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ABSTRACT

In the paper, a calculating program named “KANTBP 4M - A program for solving
boundary problems of the self-adjoint system of ordinary second order differential equations” is
presented. The KANTBP 4M program studied different mathematical models reduced from complex
physical ones and gave the numerical results and the accuracy of these results in comparison with
the analytical ones.
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1. Introduction

The KANTBP 4M program (Luong et al., 2015) is written on Maple software by the
author of the paper and scientific collaborators at the Joint Institute for Nuclear Research,
Dubna city, Moscow region, Russian Federation. The program contains more than 1000
codes and complex algorithms shown by calculation diagrams based on the finite element
method with interpolation Hermite polynomials to investigate mathematical models
reduced from low-dimensional complex quantum models.
2. Formation of the KANTBP 4M program
2.1. Boundary value and eigenvalue problems and symmetric quadratic functional

We consider the boundary value problem (BVP) and eigenvalue problems for the
system of ordinary differential equations of the second order with respect to the unknown

functions @(z) = (®,(z)...,®,(z))" of the independent variable z e (z™,z™) (Streng &
Fics, 1977):
(D—EN®(z) =

e d @0 1 df@Q) _
[f()ld A() V(@) + f()Q()Z o Eljcb(z) 0o O

Here f,(z)>0 and f,(z)>0 are continuous or piecewise continuous positive
functions, | is the unit matrix, V(z) is a symmetric matrix (V; (z) =V;(z)), and Q(z) is

an antisymmetric matrix (Q; =—Q;). These matrices have dimension N x N and their
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elements are continuous or piecewise continuous real or complex-valued coefficients from

s>1

the Sobolev space H,~(Q2), providing the existence of nontrivial solutions subjected to

homogeneous boundary conditions: Dirichlet (I kind) and/or Neumann (Il kind) and/or
mln max

third-kind (111 kind) at the boundary points of the interval z € (z ) at given values

of the elements of the real or complex-valued matrix R (z') of dimension N x N .

(1):  ®(z') =0, t=min and/or max 2)
(n: lim fA(z)(I——Q(z)j 0, t=min and/or max )

=R(z")®(z") , t=min and/or max (4)

z=7!

(9
(1ny: (IE Q(z)j

The solution ®(z) e H;*(Q) of the BVPs (1)—(4) is reduced to the calculation of

stationary points of a symmetric quadratic functional numerically using the Finite Element
Method (FEM)
Zrmx

E((D,E,Zmin,zmaX)EJ- | (Z)(D—E')@(Z)dz:H((D’E’Zminazmax)

z

f A(Zmax)q)-(Zmax)G(Zmax)(D(Zmax) + f A(Zmin)(D-(Zmin)G(zmin)(D(zmin) (5)

n(®,E,z™,2™) = I [fA(z)O@—.(Z)M+ fB(2)®° (2)V(2)®(2)
_ dz dz
d(I)(z) d(I)(z)

+fA(2)0* (2)Q(2)— = — f () ——Q(2)®(2) - fB(Z)Efb'(Z)@(Z)}dZ (6)

where G(z)=R (z)-Q(z) is a symmetric matrix of the dimension N x N ,* denotes

either the transposition T, or the Hermitian conjugation’, i.e., the transposition with
complex conjugation, depending on the type of the problem to be solved.
2.2. FEM generation of algebraic problems

In one-dimensional space, the interval [zmi”,zmax] is divided into many small

domains referred to as elements. The interval A = [Zmi”, Zmax] is covered by a set of n
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;_nln 1 Zmax = Zmln

n
i j1 ] in such a way that A= [ J Aj. Thus, we obtain the

j=1

grid:th(Z)[z"i”,z”“x]:{z”i” = zimi”,zgTBX :ZE”” +h;=1..,n-1, A =er1nin +h, =2

elements AJ- :[z

where, me =2, j=2,...,n are the mesh points, and the steps h; =z —z]"" are

the lengths of the elements AJ- .

Interpolation Hermite Polynomials (IHPs): In each element A;we define the

h
equidistant sub-grid o' J(Z)[ mmi 2] =

{Z(j-yp=2]" Z(j-nper- T =L P-LZjp = 2]}

with the nodal points z, =2z(j_1yp,¢ determlned by the formula (Gusev et al., 2014,
Gusev & Luong, 2014):

25 ayper =((P=1) 20" 412]) /D, r=0,..p. ™)
As a set of basic functions{N, (z, me’ maX)}I T, 1max P k™ we will use

the IHPs {{(of(z)}zfzo _1} in the nodes z,,r =0,..., p of the grid (7). At each node z,,
the values of the functions qof(z) with their derivatives up to the order (k"> —1), i.e

k=0,. 1, where K‘ is referred to as the multiplicity of the node z,, are
determined by the expressions (Berezin & Zhidkov, 1962):

d“of (2)
or (2p) = Srrdo, dz—:" |z:zrr = OOy (8)

Note that all degrees of IHPs ¢ (z) do not depend on x and equal p’ = Z K
r'=0

—-1. Below we consider only the IHPs with the nodes of identical multiplicity

K=k r=0,...,p. In this case, the degree of the polynomials is equal to

p'=

N e, (220", 2]™)=F(2), r=0...p, k=0..., ™1

k™ (p+1)—1. We introduce the following notation for such polynomials:

These IHPs form a basis in the space of polynomials having the degree

min

P =x"*(p+1)—1in the element Z € [Z r-nax] that have continuous derivatives up to

n max min max]

the order k"% —1 at the boundary points ZmI and z;™" of the element Z e[z
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3. Brief description of the class of problems
3.1. For the eigenvalue problem

The KANTBP 4M program calculates a set of M energy eigenvalues
E:RE <RE,<...<ME,, and the set of corresponding eigenfunctions

O(2) ={®" )}, D"(2)= (@™ (2),..., " (2))" from the space HZ for the

system (1). In this work we consider only real-valued potentials, the solutions are subjected
to the normalization and orthogonality conditions:

, Zmax ,
<™ o™ > =" f@)@M @) @™ (2)dz = 5y ©)

and the corresponding symmetric quadratic functional (5) is used, in which °denotes

Hermitian conjugationT, needed for discretization of the problem by the FEM.

To solve the problem for bound states on the axis or on the semiaxis the initial
problem is approximated by boundary value problem (1)-(4) on a finite interval
z e (z™", 2™) with boundary conditions (2)—(4).

3.2. For the multichannel scattering problem
On the axis z e(—oo,+oo) at fixed energy E =RE, the desired matrix solutions

(I)(z)z{(I)\(,i)(z)},’il, (I)\(,i)(z):(CDg,)(z),...,CI)ﬂ,z,(z))T of the boundary problem (1) (the
subscript v means the initial direction of the incident wave from left to right — or from
right to left <) in the interval z e (z™",z™

KANTBP 4M program. These matrices solutions are subjected to homogeneous third-kind

) are calculated by the code of the

boundary conditions (4) at the boundary points of the interval z e (z™",z™*) with the
asymptotes of the “incident wave + outgoing waves” type in open channels i=1,...,N
(Gusev et al., 2016):

0o

X(+)(Z) T, Z €[z™3X +00),
+) ©) - V=
X (z)+ X ()R, ZE€ (—OO,me],
@, (z >+0) = ¢ o - (10)
X (z)+ X (2)R,  ze[z™*F, +m),
) | Ve
L X (2) T, ZE€ (—OO,me],

where T,

v and R, are unknown rectangular and square matrices of transmission and

reflection amplitudes, respectively, to construct the scattering matrix Sof the dimension

R T
NxN: s=| <
o0 (T Rj

- «—
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4. Application of the KANTBP 4M program
4.1. The eigenvalue problem for the one-dimensional and d-dimensional harmonic
oscillator (d > 2)
In the equation (1) atf,(z)=f,(z)=2""N=L,V(z)=V,,(z)=12% we have the
Schrodinger equation for d-dimensional harmonic oscillator for bound states:
1

(D—Em)(Dm(z)=(—ﬁizd‘l+zz—EmJCDm(z)=O (11)
29" dz

The equation (11) has an analytical solution — the eigenvalues EZ*®' and the
eigenfunctions ®&*“(z) , normalized by the condition (9).

At d=1 on infinite interval Ze(—o0,+0) we have the eigenvalues
ES =2m+1, m=0.,.., and the normalized eigenfunctions
exp(-22 / 2)H 4 (2)
Y2t f(m-1)!
have the eigenvalues ES® =d +4m, m=0,1... , and the normalized eigenfunctions

Qe (7) = J2r(m+d/2)/T(m-+1) exp(-z%/2),F(-m,d /2,7%).
(d/2)
The results calculated by the KANTBP 4M program are shown on Fig. 1, Fig. 2 and

Fig.3. It can seen that the solutions of the eigenvalue problem (11) calculated by the

DO (7) = . At d>2 on semi-infinite interval z €(0,400) we

KANTBP 4M program have the accuracy 10 in comparison with the analytical solutions.

d=1 eigv4=7.00000000549676+0.*1 d=1 eigv5=9.00000000659372+0.*1 d=5  eigv6=24.9999985894023+0.*
o5 NI\
, 12 3 4 5 6 7
04 04 2
03
-1
0.2 0;
0.
-2
-6 -4 2 /4 6 2
z -6 -4 2 4 6

Fig. 1. Eigenfunctions and corresponding eigenvalues of 4-th and 5-th states for the one-
dimensional and 6-th state for d=5-dimensional harmonic oscillator (from left to right)

calculated by the KANTBP 4M program, atp=3, k™ =2, p'=7.
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d=1 Comparision with analytical eigenfunction a=l1

of 4-th state

Comparision with analytical eigenfunction

of 5-th state
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of 6-th st

d=5 Comparision with analytical eigenfunction
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1

2 4 6
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Fig. 2. The errors of eigenfunctions of 4-th and 5-th states for the one-dimensional and
6-th state for d=5-dimensional harmonic oscillator (from left to right) calculated by the

program KANTBP 4M, at p=3 k™ =2 p'=7.
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Fig. 3. The errors of the eigenvalues (left panel) and eigenfunctions (right panel) of 5-th
state for the one-dimensional (up panel) and d=5-dimensional harmonic oscillator (down

panel) at different values of p,k™, p' on the interval z € (10, 10) depending on the line

number L of the matrix of eigenvalue problem.
4.2. The eigenvalue and scattering problems with constant or piece-wise continuous

potentials
4.2.1. The eigenvalue problem

In the equation (1) at f;(z)= f,(z)=1 Q(z)=0, we have:
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2 Zmax
[—I % +V(z)- EtI](I)t(z) =0, j (@, (2)) @, (2)dz = 5., (12)
Zmin

where V(z) — the matrix of piecewise constant potentials with dimension NxN:

Vi (2) =Vjiy =Vij1, 2 < 3Vij2, 2 255 Vijkn 2 < 4 43 Vi 2> 2} (13)

This problem describes waveguide modes of a planar optical waveguide (Gevorkyan
et al., 2015). Since the eigenfunctions of the discrete spectrum decay exponentially as z —
oo, then the original problem is reduced to a boundary value problem (1)—(3) in the interval
Z € (Zmin, Zmax) (Zmin<Z1 VA Zmax>Zk-1). The results calculated by the KANTBP 4M program
are shown on Fig. 4.

Atk =3and N = 3 can be given in the following form:

00 O -5 4 4 00 O
V(2)={0 5 0],z<-2| 4 0 4|-2<z<2/0 0 0 |z>2;. (14)
0 0 10 4 4 10 0 0 10
eigvl= - 6.94473223764429+0.*T eigv2= - 5.63583463231327+0.%1

legend

comps 2
15
-10 - 5 10
. -0.1 -
0 02 04 06 08 1 -02
eigv3= - 3.53071254014711+0.>T eigvd= - 0.885050213723355+0.~1 -
ol 0.4
03
ol2]
0.
0
-10 -5 0| 5 10 \/\
-0 - -10 -5 o] 5 10
0.1 =
-0
-02

hj:21,...,30 =1z,
The solutions of boundary problem (12) calculated by the KANTBP 4M program
have the accuracy 10~° in comparison with the analytical solutions.
4.2.2. The scattering problem
We consider the scattering problem at fixed energy E on an infinite interval z € (—o,

+o0) (Gevorkyan et al., 2015, Gusev et al., 2016):

=12 and p=3 k™ =2 p'=7.
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2
[—I5—2+V(z)—EtI](I)t(z) =0, (15)
z

where | — the unit matrix, V(z) — the matrix of piecewise constant potentials with
dimension NxN given in the form (13) and (14).

legend Incident wave from left to right LR(1): E=3.8

3
2.51

comps 2

1.51

1

Incident wave from right RL(1): E=3.8 Incident wave from right RL(2): E=3.8
to left to left

N
051
NN } Vs

e e Aol i3 \/7{/\\6
VT

0.172112308697617 + 0.287217875108078 I 0.805053671635163 — 0.4120093120273381 0.0370164789722525 + 0.262011332364042 1
0.805053671635159 — 0.4120093120273371 0.0596794820525667 + 0.2348380918113371 -0.316071711078588 + 0.153378668991837 1
0.0370164789722513 + 0.2620113323640411 -0.316071711078588 + 0.153378668991838 I 0.228490505982369 + 0.868530706438974 1

Smatr =

Fig. 5. A set of eigenfunctions ®;._,(z), ®,., (2), D, (z) and scattering matrix S of multichannel
scattering problemat z, =6, h, ,, =04, z =6andp=3, k™ =2, p'=7.

On Fig. 5 it can be seen that at E=3.8 for wave from left there is N =1 open
channel, and from right there are N%_ =2 open channels. The solutions of the boundary

problem (15) calculated by the KANTBP 4M program have the accuracy 107 in
comparison with the analytical solutions.
4.3. The multichannel scattering problem of tunneling of two identical particles with
the oscillator interaction through the potential barrier

We consider the penetration of identical quantum particles, coupled by short-range

oscillator-like interaction VOSC()(l—XZ):(Xl—XZ)ZIZ, through the repulsive Gaussian
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potential barrier Vg(xs):a/(a 27z)exp(—xsz/c72), here, s=1,2, o =0.1, o =alpha
=5. In the system of equations (1), at Q;(z) =0, fa(z) = fg(z) =1 and V;(z) is
given in analytical form (Gusev et al., 2014; Vinitsky et al., 2014):

Vi (2) = jj XD (X) (Vg (2= X) /V2) +Vg (2 + %) 11/2) ) 05 (x) , where BFF(X)
is the eigenfuction of harmonic oscillator with potential V., (x) = x* and the eigenvalue
E. =15913,...

The solutions @, and @ 44 of multichannel scattering problem on semiaxis
Z € (0,+0) calculated by the KANTBP 4M program are shown on Fig. 6.

Incident wave from left LR(1): E=5.45 Incient wave from left LR(2): E=5.45

lcgend to right to right
S g! o rig/ . —\\ —~.
-6 o 24 e
4 z
-05
comps 3
_1.
2
-15
1
0 02 04 06 08 1 5
Incident wave from right RL(1): E=5.45 Incident wave from right RL(2): E=5.45
to left to left }
-6~ -4"" o : .6
/\ 7 - -0.5
AW/
_6\\:/4‘: v ol -
os) 4. 1s
-14 -2

0.52783922 + 0.427988411 0.11992651 — 0.22928950 1 0.36819798 — 0.55200523 1 0.013947193 — 0.17544696 1
0.11992649 — 0.22928948 1 0.67135175 + 0.67033483 1 0.013947191 — 0.175446591 -0.025995490 — 0.036472486 1
0.36819795 — 0.552005211 0.013947186 — 0.175446591 0.52784212 + 0.427984421 0.11992588 — 0.22929106 1
0.013947195 — 0.175446961 -0.025995491 — 0.0364724871 0.11992590 — 0.22929106 1 0.67135432 + 0.67033173 1

Smatr =

Fig. 6. The solutions of boundary problem (1) subjected to the third-kind boundary
condition (4) and the scattering matrix S calculated by the KANTBP 4M program in an

equidistant sub-grid at z,;, =—6, Z, =6, N=5 p=3 k™ =2.
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5. Conclusion

The KANTBP 4M program and its application was presented by analyzing low-
dimensional quantum system models that were reduced to mathematical models. The
results of arithmetic calculations by the KANTBP 4M program give high accuracy
compared to analytical methods. The KANTBP 4M program is a useful tool for researchers
especially in the field of natural and technical science to research a variety of
computational models based on physical models such as quantum physics, atomic nuclear
physics, solid physics etc.
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UNG DUNG CHUONG TRINH KANTBP 4M
DANH CHO SU PHAN TiCH CAC MO HINH HE THONG LUQNG TU IT CHIEU
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TOM TAT
Bai bao gidi thiéu mdt chuong trinh c6 tén goi “KANTBP 4M — A program for solving
boundary problems of the self-adjoint system of ordinary second order differential equations”.
Chuong trinh KANTBP 4M khdo sdt cdac mé hinh toan hoc khdc nhau dwoc don gidn héa tir nhitng
md hinh var Ii phitc tap va cho nhiing két qua tinh todn sé hoc ciing nhw dé chinh xdc ciia cdc két
Qud ndy SO Véi két qud gidi tich.
Tir khéa: KANTBP 4M, phuong phép phan tir hiru han, bai toan bién.
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