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ABSTRACT

This paper introduces regularized gap functions for a class of generalized mixed weak vector
quasiequilibrium problems. Then, error bounds for the concerning problems via regularized gap
functions are established. Some examples are provided to illustrate the results.
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1.  Introduction and preliminaries

Throughout in this paper, let R" be the n dimensional Euclidean space with the
inner product ¢-,-)and norm ||-||, respectively. Let

RT ={(y;,-...V,)eR™:y, >0,i=12,....m}
be the nonnegative orthant of R™, AcR" be a nonempty, closed and convex set in R".
Let K:AA A be a set-valued mapping. For eachie{l,2,..m}, let T:A—>R be a
continuous function, ¢ :AxA—>R, n:AxA—>R and F:AxA—R be continuous
bifunctions such that n(x,y)+n(y,x)=0 and F(x,x)=0 for all x,yeA. Let
F=(F,F....F) T=T,T,,..T.), ¢=(4.9,,....¢,) and for any x,v e R,

(T(X),v) = (T(x), V). (T, (X), V)., (T (X))

In this paper, the authors consider the following generalized mixed weak vector
quasi-equilibrium problem (shortly, (GMWQEP)) which consists in finding x € K(x) such

that

F(X, y)+ (T (X),n(y, X)) +o(X, ¥) —h(x, X)  =int RT, vy € K(X).
If m=1 then (GMWQEP) reduces to the following generalized mixed weak quasi-
equilibrium problem (shortly, (GMWQEP)?) of finding x € K(x) such that

F (X y) +<CT(%),n (Y, X))+ 4(X, y) =4, (X, X) 2 0, vy € K(X).
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The solution sets of problems (GMWQEP) and (GMWQEP)* are denoted by S and S,
respectively. To illustrate motivations for this setting, some special cases of the problem
(GMWQEP) are provided.

@ If K(x)=A, vxe A then (GMWQEP) reduces to the following generalized
extended mixed vector equilibrium problem (shortly, (GEMVEP)) considered by Husain &
Singh (2017) of finding x € Asuch that

F (X, Y) +(T(X),n(y, X))+ (X, y) —$(x,x) g —intRT, vy e A
(b) If K(X)=A andn(y,x)=y-x, VX,y € A, then (GMWQEP) reduces to the

following generalized mixed vector equilibrium problem (shortly, (GMVEP)) considered
by Khan & Chen (2015) of finding x € Asuch that

F(X, Y)+(T(X), y=X) + (X, ¥)—d(x,X) g —intRT, vy e A
© If m=1 K(x)=A F=0, ¢=0and n(y,x)=y-x, VX,y € A, then (GMWQEP)

reduces to the following variational inequality problem (shortly, (VIP)) studied by
Yamashita & Fukushima (1997) of finding x € A such that

(T(X),y—-x>0,vye A
(d) If m=1 =0 and ¢ =0, then (GMWQEP) reduces to the following abstract

quasiequilibrium problem (shortly, (QEP)) studied by Bigi & Passacantando (2016) of
finding x € K(x) such that

F.(x,y) =0, vy € K(X).

Error bounds which explore the upper estimation of the distance between an arbitrary
feasible point and the solution set play an important role in algorithms design for classes of
related-optimization problems. The regularized gap function which is an efficient method
to investigate error bounds was first introduced by Fukushima (1992) for the variational
inequalities. Motivated by Fukushima (1992), based on strong monotonicity assumptions
Yamashita & Fukushima (1997) studied global error bounds for general variational
inequalities under using regularized gap functions of the Moreau-Yosida type. Since then,
the study of error bounds for related-optimization problems has become an interesting and
important topic in optimization theory (see Husain & Singh (2017), Khan & Chen (2015),
Yamashita & Fukushima (1997), Bigi & Passacantando (2016), Fukushima (1992), Anh,
Hung, & Tam (2018), Mastroeni (2003) and the references therein). In Khan & Chen
(2015), the regularized gap functions of Fukushima type versions and error bounds were
studied for generalized mixed vector equilibrium problems infinite-dimensional spaces.
Afer that, Husain & Sighn (2017) extended and improved the main results in Khan & Chen
(2015) for the generalized extended mixed vector equilibrium problem. Bigi &
Passacantando (2016) investigated some smoothness properties of the gap functions and
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error bounds for the quasiequilibrium problems. Very recently, Anh et al. (2018) studied
regularized gap functions of Fukushia type and Moreau-Yosida type and error bounds for
generalized mixed strong vector quasiequilibrium problems in infinite dimensional spaces.
To the best of our knowledge, up to now, there does not exist any work concerning the
regularized gap functions of Fukushia type and Moreau-Yosida type and error bounds for
(GMWAQEP). Therefore, it is interesting to investigate the the regularized gap functions of
Fukushia type and Moreau-Yosida type for (GMWQEP). The second aim of this paper is
to establish the error bounds for (GMWQEP) by using these regularized gap functions.
Now, some definitions shall be recalled, which will be used in the sequel.
Definition 1.1. (See Rockafellar & Wets (1998))

A real function F : A— R is said to be convex if for each x,y € A and 4 €[0,1],

F(Ax+@1L-2)y) < AF(X)+ 1-2)F(y).
Definition 1.2. (See Husain & Singh (2017), Khan & Chen (2015))

Let T:A>R,0:AxA—>R, F:AxA—> R, n:AxA— R be real functions. Then

(i) Fis said to be strongly monotone with modulusa >0 if, for each (x,y) e Ax A,
FOx,Y)+F(y,X)+a llx-y [f<0;
(if) T is said to be 7 - strongly monotone with modulus g > 0 if,

T -TE)ny,x)y—u lIx-y =0, V(x,y) e Ax A
(iii) ¢ is said to be skew- symmetricif, for each(x,y) € Ax A,
P(X,X) — (X, y) — (Y, X) + (Y, y) > 0.
Definition 1.3. (See Aubin & Ekeland (1984), Chapter 3, section 1)

Let X and Y be two Hausdorff topological spaces. A set-valued mapping G: X A Y
is said to be

(i) lower semicontinuous atx, € X, if G(x,)NU =< for some open subset U Y
implies the existence of a neighborhood V of X, such that G(x) "U =& for xeV;

(i) upper semicontinuous at X, € X , if for each open neighborhood U of G(X,), there
is a neighborhood V of X, such that U o G(x) for all x V.

It is said that G is lower (upper) semicontinuouson a subset Aof X if it is lower
(upper, respectively) semicontinuous at each x € A. G is said to be continuous on Aif it is
both lower and upper semicontinuous on A. If A= X, “on X” is omitted in the statement.
2. Regularized gap functions for (GMWQEP)

In this section, some new gap functions for (GMWQEP) are proposed. Motivated by
Mastroeni (2003), the authors consider the following definition of gap functions.
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Definition 2.1.
A real valued function p: A— R is said to be a gap function of (GMWQEP) if it

satisfies the following conditions:
(G,) p(x)=0, forall x e K(x);
(G,) forany X, € K(%,), p(x,) =0 if and only X, is a solution of (GMWQEP).

Inspired by the approaches of Yamashita & Fukushima (1997) and Fukushima (1992), the
authors develop a regularized gap function for (GMWQEP). Suppose that K(x) is a

compact set for each xe A . Then, for each 6 >0, the authors consider a function
v, A—R defined by

vy (X) = max{h(x,y) -6z (x, y)} 1)
where

h(x,y) = min, . {=F (x, )+ T, 7(x, y)) + 6 (x. X) = (x, y)}
and 7:AxA—>R is a continuously differentiable function, which has the following
property with the associated constants ¢ > 2y > 0.

(A,): Forallx,ye A ylIx=ylF<z(xy)<(@-n)lIx=yIF. )
Remark 2.2.

The function v, in (1) is well-defined. Indeed, as F,T;,¢ and n are continuous for
anyi=12,...,m, the function h is continuous. Combine the continuity of h,z and the
compactness of K(x) for each x € A, we have v, is well-defined.

It will be shown that y, is a gap function for (GMWQEP) under suitable conditions.

Theorem 2.3.
Assume that
(i) K has compact and convex values on A,

(i) F, ¢ and n are convex in the second components for alli=1,2,...,m;
(iii) 7 satisfies condition (A ).
Then, for 6 >0, the function v, defined by (1) is a gap function for (GMWQEP).

Proof.
(G,) Itis clear that for any x e K(x),

wy (X) = max, ., {h(x, y) ~ 6 (x, y)} 2 h(x, X) ~ (. X). 3)
We have 7(x,x)=0 and

h(X, X) = min]sigm{_Fi (X, X) + <T| (X), 77(X’ X)> +¢| (X! X) _¢| (X’ X)} =0.
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Thus, from (3), it can be concluded that y,(X) >0 for any x e K(x).
(G,) If there exists X, € K(X,) such that y,(x,) =0, i.e.,

h(x, y) —67 (%, y) <0, vy e K(x;) or

min, o {=F (%, ¥) +<T00), 7106, YD +6 (%, %) =6, (%, )} <07 (X,, y), vy € K(X,).
For arbitrary Xe K(X,) and1 e (0,1) , lety, =X, +(L—-4)X. Sine K(X,) is convex, we
get Y, € K(x,) and

MmN, {=F (%, ¥,) + T 00) 106, Y, ) + 4 (6, %) =4 (%, V)< 0%, ). (4)

Since F, ¢ and n are convex in the second components for all i=1,2,...,m, we have

—F (%, Y:) 2=AF (%, %) — (1=K (%, X) === 2)F (X, X), ()
(T 06010, Y, 00 2 (T (%), A=) (%5, X)) = A= AKT; (%), 10%, X)), (6)
(% %) =400, ¥,) 2 A=) (%, %) = (1= (%, ). (7)

As 7 satisfies condition (A, ), we have
(X, X+ A(% = X)) < (8 = 1) 1% = X=2(% = X) = L= 2)* (S =) | % — x| (8)
From (4)-(8), we get that
min,_, {=(=A)F (%, X) + 1= A)T; (%), 106, X)) + 1= 2A) (%, %) = (L= A) (%, )}
S@A-A) @ -Nlx-xIF.
Equivalently,
(A=A miny o {=F 06, %) (T 06,706, X0) + 6 (%5, %) = (%, )}
S@A-A) @ -Nlx-xIF.
So,

Ny o= (%, X) (T ) 10%, X)) +6 (%, %) = (%, X} Q=S =) [ % = X" (9)
Taking the limitas 1 —1 in (9), we obtain
miny ., {=F (%, X) +CT; ), 0%, X))+ 0%, %) = ¢, (%, X)} <0.
Then, for any x e K(x) , there exits 1<i, <m such that
R, (%, %) + (T (), (X, X)) + ¢, (%, X) =, (X0, %) =0,
that is,
F (X, X) +(T (%), 17(X %)) + 6%, X) = $(X;, %) & —int RT, ¥x € K(X).
Hence, X, €S.

Conversely, if X, €S, then there exists 1<1, <m such that
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F, (%, Y)+ (T (%)Y, %)) + 6, (%5, ¥) =, (%5, %) 2 0, ¥y € K(X).
This means that

MiNy o, {F 06, Y)+CT 00), 75 06, YD)+, (%, %) = (6, ¥) =07 (x, Y)}< 0, vy € K(x)
or

MaX, ¢ o Mg {T=F (%, ¥) +(T 06,7 0%, Y)) + 6 (%, %) = ¢ (%, ¥) = 07(X, y)} < 0.
So,y,(%)<0. Since y,(X)>0for any x € K(x), ¥,(X,)=0. This completes the proof. ]
Lemma 2.4.

Assume that K is continuous with compact values, F,T.,¢ are continuous for all

i=12,..,m. Then, for each 6 >0, vy, is continuous on A.
Proof.

Since F,¢,T.,n are continuous for alli =1,...,m, we get that

h(x,y) = min, . {=F (x, )+ T, 7(x, y)) + 6 (x. X) = (x, y)}
is continuous for x,y e A. Hence, for each8 >0, h(x,y)—6z(x,y) is continuous for
X,y € A (since ris continuous). Moreover, K is continuous with compact values on A, so
it follows from the Maximum Theorem (Proposition 23 in Aubin & Ekeland (1984),) that
v, defined by

Wy (X) =min, . {h(x,y) -0z (X, y)}

is continuous on A. U
Motivated by Yamashita & Fukushima (1997), we propose a gap function base on

the Moreau-Yosida regularization of v, as follows:

H,, . (x) = min, o, (2) +(x, 2)} (10)
where xe K(x), >0 and p:AxA— R is a continuously different function, which has
the following property with the associated constants b>2a > 0.

(A,): forallx,ye A a llx—y [f< p(x,y)<(b-a) llx—y [f.

We can rewrite H,, _(X) as follow:
0

ng,r (X) = minzeK(x) [maxyeK(z){h(Z' y) —072'(2, y)}+fp(xl Z):I (11)
ia a gap function for (GMWQEP).

T

Now, it will be proven that H,,

Theorem 2.5.
Assume that all the condition of Theorem 2.3 and Lemma 2.4 hold and assume
further that
(i) foranyx,ze A, if xe K(x) and z e K(x) then z e K(2);
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(i) p satisfies condition (A ).
Then, H,  defined by (11) is gap function for (GEMVEP).

Proof.
(G,) Forany 0,7>0 andxeK(x) . Let ze K(x) be arbitrary, it follows from the

assumption (i) that zeK(z). Since w, is a gap function, we have v,(z)=0.
Consequently, H, (x)>0 forallx e K(x).
(G,) Suppose that X, €S . Theorem 2.3 implies that v, (X,) =0. Therefore,

H,, () = Min, o {7, (2) + 90(%, 2} <, (%) +70(%, %) =O0.
Since H, .(%)=0, weget H, (%)=0.

Conversely, ifH, (X)=0, i.e, min,,,{w,(z)+70(X),2)}=0. Then, for each n,
there is z, € K(X,) such that

V@) + (% 2) <+ (12)

Since p satisfied condition (A ), it follows from (12) that
0<y,(z)+7a I~z <>
n

and, hence y,(z,) —>0and |[x,—z, > 0. Using Lemma 2.4, the continuity of vy, is

established and then y,(X,) =0. Applying Theorem 2.3, we have X, €S . This completes

the proof. U
Example 2.6.

Let n=1,m=2 A=[01], 0=1, t=1/2,K(X)=[0,x], T,(X)=x T,(X)=2x,

F(x )=y +3xy-4¢, F() =y +8xy-9%, n(y,x)=y-x @(xY)=(xy)=0,
and 7(x,y)=p(x,y)}=lx—y |f for allx,ye A. Then, the problem (GMWQEP) is
equivalent to finding x [0, x]N[0,1] such that

F (X, y) + (T (x),7(y, X)) + (X, y) = (X, X)

= ((y* +3xy —4x%), (y* +8xy —9x*)) +((x, 2x), (y = X))

=((y=x)(Bx+Y), (y—x)(11x+Yy)) ¢ -int R?, vy [0, x].

It follows from some direct computations that S ={0} .

It is not hard to see that all assumptions imposed in Theorems 2.3 and 2.5 are
satisfied. Hence, the functions v, and H, . defined by (3.1) and (3.11) are gap functions

for (GMWQEP), respectively. Indeed,
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W (X) = max, .y ) {h(x, y) - 07 (%, y)}

=max g 4 {Min{(x = y)Bx+y), (x= y)L1x+ y)}- (x— )’}
Jefox] {4x2 —2xy — 2y2} = 4x2,
H,, . (X)=min . {v,(2) + (X 2)}

=max

. 1
= m'an[o,x]{AfZZ + > (x—12)°}

=min, g4 O el dye
2 2 9

Remark 2.7.
(i) In special cases of (a)-(d) mentioned in Sect. 1, the function v, reduces to the

regularized gap function for (GEMVEP), (GMVEP), (VIP) and (QEP) considered in
Husain & Singh (2017), Khan & Chen (2015), Yamashita & Fukushima (1997), Bigi &
Passacantando (2016), respectively. Therefore, for these cases, Theorem 2.3 extends to the
existing ones in the literature such as Theorem 3.2 in Husain & Singh (2017), Theorem 3.1
in Khan & Chen (2015), Lemma 2.1 in Yamashita & Fukushima (1997) and Theorem 1 in
Bigi & Passacantando (2016).

(if) To the best of our knowledge, up to now, since the regularized gap functions of
Moreau-Yosida type for (GMWQEP) in finite dimensional spaces have not been
considered in any work, our result, Theorem 2.5 is an improvement. Moreover, in special

case of () mentioned in Sect. 1, the function H,,  reduces to the regularized gap function

of Moreau-Yosida type for (VIP) considered in Yamashita & Fukushima (1997). Thus,
Theorem 2.5 extends Theorem 2.4 in Yamashita & Fukushima (1997).
3. Error bounds for (GMWQEP)

In this section, error bounds for (GMWQEP) are investigated by using the terms of
regularized gap functions in Section 2.
Theorem 3.1.

Let X, be a solution of (GMWQEP). Suppose that all the conditions of Theorem 2.3
hold and for each i=12,...,m, let ¢ be skew-symmetric, F be strongly monotone with
modulus ¢; >0 and T, be 5-strongly monotone with modulus ¢ >0. Let a=min__. o;
and g=min__, £ . Assume further that | im:lS‘ %D, % €K(X) for any xeK(x,) and
0 > 0satisfying o + u > 60(5 —y) . Then, for each xe K(X,),

_ v, (X)
I |ﬁ\/a+#_e(5_y) . ®3)
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Proof.
Since | im:lS‘;t@, all (GMWQEP)'have the same solution. Without loss of

generality, we assume that X, is the same solution. For each XEK(XO), we have
X, € K(X). This implies
Wy (X) = MaX o {Miny o {=F (X, y) + (T (X), 70X, y)) + 6, (X, X) = (X, ¥)} - 07 (X, ¥)}

14
> M f=F (6 %) + (T 00,706 %)) + 6 (%, X) = 6, (X, X )= 07 (%, %,). 9
Without loss of generality, we assume that there exists i, €[L,m] such that
min, . {=F (%, %,) + (T (%), 70X, %)) + 6 (X, X) = 6,(X, %)} (15)

=F (%, X) + <Ti0 (%) 1(X, %)) +¢|0 (%, %) _¢|0 (X1 %)-
From (14) and (15), we get
Wy (X) 2 Fy (%, X) +(Ti, (%), 1(X, X)) + ¢, (%, X) = (X0, %) =, (X, %)} =07 (X, %,).  (16)

Since F, is strongly monotone with modulus ¢; , we conclude that

—F, (%, )= F, (X %) -0, llx=x, [f>0. (17)
It follows from the 77 -strong monotonicity of T, with modulus ; that

(T, (0,106 %)) = (T, (%), 06 %)y = g4, [Ix=x; [F>0. (18)
As ¢, is skew-symmetric, we get that

¢, (X, ) =6, (X, %) =, (%, X) +6, (%0, %) 20. (19)
Since x, € S*,

R, 0%, X) + (T (%), 11(X %)) + ¢, (%5, X) =6, (X, %) = 0. (20)
Employing (17)-(20), we obtain

—F, (%) +(T, (00,706 %))+, (%, X) =6, (X, %) = (o, +44,) lIx=x; [F. (21)
Moreover, it follows from the property (A_) that

~(X, %) 2~ =) I x =% II". (22)

From (16), (21) and (22), we get
W ()2 (@+p=0E-)Ix=xI.
Therefore,

_ v, (X)
. Xo'k\/aw—e(cS—y)

and hence the proof is completed. U
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Theorem 3.2.
Let X, be a solution of (GMWQEP). Assume that all the conditions of Theorem 2.5

and Theorem 3.1 hold. Then, for any X e K(XO), 7 >0, we have
2H, . (X)
Ix—x, |k |— o :
mln{a+u—9(5—}/),ra}

Proof.
Thanks to Theorem 3.1, we obtain

H, . (X)=min, . {v,(2) +7p(X, 2)}
>min, {(a+y—0(5—}/)) Ix,—z If +7ra |lz—x IF}

(23)

2min{a+y—0(6—y),ra}minzeK(X){ Ix, —z I + llz—x IF}
2%min{a+y—0(5—y),ra} Ix—x, I,
where the following inequality is applied:

2
) ”zZ(HXO_Z I+ llz—x ) _ Ix=x If
2 2

lIx, =z IF+ llz—

This implies

2H, (x)
Ix=x, &, |— > .
mln{a+y—0(6—}/),ra}
Therefore, the proof is completed. [
Example 3.3.
Let n,m,A0,7,KT,T, F,F,.,n,¢.4,7 p be as Example 2.6. From Example 2.6,

we have | im:lsi #={0}=S and the gap functions of (GMWQEP) are defined by
w,(X) = 4x* and HW‘T(X)zgxz.

It is easy to check that F and F,are strongly monotone with moduli ¢, =3and
a,=8. Also T, and T, are n -strongly monotone with the moduli £4 =1 and 1, =2. For

that reason, a =3,u=1. Moreover, ¢ and ¢, are skew-symmetric and we also obtain
0 =b=2,y=a=1. Therefore, the assumptions of Theorems 3.1 and 3.2 are satisfied, and
so Theorems 3.1 and 3.2 hold.

Indeed, for all x e K(x) =[0,x], we have [x-x, |Fxand
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¥, (X) _ 4x°
a+u-06-y) \ 3

ZHWT(X) ~
min{a +u—-0(5-y),ra} -

Thus, the inequalities (13) and (23) hold.
Remark 3.4.

(i) In special cases of Remark 2.7(i), Theorem 3.1 is a generalization of Theorem 4.1 in
Husain & Singh (2017), Theorem 3.2 in Khan & Chen (2015), Lemma 4.1 in Yamashita &
Fukushima (1997) and Theorem 8 in Bigi & Passacantando (2016).

(if) In special cases of Remark 2.7(ii), Theorem 3.2 improve error bounds via the
regularized gap functions of Moreau-Yosida type in Husain & Singh (2017), Khan & Chen
(2015) and Bigi & Passacantando (2016) and is a generalization of Theorem 4.1 in
Yamashita & Fukushima (1997).
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Khoa Su pham Todn hoc — Truong Pai hoc Dong Thap
Tac gia lién h¢: VO Minh Tam — Email: vmtam@dthu.edu.vn
Ngay nhén bai: 13-12-2018; ngay nhdn bai stra: 01-3-2019; ngay duyét dang: 25-3-2019

TOM TAT

Trong bai bdo nay, ching tbi gigi thigu nhizng ham gap chinh héa cho mgt I16p cac bai toan
tia can bang vécto yéu hon hop tong quat. Sau dé, nhimng cdn sai sé cho 16p cac bai toan nay ciing
dwoc thiét Igp thong qua nhing ham gap chink héa. Pong thoi, mét s6 vi du dicoc xay dung dé md
ta cho nhiing két qud dat duoc.

Tir khoa: tya can bang vécto yéu hdn hop, don diéu manh, ham gap chinh hda, can sai so.
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