, (4,,r)rdodr,
am[A]=—5—— — anm Hq (r,0)cos(m@)J,, (A,,r)rdédr,

an[f,c,q](t):[ 1f]- m“[q]jexp{ 22 (T - )} + 2/1[2(‘], (16)
b [a] = — anwl Hq (r,0)sin(mé)J,, (A,,r)rdedr,

b [ f]= — anm H f(r,0)sin(m@)J,, (A,r)rdodr,

J_is the Bessel function order of m,

m

Ay =2 o isthe nth positive zero of J .

mn ' “mn
a

In fact, to gain the final data and the diffusivity, the measured equipment is used.
Therefore, there will appear the error of the exact data and the measured data. By
analyzing the exact solution (13), it is shown that the data error can be arbitrarily amplified

by the familiar "heat kernel" exp{czlnfn(l' —t)}. Thus, it causes the ill-posedness of the
problem (5)-(8). To construct a regularized solution for (13), the modified quasi-boundary
value method is applied. The main idea is to replace the term exp{czlnzm(l' —t)} by a

exp{-c2 A%t}
a(e)c?a’ +exp{ 2/IZT}

e°'mn € mn

"stability term" to get a stable solution. In particular, the
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authors formulate the regularized solution u® corresponding to the measured data
(f..c..q, ) as follows

u®(f,.c,.q,)(r6,t)= ZZJ (f,.c..q,)(6.1), (17)

m=0n=1
where
us, (f..c..0,)0.t)= A’ [f,.c,.q,](t)cosmd +B; [f,.c,.q,](t)sinmo, (18)

mn[q]j oot a,lo]
(e)e

¢ lf..c.0,]M) = f.]- ’
Aﬂn[ . Cé q&]() [a‘mn[ a] 22/2 22/2 +eXp{_ fﬂv;nT} fﬂ’rin

mn [q ]j exp{ &Zﬂ”’f‘”} mn [q ]
a(s)c

B:m[fg’cg’qg](t)=[bmn[fg]_ 2),2 212 +exp{ zﬂva}_i_ 212 !

& mn £°'mn

am[f.]=—5——— — anm _— Esz (r,0)cos(md)J,, (A,,r)rdedr,
wld]=——— — ‘]m+1 n izfq (r,0)cos(mB)J , (A, r)rdédr,
b [f. ] = —5—— — ‘]m+1( o) szf (r,0)sin(mo)J,, (A,,r)rdodr,
b [0, ] = —5—— — JZ TTq r,0)sin(m@)J,, (A,,r)rdédr,

m+1

and a(e) is regularization parameter such that a(¢) > 0 when & — 0. For the brief, it
can be denoted that «(¢) = «. Without loss of generality, it can be assumed that c, > c,,.
Lemma 3.1. For 0 < a <T,a >0, we have the following inequality

aa+ exlp{—aT} < %[m&jﬁ

Lemma32.Let 0<t<s<T, 0<a <T and a> 0, then we get the following inequalities

y expi(s—t-T)aj gﬁﬂ‘[a In[lnt;s,

aa+exp{-aT} a

o el ei{en(Z))

in which T = max {1;T}.
It can be seen that the proofs of these above lemmas in (Quan et al., 2011).
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Lemma33.Leta>0,0<t<T, 0<a<min{l;T}, ¢, >c>0 and

o(x)= exp{—atx}

= for x>0
aax+exp{-aTx}

We have the following inequality

lo(c,)-o(c)|< Zaﬁz(alnGJJ;_l+¥(a|ngjﬁl (c, —c),

in which T = max {1;T}.
Proof. It is easy to see that ¢ is continuous and derivative on [c,c, ]. By using the
Lagrange’s theorem, we obtain x, €[c,c, | satisfying
[o(c.) =9 (c)
<|¢’ (% )](c. ~¢)
—atexp{-atx,} exp{-atx, }(aa—aT exp{—aTxO})|

c, ¢
aax, +exp{-aTx,} (aax, +exp{-aTx, })2 ‘( |

_aTJ@ [a In [g)j;_l +af {a In [EDH [a—io +Tj (c, —¢)
_ZaJ@Z (a In(ED;_l +¥(a In(gjf—l (c, —c).

This completes the proof of Lemma 3.3.
Lemma3.4.Leta>0,0<t<T, 0<a<min{;T}, ¢, >c>0 and

w(x)= =S exp{at -1 for x>0.
xa | cax+exp{-aTx}

IA

IA

IA

We get
v (c.)-v(c)

e e e e

Proof. By simple calculations, we deduce that
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v (X)

_ -1 ( exp {-atx} _1J+ 1 ( —atexp {—atx}

ax’ | aax+exp{-aTx} xa | aax +exp{-aTx}

exp {—atx}(aa—aT exp{-atx,})
(crax, + exp{—aTxo})2 '
Similar to Lemma 3.1 - Lemma 3.3, we apply the Lagrange’s theorem, we have
X, €[c,c, ] satisfying

w(c.)-v()

<|_1( exp {-atx, } —1J+ 1£ —atexp{-atx, }

_‘axg aax, +exp{-aTx,} x,a| aax, +exp{-aTx,}

_exp {—atx, } («a—aT exp{-atx, })J(C o)
(crax, + exp{—aTxo})2 ’

<Locaxo+exp{—aTx0}—exp{—atxo}

s axt aax, +exp{-aTx, }

+i 2aT" [a In [gjfl +%$2 {a In (gjfl (c, —c)

(¢ ~¢)

+ i[aln[gjf—l +:;;[aln(£jf_l (c, —¢).

This completes the proof of Lemma 3.4.
In this paper, the authors require some assumptions on the exact solution and the heat
source g as follows

(H,): There exists a non-negative number A such that
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sup
95 0; 272'

Theorem 3.1. Let (f,c,q), (fg,cg,qg)eLZ[O;a];r]xRxLz[O;a];r] satisfy the
condition (9), 0 <& <min{1;T} and a =¢. Assume that u( f,c,q) and u*(f,,c,,q,),

‘—u f,c,q)(,

(f ¢.q)(-0,0)

16, lao), <A

defined by (13) and (17), are corresponding to the exact data (f,c,q) and the measured

data (fg,cqug), respectively. For (Q,t) € [0;27r]><[0;T], we obtain the error estimate

u (f,.c,,q,) (0,0 -u(f,c.a)(.0.0), <gT[|n[TDT_ N(s,t), (19)

in which

—t

N (&,t) = 2F R(C)A| 2 +A%+ £ [lnGDT

1

+F| A+ [In[EDT gl_? +1],

a . .
Aoy = %1%1 is the Oth positive zero of J,,

R(c)—max{Zc +1,—— 2C+1 1}

1C4 .

Proof. By using the triangle inequality, we infer that
ue (f,.c,.q,) 0.0 -u(f.cq)( et)u

<|u* (f,.c..0,) (0.0 —u (f,c,,q) 0,0, +|u (f.c,.q).0,)—u (f,c,0)(- 0.1,
u’ (f,¢,9)(.0,t)-u(f,c,q)(.0.1)],, (20)
where
u (1,c,.9)(r60.1) :iiJm (f.c.0)@.1), 21)
us. (f.c,.q)(@0.t)= A [f.c,.a]t)cosmo + B, [f.c,,q](t)sinmo, (22)

TP I | RS

292 242 242 c2p? !
Com JaCi Al +exp{-cIA2 T} clAg,
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£ mn

Bén[f,cg,q](t){bmn[f]— m"[q]j Xp-ciit]  buud]

o )Gl Al +exp{-c2A T} ciAn,

(fcq(r@tzii s (f.6,0)(0.1),

m=0 n=1

us, (f.c,0)(0,t) = AZ [ f.c,q](t)cosmb +B;, [ f,c,q](t)sinmo,

MJ Pt} aw[d]

Czﬂ“rfm aczﬂ“rfm + exp{_czﬂ“rin-r} Czﬂ“rfm

B;n[f,c,q](t):[bmn[f]‘bm"[Q]J i W B )

Czﬂ“rfm aczﬂ“rin +exp{_czﬂ”r§nT} Czﬂ“rin

Aﬁn[f’C’Q](t){amn[f]_

From (17), (21), Lemma 3.1 and Lemma 3.2, we estimate
u (f,.6,,0,) (0.5 -u" (f.¢.,0) (0.,

exp{~C Aot

i)ni:a 2)2 +exp{ 2/’LZT}C o[F = 71(0) 30 ()

IN

amn g”mn

2

exp | ~CiAnt}

w1
1- Con[A, —0](8) 3 (An
i mzt:)nzllcf/lén( aCi A%, +exp{—c 2/IZT}} o[9, ~a)(0) I (A )

e’'mn g’ 'mn

2

;
ii 2,2 - o [qs_q](e)‘]m(/lmn’)

S actal rexp{-c2 AT "

< an(1)]

on?:ochmn [ f, - f](e)‘]m (}“mn )

J’_

2

o’ (~0)-a(~0),

| “(,0) -1 (.0, +T ['”GD
< (em )] eer(nf7]) <

where
Con [9](9) = ay, [g]cos mé +b,, [g]sin mé.
From (22), (24), this implies that

up, (f.c,.a)(0,t)—u;, (,c,q)(0,1)
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e exp{—c222,t) exp (-’27t}
= “m [ ]( ) acgz/ftrin 4 eXp{—ng/’LrinT} B acz/lrin + eXp{—CZ/'L;nT}

*Cmn[q](g){czi;i exp{-c2A23 1} _1J

ac® Al +exp{-c* A% T}

L eeleg
A2 | ac?aZ + exp{-c2A% T} B

&”'mn

By applying Lemma 3.3 and Lemma 3.4, we infer that
u®(f,c.,q)(0,t)—u (f ,c,q)(-,e,t)u2

> Con[11(0) 30 (A )

M

<
m=0 n=1
exp {_Cf-)“rint} exp {—Cmrfmt}
y _
aci it +exp{-c 2T} ac®Al +exp{-c’A% T} 2

+
M

2142 2142
5 ac®Al, +exp{-c*A2,

1 exp{-c2Azt}
_CZAZ 2,2 2,2 -1
- Amn | OCEA +exp{ c A T}

3
I

.. 40)3, (i -)[Czjnzm { ad - _1J

&7 mn 7 mn

2

IA
s
s
(@]
E
i
—
=2
[
3
2
>
N—

X
N
N
N
S
-
N
VR
Q
=]
TN
|—|
~—
N S
|~
iR
J’_
O|-ED
N
VR
Q
=]
N
Q|-
~—
N S
=
iR
N—e
—
o
|
o
N
SN—
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1

_ eR(c)

e

gu(f,c,q)(-,e,T)

()

1

+[R(C)T[In[l J g+i;R(c)g+R(c)2ﬁz{a|n[ID e
a Aos a

e

o
+2$2R(c)A[[|n GDl £+ %+ [a In GD“ g[u %ﬂ (26)

From (13), (23), we obtain
o (f.c,0)¢.0.0) -u(F.c.q)0.),

= & ac’il exp{-c?Alt}

2.2,

SE ac? Al +exp{-ctAL T

cotfenf))
(o)
swi(o))"

exp{c*An T} Con [ £1(0) 3 (Zn )

2

S 3¢ Az exp{ct AL T Con [F1(0) 3, (A )
m=0 n=1

2

e

8
au(f,c)(-,e,O)

2

e

By combining (25), (26) and (27), let o = &, we get the following estimate

lue (f..c..0.) O —u(f,ca)(0.0),

o2 ) o2
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—t

<ot [In ijl F o [lnGDT i 2$2R(c)A[2 +%J +FA

in which

—t —t

N(g’t):ﬁZR(C)A 2+%+81_;(|H(IJJT +T AJ{In(IDTgL; 11,

01 & &

]__i T T
We note that |ime 7 In[—j =0.

>0 <

This completes the proof of Theorem 3.1.
Remark 3.2. If t >0, we see that the error estimate (19) is a Holder type. On the other

hand, when t = 0, the error estimate (19) becomes

u (f,.c,.q,) (0.0 —u(f,c.q) (0.1, < {lngn N (&,0), (28)

in which

N(£,0) = zﬁzR(c)A[u%wj#@ (A+g+1)
Ao
The estimate (28) is a logarithmic type of convergence rate.
4. Numerical experiment
In this section, the authors consider the following problem

_ 2[azu 1ou 1 &
U =¢° | —+-

CHA L a0 0cr <0< <m0l @
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u(l,0,t)=0,0<6<27,0<t<1, (30)

u(r,0,1) = f(r,0),0<0 <27,0<r <1, (31)

u(0,6,t)| <0,0<6 <27,0<t<1, (32)
in which ¢ =107 and

f(r,0) = (1-r*)r*sin20,q(r,0)= (1-r*)rsino. (33)

From (13), we get the exact solution of problem (29)-(32) corresponding to the exact
data (f,c,q)

u(f,c,q)(r,o,t) :f:l[Jz(aznr)szfL% p{c’as, (1-1)]

Qynd3

+Jl(alnr)i6Lne)(l—exp{c ol (1- t)})} (34)

a,d, (aln

Next, we consider measured data ( f,,c,,q,) as follows

f(r,0) = (1+%;d(')j £(r,0),

_ g-rand(’)
q,(r.0) = (1+ qu(rﬂ), (35)
c, =c+e¢-rand(),
where rand(-): N(0,1). From (33) and (35), it is easy to see that
f,(~0)—f( H <&,lla, (- 9)—q(-,9)”2 <¢ forall @ 6(0;271'),|C£ —C|£g.
From (17), we get the regularized solution of the problem (29)-(32) corresponding to
the measured data (f,,c,,q,)

u®(f,.c,.q,)(r.0,t)
_ (1+ g-rand (~)j = 24sin 20

\/; n=1 a23n‘]3 (aZn) azzn}

£ rand()} = 16sin @ exp{-cla; ]
+1+ 3,( 1- . 36
[ Jr nz ' 1ng(0‘1n)[ gcfa§n+exp{—cf,a22n} (30)

Supporting by the Maple program, it is possible to approximate the exact solution
(34) and the regularized solution (36) associated with first one hundred coefficients. Then
the authors give the following tables which show the error estimates between the exact

solution and the regularized solution corresponding to the data error ¢, =10",i=1,3,

L (aur) exp{ clal, 2}

ecta, +exp{-c

respectively.
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Table 1. Errors between the exact solution and the regularized solutions in case 6 =%

ug(fg,cg,qg)[-,%,tj—u(f,c,q)[-,%,tj

2

t g =10" g, =107 g, =107
4.1736x107% 1.9801x107 2.8734x10°°
0.5 9.2835x10° 4.2019x10° 6.3828x10°*

. . L 5
Table 2. Errors between the exact solution and the regularized solutions in case 0 = Tﬂ

ug(fg,cg,qg)[-,%[,tj—u(f,c,q)[-,%,tj

2

t g =10" g, =107 g, =107
1.1799x10" 3.4353x107% 4.4434x10°°
0.5 3.7359x10° 9.1890x10° 1.1814x107

Furthermore, there are some following graphs of the exact solution u(f,c,q) and

the regularized solutions u‘ (f,,c,,q,), i=1,2,3 (Figure 1, 2) at t =0. Eventually,

Figure 3 can visually present the exact solution u( f,c,q) and the regularized solutions
ui(f,,c,0q,),i=1.3 at r =0.5,t =0 in the polar coordinates.

The exact solution The regularized solution (esp=0.1)

0.3+
0.2+

0.1

Figure 1. The exact solution and the regularized solution corresponding to &,
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The regularized solution (esp=1e-002) The regularized solution (esp=1e-003)

2

= The exact solution »  Theregulanized solufion corresponding to g;

——— Theregularized soluioncomesponding toe, +  The regulanzed solufion corresponding to g,

Figure 3. The exact solution and the regularized solutions corresponding to ¢,, i =1,...3
inthe case r =1, t = 0.5 in the polar coordinates
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5. Conclusion

In this paper, the authors considered a backward in time problem of the parabolic
equation, associated with the perturbed diffusivity and the perturbed space-dependent heat
source, in polar coordinates. Then the authors proposed the modified quasi-boundary value
method (MQBYV) to regularize this problem and obtained the error estimates between the

exact solution and its regularized solutions in L2 [[O;a];r} norm. Moreover, a numerical

experiment shows that the used method is flexible and effective. In the future, desiring to
research more generally on this problem, the authors will investigate the problem (5)-(8)
with the time-dependent diffusivity or the space and time-dependent diffusivity.
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BAI TOAN CAUCHY CHO PHUONG TRINH DANG PARABOLIC KHONG POI XUNG
TRONG TQA PQ CUC VOI HE SO KHUECH TAN BI NHIEU
Tran Hoai Nhan*, Hé Hoang Yén?, Luu Hong Phong®
LVién Su pham Khoa hoc tw nhién — Truong Dai hoc Vinh
2Khoa Toan — Ung dung, Truong Pai hoc Sai Gon
3Khoa Toan - Tin hoc, Truong Dai hoc Khoa hoc Tu nhién, Dai hoc Quéc gia Thanh phé Ho Chi Minh
Téc gid lién hé: Ho Hoang Yén — Email: hhyen@sgu.edu.vn
Ngay nhén bai: 01-3-2019; ngay nhdn bai stra: 15-3-2019; ngay duyét dang: 25-3-2019
TOM TAT
Bai toan nguoc cho phuong trinh nhiét déng vai trd quan trong trong nghién ciru va iing dung.
Cho dén nay, bai toan nhiét nguroc thoi gian (Backward heat problem - BHP) trong toa d¢ Cartesian
da duoc nghién ciu trong nhiéu bai bdo, nhung BHP trong cac toa d¢ khac nhu toa do cuc, toa do
tru hodc toa dé cau lai hiém khi dwoc xem xét. T rong bai bao nay, ching toi muén nghién ciu BHP
trén mgt dia tron, dic biét hon, bai todn dwoc xem xét lién hé véi hé sé khuéch tén bi nhiéu va nguon
nhiét phu thuéc vao khéng gian. Pé gidi quyét bai toan nay, ching toi &p dung phwong phdp khai
trién chuéi Bessel. Dua trén nghiém chinh xdc, nghiém chinh héa dwoc xdy dung bang cdch sir dung
phiwong phdp gid tri twa bién. Két qua la, ching ta ¢6 doc mét ude lwong sai s6 héi tu. Ngodi ra,
Mét vi du s6 dwoe dwa ra dé minh hoa tinh hiéu qud ciia phwong phép.
Ter khéa: bai toan nhiét ngugc, phuong phap gia tri twa bién, toa dé cuc, bai toan khdng
chinh.
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