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ABSTRACT

Some two-dimensional problems in non-relativistic quantum mechanics can connect to each
other by certain spatial transformations such as Levi-Civita transformation. This property allows
forming a series of two-dimensional problems into an interrelated family. Starting from two related
problems namely Coulomb plus harmonic oscillator and sextic double-well anharmonic oscillator
potentials, such family is constructed via repeatedly applying Levi-Civita transformations.
Obviously, this family contains various of exactly analytically solvable problems. The quasi-exact
solution for each unknown member of this family is also obtained and systematically investigated.

Keywords: quasi-exact solution, analytically solvable, Levi-Civita transformation.

1. Introduction

It is known that some problems in non-relativistic quantum mechanics interestingly
relate to each other by certain spatial transformations. This considerable property leads to
arrange these related problems into a certain family and gives plenty of choices to solve
them in both analytical and numerical approaches (Mavromatis, 1997, 1998a, 1998b).
Particularly, Levi-Civita transformation (Levi-Civita, 1906) has been widely used as an
efficient tool to connect the Schrddinger equations which describe two-dimensional
motions under the influence of some central potentials, e.g Coulomb and harmonic
oscillator potentials (Le & Nguyen, 1993) or Coulomb potential plus harmonic oscillator
term (C+HO) and sextic double-well anharmonic oscillator (sextic DWAO) (Hoang-Do,
Pham & Le, 2013). The former problem, which arises from two-dimensional hydrogen
atom model under presence of a homogeneous magnetic field, has been analytically solved
both in recurrence form (Taut, 1995) and in compact form (Le, Hoang & Le, 2017) while
the exact analytical solution for later one is also obtained in compact form via the
inspiration of one-dimension case (Le, Hoang & Le, 2018). Hence, repeatedly applying
Levi-Civita transformation into C+HO and sextic DWAO problems can leads us to other
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problems whose analytical solution can be exactly obtained in compact form as the same as
known ones shown by Le, Hoang & Le (2017, 2018). As an expected results, these
problems combining with C+HO and sextic DWAO problems can form one of families
whose members are interrelated by Levi-Civita problems; also, this family is exactly
analytically solved in compact form.

On the other hand, Feranchuk-Komarov operator method whose idea is based on
harmonic oscillator (Feranchuk et al., 2015) has been applied to achieve exact numerical
solution for C+HO problem (Hoang-Do, Pham & Le, 2013) and sextic DWAO problem
(Hoang-Do, 2016). After that, exact analytical solutions for these problems have also been
used as good references to test how efficient Feranchuk-Komarov operator method is (Le,
Hoang & Le, 2017, 2018). Similarly, other problems which belong to the expected family
and their corresponding exact analytical solutions can also be used as other significant
references for any numerical method including Feranchuk-Komarov operator method.
Within these considerable reasons, the authors aim to construct this family of problems by
repeatedly applying Levi-Civita transformation into C+HO and sextic DWAO problems.
Another scope, which is also necessarily presented, is to perform exact analytical solution
for these problems and to investigate these solutions systematically.

This work is constructed into three sections excluding the Introduction and the
Conclusion. Section 2 obtains the general formula and model to construct the considered
family of problems. Each member of this family is also listed in this section. Moreover, the
brief about methodology to obtain quasi-exact solution for this family is described in this
section. Next, results in quasi-exact solution are devoted in Section 3. Some further
discussions about the relationship between topological property of Levi-Civita
transformation and the number of quasi-exact solution in each generation of this family are
also given in Section 4.

2.  Formula
2.1. Levi-Civita transformation to relate two two-dimension Schrodinger equations
Levi-Civita transformation which was first introduced by Levi-Civita (1906) is a

bilinear transformation which connects a two-dimension Euclean space [ 2 :(x, y) with
another two-dimension Euclean space [ ° :(u,v) such that the Euler identity is satisfied

u® +v? =/x* + y* . The explicit expression of this transformation can be given as follow:

L :(u,v)—>(x,y) such that x=u?-v*and y =2uv , (1)

and its the inverse map is written as:

2 2

uandvz y . (2)
2 \/2y+2\/x2+y2

L™ :(x,y)—>(u,v) such that u=
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From (1) and (2), one may easily show some useful relation formula such as

a§+a§=4‘1(u2+v2)_1(6ﬁ+8§) : (3)
dxdy = 4(u”+v*)dudv (4)
x0, —yo, =(ud, —vo,)/2 , (5)

which may be applied later.
Now, beginning at the stationary Schrodinger equation describing a two-dimensional
particle confining by a Coulomb potential —Z/r combining with a non-Coulomb central

potential V (r) in (x,y) space (here it is called “former” problem)*
(A): {_(a§+a§)/z_z/r+\7(r)}w(x,y):E\y(x,y), (6)

whereas r=./x*+ Yy’ is the distance from this particle to origin, the transformation (1)

allows us to transfer equation (6) into another stationary Schrodinger equation describing a
two-dimensional particle moving under a harmonic potential ©°p?/2 adding a non-

squared central potential \7( p) in (u,v) space (called “later” one) with p =~/u®+v?

(B): {-(&2+82)/2+0°p* /24N (p)jw (u,v)=Ey (u,v) . @)
In detail, the map between these equations (6) and (7)

(A)——(8) ®)
includes relationship between two wave functions:

P(xy)=yw(uv), )
as well as the potentials and energies

E=4Z, E=-0’/8, V(p)=4pV(p’). (10)

For example, if (A) is Coulomb problem V (r)=0, (B) becomes a harmonic
oscillator V(p)=0[8]. Another example is that (B) is sextic DWAO problem o»” <0 and
V(p)=20%p° when (A) is C+HO problem V (r)=Q%r?/2 (Hoang-Do, 2016; Hoang-

Do, Pham & Le, 2013; Le, Hoang & Le, 2017, 2018).
2.2. Family of problems related to Coulomb plus harmonic oscillator (C+HO) and
sextic double well anharmonic oscillator (sextic DWAO) problems

Within the scheme described above, the authors apply the map (8), i.e transformation
(1), repeatedly to the following already-known connection

! Here the authors use the unit such that #=1,m =1,e =1 to avoid the cumbersome from dimension of these problems.
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L
(C+ HO)?(sextic DWAO),

whereas their stationary Schrodinger equations are

(C+HO): {—%(ai +8§)—%+b3r2}lp(3) (xy)=E¥%(xy), (11)
(sextic DWAO): {—%(ai +0})—a,r’ +b4r6}‘1’(4) (x,y)=E¥" (x,y), (12)
to create a series of interrelated problems such as
L L . L L
...?(CJF HO)?(sextlc DWAO) e (13)

Relation (10) between potentials and energies of two interrelated problems shows
that energy of former problem E vanishes when harmonic oscillator term of later problem
disappears o”=0; vice versa, energy of later problem E vanishes if Coulomb term
absents in potential of former problem Z =0. Meanwhile, the map (8) cannot be applied
endlessly and the series (13) must start at the first problem including Coulomb potential
with zero energy and end at the first problem containing harmonic term with zero energy.
As a result, the series (13) solely contains five members named as follow:

L L L

(Gl)?(GZ)?(GSzCﬁLHO)? )

L . L
?(64 = sextic DWAO)?(GS)

From procedure described in Subsection 2.1, the authors find out the Schrodinger
equations for each member of above series (14) and show as a list below:

! a b ¢
(G1): {—E(ai +a§)—m—r3ﬁ+?}‘1’(” (x,y)=E¥" (%) )
1o, a, b, () ()
(G2) —E(ax—k@y)—w—— PP (x,y)=E,¥?(xy)
r r , (16)
(G3) {_l(ai+a§)_ﬁ+b3r2}xp<3>(x,y)=ngp@(x,y)
2 r , (17)
(G4) {—i(ai +0})-a,r’ +b4r6}‘1’(4)(x, y)=E¥" (x,y)
: (18)
(G5) {—l(af +0})—cor® —agr’ +b5r14}‘1’(5)(x, y)=E¥® (x,y) (19)
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in which parameter b, of their potentials are positive so that these Schrodinger equations
are bounded in LZ(D 2) Hilbert space. These parameters with energies E; in equations

(14) to (19) are linked together by relation (10):

(Gl)—>L (Gz):{a?=4ai’ b, = 4b,,

T E,=—4c, E =0, 20)
L
(GZ)4><L__1(GS):{a3=4a2, b, =—4E,, E,=4b,, 1)
L
(GS)4><LT(G4):{a4=4E3, b, =4b,, E,=4a,, 22)
L c, =4E,, a =4a
G4 G5):¢° 4 4
OO e -

Before going to the next Subsection, the following figure illustrates V (r) potential
functions for (G1)-(G5) problems described in equations (15)-(19).

I
= vimy T B
ST L R i e e
o —-—=m=tbh=1c=2 meenem F(r SR Valr
g b ] 3(1r) 4(r)
(T3=l.f)3=l
(T4=l.f)4=l Fl
ﬂi=1,b5=1,c‘§=—4 P p— V;(r)
1.5 20 25 30 35

Figure 1. Potentials for (G1)-(G5) problems at certain values of parameters. The black-thick, red-dashed,
blue-dotted, purple-dot-dash-dot and green-dot-dot-dash lines describe potentials of G1, G2, G3, G4 and G5
problems respectively. These potentials support for existence of bound states when b; parameters are positive
(bj=1).
2.3. Description about wave function ansatz method based on supersymmetry nature of
Schrodinger equations

As mentioned in introduction, among these five problems in the constructed family,
the third (G3) and the forth (G4) one, which are actually C+HO and sextic DWAO
problems, has been analytically solved by Taut (1995), Le, Hoang & Le (2017, 2018).
These exact analytical solutions, which are often classified as quasi-exact solutions, were
obtained by their supersymmetry nature (Cooper, Khare & Sukhatme, 2000) and a method
named wave function ansatz (Dong, 2011). Hence, wave function ansatz method based on
supersymmetry nature of other problems (G1, G2 and G5) is now applied to figure out
their quasi-exact solutions.
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First of all, the authors present a brief about the procedure using wave function
ansatz method based on supersymmetry nature to solve Schrodinger equation of a particle

confined by a central potential V (r):

{-(2+82)/2+V ()| ¥(xy)=E¥(xY) . (24)
Due to the cylinder symmetry corresponding to the integral of motion I:Z = —z(xﬁy —yax),
the wave function can be variable-seperated in polar coordinate (r,e):

Yo (% y)~r 2y, (r)e™, (25)

whereas radial wave function y/(r) is governed by an one-dimension Schrodinger

equation
1
{_Eaf +Veff (r)}l//n,m (r) = Ean,m (r) : (26)
describing a one-dimension motion over the domain [0, +oo) under an effective potential
Vg (r):(mz—]/4)/(2r2)+v(r). (27)
If this effective potential can be written as the following form
Ve (r) =Wz (r)/2+W, (r)/2+E,, (28)

then supersymmetry nature of equation (26) exists and consequently, the zero-node radial
wave function y, (r) must be (Cooper, Khare & Sukhatme, 2000):

Wom ()~ exp[j‘weff (r’)dr’j : (29)

corresponds to lowest level E; . From zero-node radial wave function v, . (r) in (29), the

authors can generate the higher state radial wave function v (r) by making an ansatz:

Vo () =wan (1) 0 (1) ~ exp[j;Weﬁ (r’)dr’jx £ (), (30)

in which the function f, (r) has n nodes. This ansatz is known as wave function ansatz

(Dong, 2011). The simplest form of generator function fn'm(r) to create the nodes for

radial wave function is finite polynomial such as:
D
fom(r)=D_C,r’. (31)
k=0

Substituting (30) and (31) into equation (26), the authors obtain the recurrence
relation between the expansion coefficient C, :
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Cou =9(CpCpuresCrn)- (32)
Since the function fn'm(r) in equation (31) is a finite polynomial, the series of

coefficients C, must be cut-off at a certain degree D, hence, the following constraint

must be satisfied

C,#0, C,,,=C ..=0. (33)

Meanwhile, solely some certain values of potentials’ parameters a;,b;,c; are

D1 D+2 —

allowed to achieve this class of exact analytical solution. This is the reason why this class
is often called quasi-exact solution in some literatures. Besides, energy levels are also
obtained from solving the constraint (33). It is noticed that the constraint (33) still hold
even for zero-node radial wave function; thus, writing down effective potential as the form
of (28) sometimes may requires some conditions.
3. Results

Based on the procedure presented above, the key to obtain quasi-exact solution is to

find the superpotential W, (r) in the formula (28). Table 1 below shows the superpotential
W, (r) for G1, G2, G3, G4 and G5 problems. The constraint allowing to write effective

potentials as the form of (28) is also given in Table 1.
Table 1. Effective potential v, (r) and superpotential W, (r) of G1, G2, G3, G4 and G5 problems

Condition for zero-

Problem  Effective potential V.q (T) node solution Superpotential W, (r) E,
Gl m-Y4 a b g a=0 Im[+y2 b, 0
o2 PR ) b? r (|m|+]/4)\/F
2(|m]+y)
G2 mz_]/4_i_b_2 a,=0 |m|+1/2_ b, ~ b?
T R T IR e pev
G3 m?—-1/4 a,=0 m|+1/2 2b, (|m|+1
Tj/_%erJz ) H%_r\/ﬂ 2o, (|jm]+1)
> m22;3/4—a4r2 +b,r® 2, =(|m[+2) 20, —lmltm—ﬁ 2b, ’
G5 2 _ 0
m _]/4—csr2—asr6+b5r“ 8 = (|m]+4) /25, _|m|+]/2_r7 2h,
2r? ¢, =0 r

From above superpotential, the authors obtain the appropriate wave function ansatz
for each problem as given by follow:

. (1) _ miy2 _ (1)
(Gl): won(r)~r exp( 2 2c1r)><fn'm(r), (34)
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(G2): wif (r)~ " exp (=28, r)x f 2 (r) (35)
(G3): & (r)~r"*ex p( 2b,r /2)>< O r) (36)
(G4): ! (r)~rM? exp( 2b,r /4)>< fé r) a7
(G5): b (r)~rm? exp( 2b, r /8)>< £O( r) (38)

According to Le, Hoang & Le (2017, 2018), f\)(r) and f!*(r) of (G3) and (G4)

problems were written as
D .
G(ry=>cr!, and £12(r) ZC r2i (39)
j=0

which correspond to set 6 =1 and & =2 in equation (31) respectively. Hence, the suitable
forms for £ (r), £12(r), £* (r) functions must be

n,m ' Tnm

£@ >, 2 \/7(4|m|) k/4

o (1)= kZ;k'(k+4|m|) S “0)
o =32 M)
kzkl(k+4|m|) (41)

f(5 ZD: F(1+|m|/2) CIES)F‘“(
" & (kL |m/2) k24 , (42)

which are equivalent to put 6 =1/4, 6 =1/2 and 6 =4 in equation (31).
Replacing (34), (35) and (38) whereas fn(}n{(r), f(znf(r) f(s)(r) are defined as (40),

n, ' Tnm

(41) and (42) into (G1), (G2) and (G5) problems respectively yields us the recurrence
relations of expansion coefficient C, :

(Gl) Ck+2_ak+2 k+1 (ﬁm) IEI) when E1=O,

(43)
(Gz) Ck+2 ak+2 k+1 (ﬁk+l) , (44)
(GS) Ck+2 ak+2 k+1 (ﬁk+l) IES) When E5 = Oa (45)

which belongs to the class of three recurrence relations whose solution is the well-known
the determinant of a tridiagonal matrix (Muir & Metzler, 1960):
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(G1):c =

with o =

(G2):c? =
with o? = —4a,, g =\/i(i+4|m|) 20, (i+2|m|) J2E, )
(G5):C =

with o*) =

af

B

0

8J2a, pY= \/i (i +8|m|)(4b1 ~(i +4|m|)\/2701),

of?

0

af?

B

0

B

Ji
o

2

Ji%

B

af?

B

B

ot

B

B

B

0

By

0

5

Ji
5 5

BE, o

(46)

(47)

(48)

~c2, and B = \fi(i+|m]/2)(ay/4~(i-+m|/4) 2D,

Then, from cut-off condition (33), which is equivalent to the following equation
(i) (i)
a’ P

ﬂl(Jij)l =0,

A

0

aéi) ﬂéj)
By

0

By
By al);

(49)

corresponding energy levels and allowing constraints for potentials’ parameters can be
obtained. Quasi-exact wave functions, corresponding energy levels and allowing
constraints for potentials’ parameters of G1, G2 and G5 problems are shown in Table 2.
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Table 2. Quasi-exact wave functions, corresponding energy levels and allowing
constraints for potentials’ parameters of G1, G2 and G5 problems

(G1) (G2) (G5)
Potential 3 b ¢ 3 b c.ri—ar® +br
otentlia —W—FT-F? —r_37—? —C; —as b5
‘m‘+]/2 _L b 2b rg
' exp{ (|m| +]/4) \/F] "2 exp| ———=2—r vz gy NS
Wave |m|+1/2 8
function XZD:C(l}rk/A « e™ D o)k Qime b oimo
k / Xy CHIrM? x —— wep™0d(m4) Y~ (5) pak o
k=0 2 kZ(; K \/Z kZ:(; . \/Z
2b?
Energy levels E=0 =TT 2 E=0
v (D+1+2|m|)2
_ by a; = (4D +4+|m|)/2b
- 2
2((D+1)/4+[m]) o po 0
o I I
5 5 5 . .
Constraint ISP 10 By 062(5) Bs s .
W B ) ©
L o o
.(1) 1()1;1 0 (5,0 0 Bou Aol
0 Bou Aoz D+1 D+2 ~0

=0

Then some certain allowed parameters and energy levels for G1, G2 and G5
problems are found by solving the constraint equations given in Table 2 via some
calculations in Mathematica. For illustrative purpose, Table 3 below shows numerical
values of some allowed parameters, energy levels for some bound states in G1, G2 and G5
problems.

Table 3. Numerical values of some allowed parameters aj, bj, cj and exact energy levels E;
for some bound states (n,m) in G;j problems where j = 1, 2, 5. These values can be used as
reference for testing numerical methods

G1 problem

D a1 b1 C1 (n,m) Energy E1
0.00000000000000 | 1.00000000000000 | 0.09876543209877 | (0,-2) | 0.00000000000000
0.00000000000000 | 1.00000000000000 | 0.32000000000000 | (0,-1) | 0.00000000000000
0 0.00000000000000 | 1.00000000000000 | 8.00000000000000 | (0,0) | 0.00000000000000
0.00000000000000 | 1.00000000000000 | 0.32000000000000 | (0,1) | 0.00000000000000
0.00000000000000 | 1.00000000000000 | 0.09876543209877 | (0,2) | 0.00000000000000
- 1.00000000000000 | 0.08000000000000 | (0,-2) | 0.00000000000000
1 0.23048861143232 | 1.00000000000000 | 0.08000000000000 | (1,-2) | 0.00000000000000
0.23048861143232 | 1.00000000000000 | 0.22222222222222 | (0,-1) | 0.00000000000000
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- 1.00000000000000 | 0.22222222222222 | (1,-1) | 0.00000000000000
0.21650635094611 | 1.00000000000000 | 2.00000000000000 | (0,0) | 0.00000000000000
0.21650635094611 | 1.00000000000000 | 2.00000000000000 | (1,0) | 0.00000000000000

- 1.00000000000000 | 0.22222222222222 | (0,1) | 0.00000000000000
0.12500000000000 | 1.00000000000000 | 0.22222222222222 | (1,1) | 0.00000000000000
0.12500000000000 | 1.00000000000000 | 0.08000000000000 | (0,2) | 0.00000000000000

- 1.00000000000000 | 0.08000000000000 | (1,2) | 0.00000000000000
0.21650635094611
0.21650635094611
0.23048861143232
0.23048861143232
0.44594129250792
0.00000000000000
0.44594129250792 | 1.00000000000000 | 0.06611570247934 | (0,-2) | 0.00000000000000

- 1.00000000000000 | 0.06611570247934 | (1,-2) | 0.00000000000000
0.41187723552396 | 1.00000000000000 | 0.06611570247934 | (2,-2) | 0.00000000000000
0.00000000000000 | 1.00000000000000 | 0.16326530612245 | (0,-1) | 0.00000000000000
0.41187723552396 | 1.00000000000000 | 0.16326530612245 | (1,-1) | 0.00000000000000

- 1.00000000000000 | 0.16326530612245 | (2,-1) | 0.00000000000000
0.25000000000000 | 1.00000000000000 | 0.88888888888889 | (0,0) | 0.00000000000000
0.00000000000000 | 1.00000000000000 | 0.88888888888889 | (1,0) | 0.00000000000000

- 1.00000000000000 | 0.88888888888889 | (2,0) | 0.00000000000000
0.25000000000000 | 1.00000000000000 | 0.16326530612245 | (0,1) | 0.00000000000000

- 1.00000000000000 | 0.16326530612245 | (1,1) | 0.00000000000000
0.41187723552396 | 1.00000000000000 | 0.16326530612245 | (2,1) | 0.00000000000000
0.00000000000000 | 1.00000000000000 | 0.06611570247934 | (0,2) | 0.00000000000000
0.41187723552396 | 1.00000000000000 | 0.06611570247934 | (1,2) | 0.00000000000000

- 1.00000000000000 | 0.06611570247934 | (2,2) | 0.00000000000000
0.44594129250792
0.00000000000000
0.44594129250792

G2 problem
a b2 (n,m) Energy E2

0.04000000000000

0.00000000000000 1.00000000000000 (0,-2)

0.00000000000000 1.00000000000000 (0,-1) 0111111111111

0.00000000000000 1.00000000000000 0,0

0.00000000000000 1.00000000000000 0,2) 1.00000000000000

0.00000000000000 1.00000000000000 0,2 0.11111111111111
0.04000000000000
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0.02777777777778
0.02777777777778
-0.67977010278300 1.00000000000000 (0,-2) | 0.06250000000000
0.67977010278300 1.00000000000000 (1,-2) -
-0.54179672970479 1.00000000000000 (0,-1) | 0.06250000000000
0.54179672970479 1.00000000000000 (1,-1) -
-0.28426365609385 1.00000000000000 (0,0) | 0.25000000000000
0.28426365609385 1.00000000000000 (1,0 -
-0.54179672970479 1.00000000000000 (0,1) | 0.25000000000000
0.54179672970479 1.00000000000000 1,1) -
-0.67977010278300 1.00000000000000 (0,2) | 0.06250000000000
0.67977010278300 1.00000000000000 1,2) -
0.06250000000000
0.02777777777778
0.02777777777778
0.02040816326531
0.02040816326531
-1.24159589918019 1.00000000000000 (0,-2) .
0.02040816326531
0.00000000000000 1.00000000000000 (1,-2)
1.24159589918019 1.00000000000000 (0,-2)
0.04000000000000
-1.00563751900533 1.00000000000000 0,-1)
0.00000000000000 1.00000000000000 (1,-1)
0.04000000000000
1.00563751900533 1.00000000000000 0,-1)
-0.59986244844551 1.00000000000000 0,0
0.00000000000000 1.00000000000000 (1,0 0.04000000000000
0.59986244844551 1.00000000000000 (2,0 0.11111111111111
-1.00563751900533 1.00000000000000 0,1) '
0.00000000000000 1.00000000000000 1,1)
1.00563751900533 1.00000000000000 0,1) 0111111111111
-1.24159589918019 1.00000000000000 0,2)
0.00000000000000 1.00000000000000 1,2) 0111111111111
1.24159589918019 1.00000000000000 0,2) 0.04000000000000
0.04000000000000
0.04000000000000
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0.02040816326531

0.02040816326531

0.02040816326531

G5 problem
as bs Cs (n,m) Energy Es

8.4852813742386 1.0000000000000 0.0000000000000 (0,-2) | 0.0000000000000
7.0710678118655 1.0000000000000 0.0000000000000 (0,-1) | 0.0000000000000
5.6568542494924 1.0000000000000 0.0000000000000 (0,0) | 0.0000000000000
7.0710678118655 1.0000000000000 0.0000000000000 (0,1) | 0.0000000000000
8.4852813742386 1.0000000000000 0.0000000000000 (0,2) | 0.0000000000000
14.1421356237310 1.0000000000000 -1.1892071150027 (0,-2) | 0.0000000000000
14.1421356237310 1.0000000000000 1.1892071150027 (1,-2) | 0.0000000000000
12.7279220613579 1.0000000000000 -1.0298835719536 (0,-1) | 0.0000000000000
12.7279220613579 1.0000000000000 1.0298835719536 (1,-1) | 0.0000000000000
11.3137084989848 1.0000000000000 -0.8408964152537 (0,0) | 0.0000000000000
11.3137084989848 1.0000000000000 0.8408964152537 (1,0) | 0.0000000000000
12.7279220613579 1.0000000000000 -1.0298835719536 (0,1) | 0.0000000000000
12.7279220613579 1.0000000000000 1.0298835719536 (1,1) | 0.0000000000000
14.1421356237310 1.0000000000000 -1.1892071150027 (0,2) | 0.0000000000000
14.1421356237310 1.0000000000000 1.1892071150027 (1,2) | 0.0000000000000
19.7989898732233 1.0000000000000 -2.6591479484725 (0,-2) | 0.0000000000000
19.7989898732233 1.0000000000000 0.0000000000000 (1,-2) | 0.0000000000000
19.7989898732233 1.0000000000000 2.6591479484725 (2,-2) | 0.0000000000000
18.3847763108502 1.0000000000000 -2.3784142300054 | (0,-1) | 0.0000000000000
18.3847763108502 1.0000000000000 0.0000000000000 (1,-1) | 0.0000000000000
18.3847763108502 1.0000000000000 2.3784142300054 (2,-1) | 0.0000000000000
16.9705627484771 1.0000000000000 -2.0597671439071 (0,0) | 0.0000000000000
16.9705627484771 1.0000000000000 0.0000000000000 (1,0) | 0.0000000000000
16.9705627484771 1.0000000000000 2.0597671439071 (2,0) | 0.0000000000000
18.3847763108502 1.0000000000000 -2.3784142300054 (0,1) | 0.0000000000000
18.3847763108502 1.0000000000000 0.0000000000000 (1,1) | 0.0000000000000
18.3847763108502 1.0000000000000 2.3784142300054 (2,1) | 0.0000000000000
19.7989898732233 1.0000000000000 -2.6591479484725 (0,2) | 0.0000000000000
19.7989898732233 1.0000000000000 0.0000000000000 (1,2) | 0.0000000000000
19.7989898732233 1.0000000000000 2.6591479484725 (2,2) | 0.0000000000000

4, Discussion
Now, the authors perform observation about the number of exact bound states for G5
problem as an example. Since only zero energy level of G5 problem is exactly solved, the

degeneracy of this level for each value of (a5,b5,05) parameters; meanwhile, the authors
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count how many states (n,m) corresponding to zero energy level for each value of

(as,bs,¢;). Inorder to do this, let us remind the constraint of (ag,bs,c;) for G5 problem

to have exact solution at zero energy level:

a; = (4D +4+|m[),/2b; , (50)
—Cs Bl 0
ﬁl —Cs ﬁz
B, .o =0, (51)
.‘. . ﬁ"‘D
0 ﬁD —Cs

Where as S, =W\/(D+l—i)i(i+|m|/4). Condition (51) means that c, is eigenvalue
of a Hermitian tridiagonal matrix; hence, according to Sturm sequence theorem, there are
D +1 different solutions for ¢, (Wilkinson, 1965),
Cs; <Cy, <...<Csp- (52)
Especially, since both c. and —c. are two opposite solutions of (51), ¢, =0 is one
of the solution of (51) if D is even. In addition, the differential equation of f, can be
understood as eigensystem problem in which f; is eigenfunction and c is eigenvalue;
then, Sturm-Liouville theorem states that the node number of eigenfunction f5(r)
corresponding to D+1 different solutions of c. in (52) must be from 0 to D (Zettl,
2005). As the consequence, the node number of eigenfunction f, must be D/2 when
c; =0 and D is even. Moreover, from condition (50), in total, there are
0. (N)= :{Zint(N/8)+2 N8
m}+4D=N N/4+1 N:8

D even

(53)

exact-solution states for each set of (ag,by,c, )where a; = (N +4),/2b;and ¢, =0. The
wave function of these states are equivalent to the wave function of G4 problem when
a, =(N/2+2)4/2b, . According to the similar investigation of G4 problem by Le, Hoang

& Le (2018), the number of exact-solution energy states in G4 problem is

2int(N/8)+2 NI8N:2
94(N)={N/4(+1/) ng %N &)

Comparison from (54) and (55) show that number of zero energy state of G5
problem is equal to the one of G4 problem when N is even. However, for G5 problem,
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there are still exact solutions for odd N while the opposite is true for G4 problem. It
means Levi-Civita transformation from G4 problem to G5 problem “creates” more exact
solutions.

As mentioned in Introduction, this observation is the consequence of the topological
nature of Levi-Civita transformation in the quasi-exact solutions for G1-G5 problems.
Coming back to the expression of Levi-Civita transformation which connects the

02:(xy) space to the [1%:(u,v) space, its inverse map only valid to take form as

equation (2) when u>0; meanwhile, Levi-Civita transformation actually project the
Euclidean space [ *:(x,y) into a half Euclidean space [ *x[ :(u,v). This property of

Levi-Civita transformation bases on its topological nature, particularly, on its relation with
0" Hopf map, i.e real Hopf map:Z,=S°0S'—S' (Bellucci, 2006). It is easily

understandable if Levi-Civita transformation is written in polar coordinates instead of
Cartesian coordinates:

L 2
(p,w)?(f,@): r=p° 0=2¢ . (55)
Beside the radius part r = p> which expresses Euler identity, the angle part 8 =2 means

that ¢ lies solely in a half of 1-sphere S'/Z, =[0, 7] whenever 6 belongs to S* =[0,27]

sphere of (x, y) space. Such because of this topological property, when two problems are

connected by Levi-Civita transformation (A);(B) the relationship between the

wave functions W (r,0) and v (p,¢) of these two connected problems is not simply
equal to each other as the statement in equation (9), especially in angular part of wave
function. Solving problem (A) and (B) independently in (1 > space provide us the angular

part of wave function must be

im,6 imgp
eﬁ, and E with m,, m; is integer, (56)

respectively. The quantization of angular momentums m,,m, arises from the periodic

condition of [ 2 space or more precisely, of S' sphere. However, due to topological nature
of Levi-Civita transformation, periodic condition of S*=[0,27] sphere in (x,y) space is

equivalent to periodic condition of S'/Z, =[0,z]half sphere in (u,v) space which leads
to the even integer m; quantization; consequently, the wave function of m, state in (x, y)

space is related to the wave function of m; =2m, state in (u,v) space. In other word, the
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wave function of odd mjin (u,v) space does not relate to any bound states” wave function
in (x,y)space. Intuitively, this requirement of angular quantum number relation is

involved from the fact that the wave function of (B) problem must be symmetry to u=0

plane. Figure 2 below show the connection between two spaces and between two wave

function.
y v v
r
K ° Levi-Civita VA "A
X u - u
k jransformation ' "
T 2717
11
0 T 27T m=1
1 ~ 1 0 10
m =1 Asymmetry
o \ -0 )
evi-Civita 1 \ 1
/ \ M\ 2
0 T 27T ou \ \ 10
Symmetry
0 7T 27
Problem A Problem B

Figure 2. Relationship between two spaces in Levi-Civita transformation and also between two
connected wave function. Only even angular quantum number states of problem B is connected to
states of problem A. The reason for this is due to requirement of mirror symmetry at u = 0 plane

As an example, the following sketch describes angular quantum number of G4 and G5
problems which connects to m, =0 and m, =1 states of G3 problem:
(G3) (G4) (G5)

my; =0 -:::»‘ 1214:0‘:.'>| mj:(}‘

N Ny
z.1| m4:2‘ 1y =2

Figure 3. The sketch describes angular quantum number of G4 and G5 problems connecting to m
=0 and m = 1 states of G3 problem. The rectangles present to states of later problem which
connect to states of former problem while ellipses present to “extra” states which do not connect to
any state of former problem
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Hence, topological nature of Levi-Civita transformation tell us that the number of bound
states for later generation is almost twice as many as the number of bound states for the
former. This influence has been observed from the quasi-exact solutions of G4 and G5
problems and can be witnessed even from G1 to G5 problems.
5. Conclusion

In this paper, the authors have constructed a family of problems by repeatedly
applying Levi-Civita transformation into C+HO and sextic DWAO problems. Their exact
analytical solutions, both energy levels and wave function of bound states, have been
obtained and investigated systematically. The relationship between topological property of
Levi-Civita transformation and the number of quasi-exact solution in each generation of
this family has been discussed also. The results, as mentioned in the introduction, can be
good references to test how numerical method is good in solving Schrddinger equation.
Furthermore, the next research may be about achieving exact numerical solutions to
describe full energy spectrum of each provided problem here by using the scheme of
Feranchuk-Komarov operator method.
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TOM TAT

Mgt sé bai toén hai chiéu trong Co hoc luong tik phi tirong doi tinh 6 lién hé véi nhau qua
cac phép bién doi khong gian nhar dinh nhuwe phép bién doi Levi-Civita. Tinh chdt ndy cho phép xay
ding mét ho céc bai toan hai chiéu cé lién hé mdt thiét véi nhau. Xudt phat tir hai bai toan c6 lién
hé véi nhau 1a bai toan Coulomb két hop véi dao déng tir diéu hda va bai todn dao dong tir phi
diéu hoa bdc sau dang hé doéi, mét ho cdc bai todn da dwoc xay dung bang cach ap dung lién tiép
cac phép bién doi Levi-Civita. Mgt cach hién nhién, ho nay chira céc bai toan co loi gidi gidi tich
chinh xéc. Loi gidi chudn chinh xac cia timg bai todn chira biét trong ho nay ciing duwot xay ding
va khdo sat mgt cach cé hé thang.

Tir khoa: 1o giai chudn chinh xéc, tinh kha giai giai tich, phép bién ddi Levi-Civita.
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