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ABSTRACT 

In the paper, a calculating program named “KANTBP 4M – A program for solving 
boundary problems of the self-adjoint system of ordinary second order differential equations” is 
presented. The KANTBP 4M program studied different mathematical models reduced from complex 
physical ones and gave the numerical results and the accuracy of these results in comparison with 
the analytical ones. 

Keywords: KANTBP 4M, finite element method, boundary value problem. 
 

1. Introduction 
The KANTBP 4M program (Luong et al., 2015) is written on Maple software by the 

author of the paper and scientific collaborators at the Joint Institute for Nuclear Research, 
Dubna city, Moscow region, Russian Federation. The program contains more than 1000 
codes and complex algorithms shown by calculation diagrams based on the finite element 
method with interpolation Hermite polynomials to investigate mathematical models 
reduced from low-dimensional complex quantum models. 
2. Formation of the KANTBP 4M program 
2.1. Boundary value and eigenvalue problems and symmetric quadratic functional 

We consider the boundary value problem (BVP) and eigenvalue problems for the 
system of ordinary differential equations of the second order with respect to the unknown 
functions 1( ) ( ( ) , ( ))T

Nz z z   Φ  of the independent variable min max( ),z z z  (Streng & 

Fics, 1977): 
( ) ( )D E z I Φ  

1 ( ) 1   ( ) ( )( ) ( ) ( ) ( ) 0
( ) ( ) ( )

A A
A

B B B

d d f z d d f z zf z z z E z
f z dz dz f z dz f z dz

 
      
 

QI V Q I Φ  (1) 

Here ( ) 0Af z   and ( ) 0Bf z   are continuous or piecewise continuous positive 

functions, I is the unit matrix, ( )zV  is a symmetric matrix ( ( ) ( )ij jiV z V z ), and ( )zQ  is 

an antisymmetric matrix ( ij jiQ Q  ). These matrices have dimension N N and their 
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elements are continuous or piecewise continuous real or complex-valued coefficients from 
the Sobolev space 1

2 ( )s H , providing the existence of nontrivial solutions subjected to 

homogeneous boundary conditions: Dirichlet (I kind) and/or Neumann (II kind) and/or 
third-kind (III kind) at the boundary points of the interval min max( ),z z z  at given values 

of the elements of the real or complex-valued matrix ( )tzR  of dimension N N . 

(I):    ( ) 0tz Φ , t=min and/or max                                                            (2) 

(II):   lim ( ) ( ) 0
t A

z z

df z z
dz

   
 

I Q ,  t=min and/or max                    (3) 

(III):   ( ) ( ) ( )
t

t t

z z

d z R z z
dz 

 
  
 
I Q Φ , t=min and/or max           (4) 

The solution 1
2( ) ( )sz  Φ H  of the BVPs (1)–(4) is reduced to the calculation of 

stationary points of a symmetric quadratic functional numerically using the Finite Element 
Method (FEM) 

min max( , , , )E z z Ξ Φ
 

max

min
( )( ) ( )

z

z
z E z dz  D I Φ

 

min max( , , , )E z zΠ Φ
 
  

max max max max min min min min( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )A Af z z z z f z z z z Φ G Φ Φ G Φ    (5) 

min max( , , , )E z z Π Φ   

max

min

( ) ( ) ( ) ( ) ( ) ( )A B
z

z

d z d zf z f z z z z
dz dz







 Φ Φ Φ V Φ  

( )( ) ( ) ( )A d zf z z z
dz


ΦΦ Q ( )( ) ( ) ( ) ( ) ( ) ( )A Bd zf z z z f z E z z

dz
dz





 



Φ Q Φ Φ Φ  (6) 

where ( ) ( ) ( )z z z G QR  is a symmetric matrix of the dimension N N ,  denotes 

either the transposition T, or the Hermitian conjugation † , i.e., the transposition with 
complex conjugation, depending on the type of the problem to be solved. 
2.2. FEM generation of algebraic problems 

In one-dimensional space, the interval min max,z z 
   is divided into many small 

domains referred to as elements. The interval min max,z z      is covered by a set of ݊ 
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elements min max m n
1
i,j j j jz z z      , in such a way that 

1

n

j
j

   . Thus, we obtain the 

grid: min max min min max min max mi) max
1

n( , { , 1, , 1, }hj z
j j j n n nz z z z z z h n z z h z              

where, min max
1 , 2, ,j jz z j n    are the mesh points, and the steps max min

j j jh z z   are 

the lengths of the elements j .  

Interpolation Hermite Polynomials (IHPs): In each element j we define the 

equidistant sub-grid  mi m x( n) a[ , ]jh z
j jj z z 

( 1) ( 1
i max

)
m n{ , , 1, , 1, }j p j j p r jp jz z z r p z z         

with the nodal points ( 1)r j p rz z    determined by the formula (Gusev et al., 2014, 

Gusev & Luong, 2014): 

    m ax
1

min
j jj p rz p r z rz p     ,   0,..., .r p      (7) 

As a set of basic functions
maxmin

0
max{ ( , , )} ,l

l j j lN z z z   maxl  0
p
r max

r , we will use 

the IHPs 
max 1

0{{ ( )} }r
r z 

 
  in the nodes , 0, ,rz r p   of the grid (7). At each node rz , 

the values of the functions ( )r z  with their derivatives up to the order max( 1)r  , i.e.

0  ,…, max 1r  , where max
r  is referred to as the multiplicity of the node rz , are 

determined by the expressions (Berezin & Zhidkov, 1962): 

0
( )( ) , |

r
r

r r rr z z rr
d zz

dz

 


 
    





          (8) 

Note that all degrees of IHPs ( )r z  do not depend on   and equal max

0

p
r

r
p 


  

1 . Below we consider only the IHPs with the nodes of identical multiplicity 
max max , 0, ,r r    p. In this case, the degree of the polynomials is equal to

max ( 1) 1p p    . We introduce the following notation for such polynomials: 

max
min( , ,jrN z z 

max )jz  ( ), 0, , , 0, ,r z r p     max 1   

These IHPs form a basis in the space of polynomials having the degree
max( 1) 1p p     in the element min max[ , ]j jz z z  that have continuous derivatives up to 

the order max 1   at the boundary points min
jz  and max

jz  of the element min max[ , ]j jz z z . 
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3. Brief description of the class of problems 
3.1. For the eigenvalue problem 

The KANTBP 4M program calculates a set of M energy eigenvalues 

1 2: ME E E E    and the set of corresponding eigenfunctions  
( ) ( )

1 1( ) { ( )} , ( ) ( ( ), , ( ))m M m m m T
m Nz z z z z    Φ Φ Φ  from the space 2

2H  for the 

system (1). In this work we consider only real-valued potentials, the solutions are subjected 
to the normalization and orthogonality conditions:  

max

min
( ) ( ) ( ) † ( )| ( )( ( )) ( )

zm m m m
B mmz

f z z z dz  
   Φ Φ Φ Φ
 
      (9) 

and the corresponding symmetric quadratic functional (5) is used, in which  denotes 

Hermitian conjugation † , needed for discretization of the problem by the FEM.       
To solve the problem for bound states on the axis or on the semiaxis the initial 

problem is approximated by boundary value problem (1)–(4) on a finite interval 
min max( , )z z z  with boundary conditions (2)–(4). 

3.2. For the multichannel scattering problem 
On the axis  ,z    at fixed energy E E  , the desired matrix solutions 

( )
1( ) { ( )}i N

v iz z Φ Φ , ( ) ( ) ( )
1( ) ( ( ), , ( ))i i i T

v Nvvz z z  Φ  of the boundary problem (1) (the 

subscript v means the initial direction of the incident wave from left to right  or from 

right to left  ) in the interval min max( , )z z z  are calculated by the code of the 
KANTBP 4M program. These matrices solutions are subjected to homogeneous third-kind 
boundary conditions (4) at the boundary points of the interval min max( , )z z z  with the 

asymptotes of the “incident wave + outgoing waves” type in open channels 1, , oi N   

(Gusev et al., 2016): 

( )v z Φ  

⎩
⎪⎪
⎨

⎪⎪
⎧ቐ

X (ା)(ݖ)	 vT ,୫ୟ୶ݖ]߳	ݖ																													 +∞),

X (ା)(ݖ) + X (ݖ)(ି) vR
								

,∞−൫	߳	ݖ ,୫୧୬൧ݖ
ݒ															 =→,

ቐ
X (ݖ)(ି) + X (ା)(ݖ) vR

						
,୫ୟ୶ݖ]߳	ݖ +∞),

X (ݖ)(ି)
	

vT
																												

,∞−൫	߳	ݖ ,୫୧୬൧ݖ
											 ݒ =←	,

	(10) 

where vT  and vR  are unknown rectangular and square matrices of transmission and 

reflection amplitudes, respectively, to construct the scattering matrix S of the dimension 

o oN N :    

 

 
  
 

R T
S

T R
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4. Application of the KANTBP 4M program 
4.1. The eigenvalue problem for the one-dimensional and d-dimensional harmonic 
oscillator ( 2d  ) 

In the equation (1) at 1 2
11( ) ( ) , 1, ( ) ( )d

B Af z f z z N V z V z z     , we have the 

Schrodinger equation for d-dimensional harmonic oscillator for bound states:  

1 2
1

1( ) ( ) ( ) 0d
mm m md

dE z z z E z
dzz




         
 

D      (11) 

The equation (11) has an analytical solution – the eigenvalues exact
mE  and the 

eigenfunctions exac
m

t ( )z , normalized by the condition (9).  

At 1d   on infinite interval ( , )z    we have the eigenvalues 
exact
m 2 1, 0,1,...E m m   , and the normalized eigenfunctions 

m 14

2
exact 1exp( / 2) (( )

2 ( 1)!

)m
m

z H zz
m 

 


 . At 2d   on semi-infinite interval (0, )z   we 

have the eigenvalues exact
m 4 , 0,1,...E d m m    , and the normalized eigenfunctions 

exact 2 2
1 1m exp( / 2) ( , / 22 ( / 2) / ( 1)( )

( / 2)
, )m d mz

d
z F m d z  




  . 

The results calculated by the KANTBP 4M program are shown on Fig. 1, Fig. 2 and 
Fig.3. It can seen that the solutions of the eigenvalue problem (11) calculated by the 

KANTBP 4M program have the accuracy 810  in comparison with the analytical solutions. 

 
Fig. 1. Eigenfunctions and corresponding eigenvalues of 4-th and 5-th states for the one-
dimensional and 6-th state for d=5-dimensional harmonic oscillator (from left to right) 
calculated by the KANTBP 4M program, at max3, 2, ' 7p k p   . 
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Fig. 2. The errors of eigenfunctions of 4-th and 5-th states for the one-dimensional and  
6-th state for d=5-dimensional harmonic oscillator (from left to right) calculated by the 
program KANTBP 4M, at max3, 2, ' 7p k p   . 

 

 
Fig. 3. The errors of the eigenvalues (left panel) and eigenfunctions (right panel) of 5-th 
state for the one-dimensional (up panel) and d=5-dimensional harmonic oscillator (down 
panel) at different values of max, , 'p k p  on the interval (10 ,10−) ∋ ݖ depending on the line 
number L of the matrix of  eigenvalue problem. 
4.2. The eigenvalue and scattering problems with constant or piece-wise continuous 
potentials 
4.2.1. The eigenvalue problem 

In the equation (1) at ( ) ( ) 1, ( ) 0B Af z f z Q z   , we have: 
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2

2 ( ) ( ) 0,t t
d z E z
dz

 
    
 

I V I Φ  
max

min

' '( ( )) ( ) ,
z

T
t t tt

z

z z dz  Φ Φ                         (12) 

where V(z) – the matrix of piecewise constant potentials with dimension N×N: 

( ) ;1 1 ;2 2 ; 1 1 ; 1( ) { , ; , ;...; , ; , }ij ji z ij ij ij k k ij k kV z V V z z V z z V z z V z z          (13) 

This problem describes waveguide modes of a planar optical waveguide (Gevorkyan 
et al., 2015). Since the eigenfunctions of the discrete spectrum decay exponentially as z → 
∞, then the original problem is reduced to a boundary value problem (1)–(3) in the interval 
z ∈ (zmin, zmax)  (zmin<z1 và zmax>zk−1). The results calculated by the KANTBP 4M program 
are shown on Fig. 4.       

At k = 3 and N = 3 can be given in the following form:  
0 0 0 5 4 4 0 0 0

( ) 0 5 0 , 2; 4 0 4 , 2 2; 0 0 0 , 2 .
0 0 10 4 4 10 0 0 10

z z z z
      

                  
      
      

V       (14) 

 

 
Fig. 4. A set of eigenfunctions Φt(z)=(Φ1t(z), Φ2t(z), Φ3t(z))T and corresponding 
eigenvalues (Et = eigvt, t=1,..,5) of first 5 states, at min 1,...,10 11,...,2012, 1, 0.4,j jz h h       

21,...,30 max1, 12jh z    and max3, 2, ' 7p k p   . 
The solutions of boundary problem (12) calculated by the KANTBP 4M program 

have the accuracy 10−9 in comparison with the analytical solutions. 
4.2.2. The scattering problem 

We consider the scattering problem at fixed energy E  on an infinite interval z ∈ (−∞, 
+∞) (Gevorkyan et al., 2015, Gusev et al., 2016):  
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2

2 ( ) ( ) 0,t t
d z E z
dz

 
    
 

I V I Φ                                        (15) 

where I – the unit matrix, V(z) – the matrix of piecewise constant potentials with 
dimension  N×N  given in the form (13) and (14).   

  

 

Fig. 5. A set of eigenfunctions 1; 1; 2;( ), ( ), ( )z z z      and scattering matrix S of multichannel 

scattering problem at min 1,...,30 max6, 0.4, 6jz h z    and max3, 2, ' 7p k p   . 

On Fig. 5 it can be seen that at E=3.8 for wave from left there is 1L
oN   open 

channel, and from right there are 2R
oN   open channels. The solutions of the boundary 

problem (15) calculated by the KANTBP 4M program have the accuracy 1210  in 
comparison with the analytical solutions. 
4.3. The multichannel scattering problem of tunneling of two identical particles with 
the oscillator interaction through the potential barrier 

We consider the penetration of identical quantum particles, coupled by short-range 

oscillator-like interaction    2os 1 2 1 2 / 2cV x x x x   , through the repulsive Gaussian 
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potential barrier ( )g sV x     2 22 exp sx    , here, 1,2,s  0.1,  alpha   

5 . In the system of equations (1), at ij( ) 0,Q z   ( ) ( ) 1A Bf z f z   and ij( )V z  is 

given in analytical form (Gusev et al., 2014; Vinitsky et al., 2014): 

 os os
ij( ) ( ) (( ) / 2) (( ) / 2) ( )c c

i g g jV z dx x V z x V z x x



      , where os ( )c

j x  

is the eigenfuction of harmonic oscillator with potential 2
os ( )cV x x  and the eigenvalue 

os 1,5,9,13,...cE   

The solutions evenΦ  and oddΦ  of multichannel scattering problem on semiaxis 

(0, )z  calculated by the KANTBP 4M program are shown on Fig. 6. 

 

Fig. 6. The solutions of boundary problem (1) subjected to the third-kind boundary 
condition (4) and the scattering matrix S calculated by the KANTBP 4M program in an 
equidistant sub-grid at a

min
x

xm a6, 6, 5, 3, 2mz z N p k      . 
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5. Conclusion 
The KANTBP 4M program and its application was presented by analyzing low-

dimensional quantum system models that were reduced to mathematical models. The 
results of arithmetic calculations by the KANTBP 4M program give high accuracy 
compared to analytical methods. The KANTBP 4M program is a useful tool for researchers 
especially in the field of natural and technical science to research a variety of 
computational models based on physical models such as quantum physics, atomic nuclear 
physics, solid physics etc. 
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TÓM TẮT 
Bài báo giới thiệu một chương trình có tên gọi “KANTBP 4M – A program for solving 

boundary problems of the self-adjoint system of ordinary second order differential equations”. 
Chương trình KANTBP 4M khảo sát các mô hình toán học khác nhau được đơn giản hóa từ những 
mô hình vật lí phức tạp và cho những kết quả tính toán số học cũng như độ chính xác của các kết 
quả này so với kết quả giải tích.       

Từ khóa: KANTBP 4M, phương pháp phần tử hữu hạn, bài toán biên. 
 


