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ABSTRACT
Let y:[0,1] —>[0,00), 5:[0,1] > R be measurable functions and T be a parameter

curve in R" given by (t,x)€[0,1]xR" > s(¢,x) =s(t)x. In this paper, we study the
I

boundedness of the weighted Hardy-Cesaro operator defined by U,  f(x) = I f (S(t)x)w(t )dt,
0

for measurable complex-valued functions f on R", on generalized Morrey spaces M vo- Ve

obtain some sufficient conditions on the functions s,y and ¢Q, which ensure the boundedness of
the weighted Hardy-Cesaro operator and its commutator with symbols in BMO spaces on

generalized Morrey spaces M e

Keywords: weighted Hardy-Cesaro operator; commutator; generalized Morrey space;
BMO space

1. Introduction
Consider the classical Hardy operator U defined by

Uf (x) = é [ f@dt,x=0

for f el

loc

(R). A celebrated Hardy integral inequality, see (Hardy, Littlewood, & Polya,
1952), can be formulated as

p
|| Uf ||LI’(]R)S E || f ||L"(]R)’

is known as the best constant.

where 1< p < oo, in which the constant "
p f—

Cite this article as: Tran Tri Dung (2019). The boundedness of generalized weighted Hardy-Cesaro operators on
generalized Morrey space. Ho Chi Minh City University of Education Journal of Science, 16(12), 1008-1017.

1008



HCMUE Journal of Science Tran Tri Dung

The Hardy integral inequality and its variants have played an important role in various
branches of analysis such as approximation theory, differential equations, and the theory of
function spaces. Therefore, the Hardy integral inequalities for operator U and their
generalizations have been studied extensively.

The generalized Hardy operator was first introduced by C. Carton-Lebrun and M.
Fosset in (Carton-Lebrun, & Fosset, 1984), in which the authors defined the weighted Hardy

operator U, as follows. Let W :[0,1] —>[0,90) be a measurable function, and let f be a

measurable complex-valued function on IR". Then the weighted Hardy operator U g 18

defined by

1
U, f(x)=] fx)w(0)dt, x eR".
Under certain conditions on \, C. Carton-Lebrun and M. Fosset (1984) showed that
U, is bounded from BMO(R") into itself. Moreover, U, commutes with the Hilbert

transform in the case n =1 and with certain Calderon-Zygmund singular integral operators
(and thus with the Riesz transforms) in the case n > 2.

Later, in (Xiao, 2001), J. Xiao obtained that U, is bounded on L"(R") if and only if

1
A= "yt <o
and showed the interesting estimate that the corresponding operator norm is exactly A. J.
Xiao (2001) also obtained the BMO(R") —bounds of U, , which sharpened the main result

in (Carton-Lebrun, & Fosset, 1984).

Recently, Z. W. Fu, Z. G. Liu, and S. Z. Lu (2009) gave a necessary and sufficient
condition on the weight function , which ensures the boundedness of the commutators of
weighted Hardy operators U,, on L"(R"), 1< p <o, with symbols in BMO(R") in (Fu,
Liu, & Lu, 2009). Since then, some authors have investigated bounds of U v and its

commutator on classical Morrey spaces, Campanato spaces, Triebel-Lizorkin-type spaces
(see (Fu, & Lu, 2010), (Kuang, 2010), and (Tang, & Zhou, 2012)).

Motivated by all of the above-mentioned facts, we consider the generalized weighted
Hardy-Cesaro operator and its commutator as follows.
Definition 1.1.

Let y:[0,1] >[0,0) and s:[0,1] >R be measurable functions. Then the

generalized weighted Hardy-Cesaro operator U, , associated to the parameter curve

s(x,t):=s(t)x, is defined by
U, f(x) =,/ (s@)x) (@),
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for measurable complex-valued functions f* on R".

Definition 1.2. Let b be a locally integrable function on R”. The commutators of b and the
operator U, is defined by

U,.f=bU, (f)-U, ).
Our aim in this paper is to study norm inequalities for the generalized weighted Hardy-

Cesaro operator U, = and its commutator U \I’;J with symbols b being BMO functions on
generalized Morrey spaces M, , which are introduced by T. Mizuhara in (Mizuhara, 1991)

as follows.
Definition 1.3.

Let @ be a positive measurable function on R" x(0,00) and 0 < p <oo. Then the

L7 (B(x,r)) < OO}’

and the generalized central Morrey space M = M */(R") is defined by

generalized Morrey space M, =M, (R") is defined by

M,, ={f cL®):[A],,, = sup [oCun]|f

M =7 e L @1 =suplo@T |, < 0]

Obviously, the above definition recovers the definition of classical Morrey spaces
A

L (R") if we choose ¢(x,r)=r".
Specifically, we present some sufficient conditions imposed on the functions s, ¢ and

¢ in order to obtain the boundedness of the weighted Hardy-Cesaro operator U,  and its
commutator on generalized Morrey spaces M . These results extend the results in (Xiao,

2001), (Fu, Liu, & Lu, 2009) and (Fu, & Lu, 2010) in some sense.
Throughout the paper, the letter C is used to denote (possibly different) constants that
are independent of the essential variables. We also denote a ball centered at x of radius »

and its Lebesgue measure by B (x, r) and |B (x,r)|, respectively.

2.  Main results
Throughout this section, we assume that the function ¢ satisfies the following

condition.
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Definition 2.1.
Let >0 and ¢ be a positive measurable function on R" x(0,0). We say

o€ SH*(R"x(0,00)) if there exists a positive constant C such that for all
(x,r) € R" x(0,%0) and for all # € (0,%0), one has ¢(tx,tr) < Ct*@(x,7).
Some examples of such functions are ¢@(x,7)=r" or are homogeneous functions of

degree a..
Our first main result in this section is formulated as follows.

Theorem 2.2.
Let 0< p< oo, let s,y :[0,1]—>[0,00) be measurable functions such that s(t) >0

a.e. t €[0,1] and let ¢ € SH*(R" x(0,00)). Then U, is boundedon M , =M , (R"),

1 e
provided that J.S(t) Py(t)dt < oo.

)l

Proof. Suppose that J- S(t) Py(t)dt < .

Forany feM, ,xeR" and r >0, it follows from Minkowski inequality that

1
P P
dy}

[cp(x,r)]“( [ U,.ro) dyj =[o(x,")]" ( [ 1]/ (s@y)w(yr
B(

B(x,r) x,r)]0

<[o(x.)]'[| | \f(s(r)y)\pdy]pw(t)dr

B(x,r)

(=]

1

[ \f(y)\dejps(rﬁw(t)dt

B(s(t)x,s(t)r)

=[o(x,r)]"

ct—

B(s(t)x,s(t)r)

’

<[ (s(t)x,s(t)r)]{ J s (y)\’]dy}psm_pw(r)dt

y fws(z)_;w(t)dﬁc”f l, [s0) 7w,
oy o) oo

where the last inequality comes from the assumption that ¢ € SH“(R" x (0, 0)).

Clearly, the estimates above imply
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o, 11, <clrl,, fse P

In other words, U, is defined as a bounded operator on M, = and

e,

’ M!MP HM!’ P

< st(t)a_; w(0)dt,

which completes the proof of Theorem 2.2.
Analogous to the proof of Theorem 2.2, we can present a sufficient condition such that

the integral operator U, ., which is defined by

Vv,

U, fx)=["1(s@x)p@a,
is bounded on M .
Theorem 2.3.
Let 0< p<oo, let s,y :[0,00) —[0,00) be measurable functions such that s(t) >0

a.e. t €[0,0) and let ¢ € SH*(R" x(0,%0)). Then U, , is bounded on M, , =M, (R"),

provided that JS(Z‘)W;\]J(Z‘)dt <,
0

Before coming to the second main result in this section, let us recall here the definition
of spaces BMO(IR") which are first introduced by F. John and L. Nirenberg in (John, &

Nirenberg, 1961).
Definition 2.4.

Given a function f € LlloC (R") and aball B in R", let f, denote the average of f
on B, thatis

1
Je == f()dy.
5]

Define the sharp maximal function by

1
M f @) =su |7~ £,
il

b

where the supremum is taken over all balls B containing x.

We say that f has bounded mean oscillation if the function M* is bounded. The space
of functions with this property is denoted by BMO(RR"), that is
BMOR")={f e L, (R"):M'f e L"}.

loc
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We define a norm on BMO(R") by ||f||BM0 = ”M’if”D0

In the sequent, we will need the following two important results relating to BMO
spaces.
Proposition 2.5.

Forall 1< p <o, we have

=] 01

is a norm equivalent to the BMO norm.
Proof. We refer the reader to the proof of Proposition 2.5 in (Duoandikoetxea, 2000).
Proposition 2.6.

There exists a positive constant C such that for any B, = B(x,,r,) and B, = B(x,,r,)

in R", whose intersection is not empty and %rz <r <2r, we have ‘B‘ SC‘BI‘ and

|B|<C|B,

function b€ BMO(R"), then the following inequality holds
by, =5, | <2C |5l -

, where B is the smallest ball containing both B, and B,. Moreover, for any

Proof. Obviously, there exists a positive constant C; such that ‘B (x,ZF)‘ =C, ‘B (x,r) , for

any X€R" and » >0. Let B, =B(x,,r) and B, = B(x,,r,), whose intersection is not
7 . .
empty and 32 < r, £ 2r,. Without loss of generality, one assumes that 7, <7 <2r,.
Take x € B, N B,. Then, we have

|B|<|B(x,21,)| < C,|B(x,r,)| < C,|B(x,,2r,)| < C}|B,

b

and
|B|<|B(x,4r,)| < C}|B(x,1,)| < C}|B(x,,1,)|
Hence we can choose the constant C =max{C.,C"}.
Moreover, for any function b € BMO(R"), note that
by, = by | < [by, = by| +[bs, =By,

It is clear to see that
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‘bB _bBl‘ -

1
by ——| b(y)d
s |BI|IBI (y)dy

1 C
smub(y)—bgklysﬁub(y)—bgldySCIIbIIBMo-
1

The left term is estimated in a similar way. Eventually, we complete the proof.
We are now ready to state the following main result.
Theorem 2.7.

Let 1<p<g<o, let sy:[01]>[0,00 be measurable functions such that

0<s@®)<lae. t€[0,1], let e SH*(R" x(0,00)) and b € BMO(R"). Then UZ’S is bounded

1 e
from M 7O L (R") to M0, provided thatJ.S(t) r (2 —log, S(t))q/(t)dt <o,
0

1 o
Proof. Assume that Is(t) 1 (2 —log, S(l))w(t)dt < o0,
0

Let B be any ball centered at the origin of radius r, and let f be any function in

M7 N L, . Then it follows from the Minkowski inequality that

1= (cp(o,rrp [ \Ui,sf(y)\pdyjp < [cp(o, P [|6G) ~ b)) £ (s0)y)] dyjp (o).
Applying the following elementary inequality

3pfl(|x|p+|y|p+|Z|p)2|x+y+Zp,x, y,zeC

to the right-hand side of the above inequality gives
I1<CU,+1,+1),

where

L= [cp(o,r)f’ (1) =b,) f(s@)p) dyjp w(odt,

L= [@(o, |

L= [cp(o,rw’ [

and the constant C' depends only on p .

(byys b F(s(0p)| dyjp (o),

(b)) @)y dy}” (s,
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.
Let us now estimate the term /,. Forany 0 <e<g— p,set /=p+€ and [ :li'
-pP
. . : . . [ .1
Then applying the Holder inequality with the pair | & = l—,k =— | for the term /,

4 p
yields

1

e 771 ro|
dy] (— [16(») ~b,] dy] w(t)dt.
18]

1, <Co(0,r)" |B|§ [ {ﬁjlf (s(®)y)

In view of Proposition 2.5, we deduce that
1

p+e ;
1,<C|p|,,.|B dy | w(t)dr.

e 00, r)‘lj( JI7 @)

Note that /' € L (R")NL! (R"), soletting € —0" from the preceding estimate yields

1

1 L
1,<Clp|,,, 001" | ( Jl7 @] dyj" w(r)dt
0\ B
1 o
< Clbll i 11, [ 50 7w
0
1 o
< Clbl 11, [s0)" 7 (2~ tog, st
0
Similarly, one can use the same argument above to  obtain
1 o
L < Clb]o |1, 5@ 7 (2= log, s()) w(t)e.
0

For  the last term I,, let us express this term as

I, = I((p(o,r)_p'”f(s(t)y)r dyjp ‘bB —bs(,)B‘\jJ(t)dt

s(t)q_%\y(t)dt

1
< C”f”M;ﬁ:, ﬂbﬁ ~Dys

<O > T o buls@ w0,

m=0 fref0,11:27 " <5 (1)<27"

1015



HCMUE Journal of Science Vol. 16, No. 12 (2019): 1008-1017

At this stage, observe that for each m € N, we have
by = b,,)5| < ;‘b oy =By F [Py = Brs

Therefore, in the light of Proposition 2.6, we deduce that

LCPlolfle > ] s "y

m=0 {te[o,l]:z""" S.r(t)SZ""}

SCPluolfl=> ] (2-log,s@)s() "y

m=0 {16[0,1]:2""’1 sm)szf"‘}

1 al
< Clel 11, J(2=logo s@) sy 7w,

0

which, combined with the last estimates of /, and /, above completes the proof of Theorem 2.7.
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TINH BI CHAN CUA TOAN TU HARDY-CESARO
CO TRONG TONG QUAT TREN CAC KHONG GIAN MORREY TONG QUAT
Tran Tri Diing
Trwong Pai hoc Sw pham Thanh phé Hé Chi Minh
Tdc gid lién hé: Tran Tri Diing — Email: dungtt@hcmue.edu.vn
Ngay nhdn bai: 23-9-2019; ngay nhdn bai swa: 15-10-2019; ngay duyét dang: 03-12-2019

TOM TAT

Gia sir Y :[0,1] —>[0,00), 5:[0,1] > R la cdc ham do dwge va T la mét duong cong
tham s6 trong R" dwoc xdc dinh boi (t,x) € [0,1]x R" > s(¢,x) = s(¢)x. Trong bai bdo nay,
chung toi nghién cuu tinh bi chdn cua toan tw Hardy-Cesaro co  trong

1
U,,f(x)= If(s(t)x)\p(t)dt, trong d6 f la mét ham do duge én R”", trén cac khong gian
0

Morrey tong qudt Mp 0 Chiing t6i thiét lap dwoc mét s6 diéu kién dii trén cdc ham S VY va ©, ma
cdc diéu kién nay dam bdo tinh bi chdn ciia todn tir Hardy-Cesaro va hodn tir ciia né trén cdac khéng
gian Morrey tong qudat M . Khi cac biéu tiwong thupc khéng gian BMO.

Tir khéa: toan tir Hardy-Cesaro cO trong; hoan tir; khong gian Morrey tong quat;
khong gian BMO
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