oo = TRUONG BAI HOC SU PHAM TP HO CHi MINH HO CHI MINH CITY UNIVERSITY OF EDUCATION

G :
.SF.] TAP CHi KHOA HQC JOURNAL OF SCIENCE
ISSN: KHOA HOC TU' NHIEN VA CONG NGHE NATURAL SCIENCES AND TECHNOLOGY

1859-3100 Tép 16, SO 6 (2019): 50-61 Vol. 16, No. 6 (2019): 50-61

Email: tapchikhoahoc@hcmue.edu.vn; Website: http://tckh.hcmue.edu.vn

AN INTERESTING DISCUSSION OF RUNNING TIME

FOR SOME SORTING TECHNIQUES WITHOUT COMPARISON SORT

Phan Tan Quoc, Nguyen Quoc Huy
Information Technology Faculty — Saigon University, Viét Nam

* Corresponding author: Phan Tan Quoc — Email: quocpt@sgu.edu.vn
Received: 25/3/2019; Revised: 16/4/2019; Accepted: 17/6/2019

ABSTRACT

Sorting is one of important techniques for computer science as well as other technology
areas; sorting is used mostly in searching, database management systems, scheduling, and
computing algorithms. This paper aims to analyze the timing cost for some sorting techniques
without comparison sorting such as Pigeonhole sort, Counting sort, Radix sort, and Bucket sort;
these are sorting techniques with linear running time. Each technique is considered in running
time, in-place, stable, and extra space if possible. The main contribution of the paper is
experiments of sorting techniques in 90 large size test data. This is also a useful reference for
working with sorting techniques.

Keywords: sorting algorithm, Pigeonhole sort, Counting sort, radix sort, Bucket sort.

1. Introduction
1.1. Sorting problems
Sorting is a process of data ordering in which data have many types such as integer,

double, string, or structured one. Key of data determines the data ordering in a data
collection, this is mentioned in (Nguyen, 2013). Requirement of a sorting problem is
described as follows.

Input: Array of n number ap,as,...,an-1.

Output: Array of n number ajo,ait,...,ain-1 iN Which (aio,ait,...,ain-1) is a swap of
(a0,a1,...,an-1) that satisfies condition aio< ai1 <...<ain-1.

Sorting is widely used in many areas such as database management, or search
engines. Sorting is also an important phase of computing; some algorithms such as binary
search, greedy search, scheduling, and data classification need sorting phase before doing
the next phases.

This paper aims for internal sort; it means that data must be stored in RAM at all.

Selection sort, Insertion sort, Bubble sort, Interchange sort, Shell sort, Merge sort,
Quick sort, and Heap sort are in comparison sort family because the element ordering is
based on comparison; these algorithms work in data type of integer, double, character,
string, etc. The best running time of comparison sort algorithms is O(n log n); there is no
any optimization at all.

50

TAP CHi KHOA HOC - Truwerng PHSP TPHCM Phan Tan Quoc et al.

Pigeonhole sort, Counting sort, Radix sort, Bucket sort, and Spread sort are called
un-compared sorting because element ordering is not based on comparison. Running time
of these algorithms is linear complexity; and sorting data has some constraints.

1.2. Features of sorting problems

The main features of sorting problems are running time, extra space (including RAM
for sorting), stability (it means that elements with same value are kept their ordering), and
in-place (it means that extra space is limited by a constant, and not depend on size of array)
(Nguyen, 2013; Robert, 2011).

Sorting algorithms with the same big-O may have different average running time in
different data; when an algorithm is chosen, features mentioned above need to be
considered; especially if algorithms have same running time, remaining features should be
considered. The same data sizes are, the same performance of algorithms are.

Comparison sorting algorithms are introduced carefully in some data structure
materials (Nguyen, 2013; Robert, 2011; Neelam, 2016; Michael, 2011); so the authors
summarize some main features of these algorithms to be a foundation for analysis in next
sections.

Table 1. Performance of comparison sort algorithms

Algorithm Running time Extra space Stable In place Method
Selection sort o(n?) 1 No Yes Selection
Insertion sort o(n?) 1 Yes Yes Insertion

Bubble sort o(n?) 1 Yes Yes Exchanging

Interchange sort o(n?) 1 No Yes Exchanging
Shell sort O(n log®n) 1 No Yes Insertion
Merge sort O(n log n) n Yes No Merging
Quick sort O(n log n) Ign No Yes Partitioning
Heap sort O(n log n) 1 No Yes Selection

2. Running time analysis for un-compared sorting algorithms

Sorting algorithms which are not based on comparison request data satisfying some
constraints (this is reason why these algorithms are called special sorts). Their complexity
is linear and it is also a limitation of running time.

This part discusses four algorithms: Pigeonhole sort, Counting sort, Radix sort,
Bucket sort; However, Pigeonhole sort, Counting sort, and Radix sort request that sorting
data must be positive integer number in range of 0.. m, where m is the maximum value of
sorting elements, Bucket sort could work in real sorting data. These algorithms do not use
comparison as well as replacement activities, they only use the assignment of integer
indexes, so their running time is much faster than that of Quick sort (Jyoti, 2016; Hinrichs,
2015; Shama, 2015; Wagas, 2016).

o1

TAP CHi KHOA HOC - Trwdng DHSP TPHCM Tdp 16, Sé 6 (2019): 50-61

2.1. Pigeonhole sort

Below is algorithm description: Let n pigeonholes be indexed from O to n-1, the
pigeonhole i has weight a;. Identify the order of pigeonholes such that their weights are in
increased order.

Step 1: For m+1 wages indexed by the order 0..m; the wage i only contains the
pigeonhole with weight of i; all wages contain no any pigeonhole at all.

Step 2: Pass over n pigeonholes, which ones have weight of i will be contained in the
wages i; after this step the number of pigeonholes per wage is identified (some wages have
no any pigeonhole).

Step 3: Pass over all wages from the index 0 to m; get whole pigeonholes from these
wages; from that the authors have array of pigeonholes with increased order weights.

1. void pigeonhole(int a[], int n){

2. for (int i=0;i<=m;i++) b[i]=0;
3. for (int i=0;i<n;i++) b[a[i]]++;
4. int d=0;

5. for (int i=0;i<=m;i++)

6. while (b[i]>0) {

7. a[d++]=i;

8. b[i]--;}

9

¥

The Pigeonhole sort needs an extra array b that its size is the max value of sorting
elements. In worse case and average case, the Pigeonhole sort has running time of O(n+m).
The Pigeonhole sort is stable, not in-place, and extra space of O(m) mentioned in (Ashok,
2014; Nguyen, 2013).

2.2. Counting sort

Step 1: Count the number of appearances a; in original array.

Step 2: Identify the rank for each ai (rank of a; is the number of elements in which
their values is smaller a;).

Step 3: Number a; with rank r will be put on the position r — 1 of resulted array c. If
many numbers with the same values appear, they are arranged by the order of appearance
in original array to make sure the stable of arrangement.
void countingsort(int a[], int n){
for (int i=0;i<=m;i++) b[i]=0;
for (int i=0;i<n;i++) b[a[i]]=b[a[i]]+1;
for (int i=1;i<=m;i++)

b[i]=b[i]+b[i-1];
for(int i=n-1;i>=0;i--) {

c[b[a[i]]-1]=a[i];

No s~ R

52

TAP CHi KHOA HOC - Truwerng PHSP TPHCM Phan Tan Quoc et al.

8. bla[i]]=b[a[i]]-1;}

9. }

The Counting sort needs two extra arrays b and c; the size of array c is the same
array a, the size of array b is equal to the max value of sorting elements. In worse case or
average case, the Counting sort running time has complexity O(n+m). The Counting sort is
stable, not in-place, and extra space must be O(n+m) (Ashok, 2014; Nguyen, 2013).

In special case, sorting array has couples of different integers. The Counting sort can
be adjusted by using one extra array b, it was mentioned in (Robert, 2011) (the same size
of the max value of sorting elements) as follows:
void countingsort_unique(int a[], int n){
b[0]=-1;
for (int i=0;i<n;i++)

bla[i]]=a[i;
int d=0;
if (b[0]==0) {

a[0]=0;

d++;}
for (int i=1;i<=m;i++)
if (b[i]!=0)

11. a[d++]=Dbi];

12. }

2.3. Radix sort

Suppose that each sorting element has d digits.

Step 1: k=0; k is the index of digits.

Step 2: Set 10 blocks bo,bs,...,bg by empty.

Step 3: for i=1..n do

Put a; into block b; where t is the k" digit of ai.

Step 4: Link blocks b; together (by that process) to create array a.

Step 5: k=k+1; and if k<d then go to step 2; other else the algorithm is stopped.
void radixsort(int a[],int n){
int exp=1;
while(m/exp>0){
int radix[10]={0};
for(int i=0;i<n;i++)

radix[a[i]/exp%10]++;
for(int i=1;i<10;i++)

radix[i]+=radix[i-1];
for(int i=n-1;i>=0;i--)

© o N O~ wDNRE

[
o

© o N O~ DN R

53

TAP CHi KHOA HOC - Trwdng DHSP TPHCM Tdp 16, Sé 6 (2019): 50-61

10. b[--radix[a[i]/exp%210]]=a[i];
11. for(int i=0;i<n;i++)

12. a[i]=bli];
13. exp*=10;
14. }
15. }

Suppose that the sorting elements are in a base k number. At that time, each index
has maximum k values, so the running time each step of the Counting sort has complexity
O(n+k). Running time complexity in worse case and in average case is O(n+k). The Radix
sort is stable, not in-place. For the arrangement of each iteration, there is a need of using
sorting algorithm which is stable, other else the result is not right (Ashok, 2014).

2.4. Bucket sort

Unlike three algorithms mentioned above, the Bucket sort can be implemented in
case of sorting real numbers; the real numbers are distributed in range (0..1) in common
cases (the appeared probability of real numbers is the same).

Step 1: Put sorting element into each of k group.

Step 2: Sort each group; comparison sorting algorithms can be used; such as selection
sort, insertion sort as well as un-compared sorting algorithms.

Step 3: Combine groups by ordering to create ordered array.

In worse case, O(n) numbers are put into one group, the Bucket sort has running time
O(k.n?) at that time; in average case, some elements of sorting array is in each group, the
Bucket sort has running time O(k.n). The Bucket sort is stable, not in-place, and extra
space is O(n.k) , it was mentioned in (Ashok, 2014; Nguyen, 2013).

When sorting elements are real numbers, the authors can put sorting elements into
each group as following function Bucket_Selectionsort:

1. void Bucket_Selectionsort(float afmaxn],int n,float bucket[maxk][maxm], int

n_bucket){

2. for (int i=0;i<n;i++)

3. bucket[index_bucket(n_bucket,a[i])][d[index_

bucket(n_bucket,a[i])]++]=a[i];

4 t=0;

5. for (int i=0;i<n_bucket;i++){

6. for (int j=0;j<d[i]-1;j++){

7 int min = j;

8 for (int h = j+1; h <d[i]; h++)

9. if (bucket[i][h] < bucket[i][min]) min = h;
10. exch(bucket[i][min],bucket[i][j]);

11. a[t++]=bucket[i][j];

54

TAP CHi KHOA HOC - Truwerng PHSP TPHCM Phan Tan Quoc et al.

12. }
13. a[t++]=bucket[i][d[i]-1];
14. }
15. }

Function index bucket(int k, float x) returns the value x/(1.0/k). Similarly, it is easy
to build the function Bucket_Insertionsort; the algorithm Insertion sort is applied to sort
elements in each group. The function Bucket sort can be applied to non-negative integer
like doing for real numbers; particular number a; can be put into group which has index ai/l
and number a; is put at index d[ai/l] where I=m/k+1; m is the maximum value of sorting
array. In special case, number k of groups is equal to m; for instance, sorting array has 100
million numbers and m is 1 million, then each group has 100 numbers with the same value;
the Bucket sort is the same as Pigeonhole sort in this case and it is described as follows:

1 void bucketsort(int a[], int n){
2 for(int i=0;i<=m;i++)

3 bucket[i]=0;

4. for(int i=0;i<n;i++)

5. bucket[a[i]]++;

6 for(int i=0,j=0;j<=m;j++)

7 for(int k=bucket[j];k>0;k--)

8 a[i++]=j;

9. 1}

10.

Table 2. Performance of uncomparison sorting algorithms (nguyen, 2013)
Algorithm Running time Extra space Stable In place
Pigeonhole sort O(n+m) O(m) Yes No
Counting sort O(n+m) O(n+m) Yes No
Radix sort O(n.d) O(n+m) Yes No
Bucket sort O(n.k) O(n.k) Yes No

2.5. Validation of sorting

For comparison sorting algorithms, validation of sorting is simply to check whether
input array is not decreased order (Robert, 2011). However, the method mentioned above
could not be applied for algorithms with uncomparison sorting because the numbers
created in result array are not based on interchange space activities.

The wvalidation of sorting for Pigeonhole, Counting, Radix, and Bucket is
implemented as follows: Using result of Quick sort as a standard; the result is stored in
array a; where i=0..n-1. Results of validated algorithms are stored in array ci where i=0..p-
1. The validated algorithm is right if n equal to p and a; equal to c; for every i=0..n-1.

55

TAP CHi KHOA HOC - Truéng DHSP TPHCM Tdp 16, S4 6 (2019): 50-61

int Testingsort(int a[], int n, int c[], int p){
if (n!=p) return 0;

for (int i=0;i<n;i++)

if (a[i]!'=c[i])return O;

return 1;

¥

3. Experiences And Evaluation

This section describes in detail the experiences of sorting algorithms mentioned
above and proposes some discussion about them.
3.1. Working environment

The sorting algorithms are implemented by C++ language in the programming editor
DEV C++ 5.9.2; they are run in a virtual server with operation system Windows server
2008 R2 Enterprise, 64bit, Intel(R) Xeon (R) CPU E5-2660 0 @ 2.20 GHz, RAM 4GB.
3.2. Testing data

For sorting experiences, 90 random test suites were created including three groups:
Group 1 includes 30 test suites which are non-negative integer data, they are randomly
generated by function rand(), group 2 includes 30 test suites like group 1 but they have a
constraint in which data are different from each other by couple, group 3 includes 30 test
suites which are generated by the instruction 1.0*(rand()+1)/(RAND_MAX+2.

Group 1 and group 2 contain 10 test suites which have one million numbers, 10 test
suites which have 10 million numbers, and 10 test suites which have 100 million numbers;
group 3 has 10 test suites which have 100 thousands numbers, 10 test suites which have
500 thousands numbers, and 10 test suites which have 1 million numbers (refer to Table 3).
Table 3. Description of experient test suites

o gk wbdpE

Group 1 Group 2 Group 3
n Range n Range n Range
1000000 [0..99999) 1000000 [0..2000000) 100000 (0..2)
10000000 [0..999999) 10000000 [0..20000000) 500000 (0..2)
100000000 [0..999999) 100000000 [0..200000000) 1000000 (0..2)

3.3. Experimental results and evaluation

Experiment results of algorithms with comparison sorting implemented in 30 test
suites of group 1 are in Tables 4, 5; where running time (measured by second) of each
algorithm in each group with the same size (n=1 million, 10 millions, 100 millions) is
average sum of running time of test suites by that size.

56

TAP CHi KHOA HOC - Truwerng PHSP TPHCM Phan Tan Quoc et al.

Table 4. The averaged running time of sorting complexity O(n2)
with comparison in 10 test suites of group 1
n Selection Insertion Bubble Interchange
1000000 407.910 198.398 1977.435 1268.338

The Selection sort, Insertion sort, Bubble sort and Interchange sort: The running
time of Selection sort is linear complexity with large records but small keys (Nguyen,
2013), the running time of Insertion sort is linear complexity with ordered files (Nguyen,
2013). The experiments show that the running time of Selection sort and Insertion sort is
shorter than that of Bubble sort and Interchange sort; where running time of Insertion sort
is 48.6% that of Selection sort; the running time of Insertion sort is 10.0% of that of
Bubble sort; the running time of Insertion sort is 15.6% of that of Interchange sort. The
running time of Interchange sort is 64.1% of that of Bubble sort. Of all algorithms with
complexity of O(n?), running time of Insertion sort is the shortest one.

Table 5. Average running time of comparison sorting complexity of o(n log n) in 30 test
suites of group 1

n Shell Merge Quick Heap
1000000 0.251 0.139 0.119 0.183
10000000 3.880 1.610 1.382 3.322
100000000 61.587 17.457 14.158 49.035

The Shell sort, Merge sort, Quick sort and Heap sort: Complexity of running time in
worse case Quick sort is O(n?), and in the average case is O(n log n); this is the fastest
sorting in case of algorithms with complexity O(n log n); and this algorithm is also used
the most in practical. The authors use Quick sort to compare with other sorting algorithms.
Consider in whole test data, the running time of Quick sort is 35.4% of that of Shell sort;
running time of Quick sort is 84.3% of that of Merge sort; and 45.3% of that of Heap sort.
The larger the size of data is, the more efficient running time of Shell sort, Merge sort and
Heap sort is. In case of Shell sort, this one needs very little bit code of program to running,
number of comparison is smaller than n®5(Robert, 2011); and experimental results in test
suites with 1 million numbers showed in Tables 4, 5 mean that the running time of Shell
sort is 0.13% of that of Insertion sort.

Experimental results of uncomparison sorting algorithms in 30 test suites of group 1
are showed in Table 4.

57

TAP CHi KHOA HOC - Truéng DHSP TPHCM Tdp 16, S4 6 (2019): 50-61

Table 6. The average running time of uncomparison sorting algorithms
n 30 test suites of group 1

n Pigeonhole Counting Radix Bucket
1000000 0.005 0.029 0.091 0.004
10000000 0.077 0.990 1.128 0.076
100000000 0.666 10.860 11.330 0.654

The Pigeonhole sort, Counting sort, Radix sort, and Bucket sort: Running time of
Pigeonhole sort and Bucket sort (in case of the k number of groups is equal m as mentioned
at section Il) is shorter than that of two remained algorithms. Consider in the whole of test
data with size 1 million, 10 million, and 100 million numbers, the running time of Bucket
sort is respectively 96.8%, 9.5%, and 5.7% of that of Pigeonhole sort, Counting sort, and
Radix sort. The running time of Bucket sort is 4.6% of that of Quick sort. Figure 1 shows
this comparison. In practical, the sorting algorithms with non-negative integer play an
important role and are popular in many areas; so they are very necessary in applications of
comparison sorting.

Experimental results of comparison sorting with complexity O(n log n) and the
Counting sort_unique in 30 test suite of group 2 are showed in Table 7; where running
time of each algorithm in data group with the same size (n=1 million, 10 millions, 100
millions) is average sum of running time in all data with the same size.

Table 7. Average running time of Counting sort_unique and others sorting
in 30 test suites of group 2

n Shell Merge Quick Heap Cour_mng_
unique
1000000 0.276 0.148 0.134 0.192 0.019
10000000 4.285 1.676 1.558 3.495 0.314
100000000 64.717 19.236 17.155 58.521 4.316

The Shell sort, Merge sort, Quick sort, Heap sort, and Counting sort_unique: The
running time of Counting sort_unique is 19.8% that of Quick sort. The running time of
Shell sort, Merge sort, Quick sort, Heap sort in data with distict key is lower at least 6.8%
that of normal standard as showed in Table 5 (It is really to highlight that the running time
of algorithms in Table 5 is for test suites of group 1, whereas in Table VII is for test suites
of group 2). Figure 2 shows this comparison. In practical, data with distict key plays a
crucial role in many areas so Counting sort_unique is very necessary in practical.

58

TAP CHi KHOA HOC - Trwérng PHSP TPHCM Phan Tan Quoc et al.

Experimental results of three algorithms including Quick sort, Bucket sort combined
with Selection sort, and Bucket sort combined with Insertion sort in 30 test suites are real
numbers of group 3 showed in Table 8; comparison between Bucket sort and Quick is
showed in column CompQS; where column n_bucket shows bucket number used in two
real versions of Bucket sort.

Table 8. Average running time of Bucket sort and Quick sort in 30 test suites of group 3

n Quick S;Zt;to—n Comp QS II?)nL;Z‘::ito_n Comp QS n_bucket
100000 0.0130 0.0072 55.4% 0.0040 31.8% 4000
500000 0.0651 0.0328 50.4% 0.0205 31.5% 20000
1000000 0.1292 0.0662 51.2% 0.0268 20.7% 40000

Consider in all 30 test suites, the running time of Bucket sort combined with
Selection sort is 52.3% of that of Quick sort; the running time of Bucket sort combined
with Insertion sort is 27.7% of that of Quick sort. The Figure 2 shows this comparison.

Running time between sorting algorithms with complexity of Of#)
and Quick sort in test data of 100 million numbers in group 1

16.0
14.0
12.0 10.860 11.330
10.0

8.0

6.0

4.0

2.0 0.666 0.654

0.0

14.158

Quick Pigeonhole Counting Radix Bucket

Figure 1. Running time between Quick sort and others O(n)

Running time between Counting sort (unique) and algorithms with

complexity O(n log n) in test data of 100 million numbers in group 2
70.0 64.717
60.0 58.521
50.0
40.0
30.0
50,0 19.236 17.155
10.0 l 4316

0.0
Shell Merge Quick Heap Counting(unique)

Figure 2. Running time between Counting_unique and others O(nlog n)

59

TAP CHi KHOA HOC - Trwdng DHSP TPHCM Tap 16, S8 6 (2019): 50-61

Running time between Bucket sort family and Quick

sort in test data of 1.000.000 real numbers in group 3
0.14 0.129
0.12
0.10
0.08 0.066
0.06
0.04 0.027
0.02
0.00

Quick Bucket_Selection Bucket_Insertion

Figure 3. Running time of Bucket versions and Quick sort

4. Conclusion and discussion

This paper analyses some common sorting techniques with linear complexity in non-
negative integer numbers (Pigeonhole sort, Counting sort, Radix sort, and Bucket sort) and
in real numbers (Bucket sort). It is easy to apply them to integer numbers by shifting in
negative numbers. Similarly, all sorting algorithms can be used (not only for Bucket sort)
to sort real numbers by multiplicating each real number with constant of 10 to convert a
real number to an integer number.

To summary, it is focused on running time analysis, stable, in-place, and extra space
for uncomparison sorting algorithms such as Pigeonhole sort, Counting sort, Radix sort,
and Bucket sort; these are kinds of sorting which needs data constraint and linear
complexity. The authors implemented experiences Pigeonhole sort, Counting sort, Radix
sort, and Bucket sort and validate in 90 test suites which are generated randomly with size
up to 100 million numbers. With the integer test suites, the running time of Pigeonhole
sort, Counting sort, Radix sort, and Bucket sort (for m buckets) is respectively 4.7%,
57.4%, 79.1%, 4.6% of that of Quick sort. With the non-negative integer test suites in
which couple data are different from each other, the running time of Counting sort_unique
is 19.8% of that of Quick sort. With the real number test suites, the running time of Bucket
combined with Selection sort’s is 52.3% of that of Quick sort, and running time of Bucket
sort combined with Insertion sort’s is 27.7% of that of Quick sort. Experimental results and
the discussion are really useful for users who are working with basic sorting algorithms.

< Conflict of Interest: Authors have no conflict of interest to declare.

60

TAP CHi KHOA HOC - Truwerng PHSP TPHCM Phan Tan Quoc et al.

REFERENCES

Ashok Kumar Karunanithi. (2014). A survey, discussion and comparison of sorting algorithms.
Department of Computing Science, Umea University.

Jyoti Totla. (2016). Review on execution time of sorting algorithms - a comparative study.
International Journal of Computer Science and Mobile Computing, 5(11), 158-166.

L. Hinrichs (2015). Sorting Algorithms & Run-Time Complexity. Nebraska Wesleyan Univ.

Michael T. Goodrich, Roberto Tamassia, David M. Mount. (2011). Data structures and algorithms
in C++. John Wiley & Sons. Inc., 500-551.

Nguyén Birc Nghia. (2013). Cdu tric dir ligu va giai thugt. NXB Bach khoa.

Neelam Yadav& Sangeeta Kumari. (2016). Sorting algorithms. International Research Journal of
Engineering and Technology, 3(2), 528-531.

Robert Sedgewick & Kevin Wayne. (2011). Algorithms. Fourth edition, Addsion-Wesley.

Robert L. Kruse & Alexander J. Ryba (2000). Data structures and program design in C++.
Prentice Hall, 317-378.

Shama Raheja, Vinay kukreja (2015). Enhancements in sorting algorithms: a review. 3(1), 73-82.

Wagas Ali, Tahir Islam, Habib Ur Rehman, 1zaz Ahmad, Muneeb Khan, Amna Mahmood (2016).
Comparison of different sorting algorithms. International Journal of Advanced Research in
Computer Science and Electronics Engineering, 5(7), 63-71.

MQT PHAN TICH THU VI VE THOI GIAN CHAY
POI VOI CAC KI THUAT SAP XEP KHONG SO SANH
Phan Téan Quéc, Nguyén Quéc Huy
Truong Pai hoc Sai Gon
“Corresponding author: Phan Tdn Quéc — Email: quocpt@sgu.edu.vn
Ngay nhén bai: 25-3-2019; ngay nhéan bai stra: 16-4-2019; ngay duyét dang: 17-6-2019

TOM TAT

Sap xép la mét trong nhiing ki thudt quan trong trong nganh khoa hoc may tinh ciing nhu
trong nhiéu linh vuc khac; sap xép dung nhiéu trong tim kiém, céc hé quan tri co so di liéu, ldp
lich va c4c thugt todn may tinh. Bai bao nay tdp trung vao viéc phan tich chi phi thoi gian cuia mgt
s6 Ki' thudt sdp xép khong so sanh nhir Pigeonhole, Counting, Radix, Bucket; day [a nhing i thugt
sap xép Véi thoi gian tuyén tinh. Trong méi thugt toan chiing tdi xér dén céc tiéu chi niur thoi gian
chay, tinh tgi ché, tinh chdc chan, va khdng gian bg nhé phu. Pong gép chinh cia bai béo la
nhitng thuec nghiém trén diz liéu I6n. Pdy chdc chan 1a phan tham khdo can thiét cho nhitng dgc gia
lam viéc véi cac Ki thudt sap xep.

Tir khoa: thuat todn sip xép, sip xép Pigeonhole, sip xép Counting, sip xép co sb,
sap xép Bucket.

61

