i = TAP CHi KHOA HQC HO CHI MINH CITY UNIVERSITY OF EDUCATION
@ Sp TRUONG DAl HOC SU PHAM TP HO CHi MINH JOURNAL OF SCIENCE
TP. HO CHI MINH
~J Tap 17, S6 3 (2020): 397-408 Vol. 17, No. 3 (2020): 397-408
ISSN:
1859-3100 Website: http://journal.hcmue.edu.vn

Research Article
WEIGHTED NORM INEQUALITIES OF GENERALIZED

WEIGHTED HARDY-CESARO OPERATORS
AND COMMUTATORS WITH SYMBOLS IN CMO SPACES

ON GENERALIZED WEIGHTED MORREY SPACES

Tran Tri Dung
Ho Chi Minh City University of Education
Corresponding author: Tran Tri Dung — Email: dungtt@hcmue.edu.vn
Received: December 18, 2019; Revised: December 24, 2019; Accepted: March 12, 2020

ABSTRACT
In this work, our main aim is to study the boundedness of the weighted Hardy-Cesaro

operators and commutators on generalized weighted Morrey spaces M W(a)). We establish
certain sufficient conditions which imply the boundedness of the weighted Hardy-Cesaro operators

and their commutators with symbols in CMO spaces on generalized weighted Morrey spaces
M

(@)

Keywords: weighted Hardy-Cesaro operator; commutator; generalized weighted Morrey
space; CMO space

1.  Introduction
Consider the classical Hardy operator U defined by

Uf (x) = %jo f(t)dt,x =0

for f el (R). A celebrated Hardy integral inequality, see (Guliyev, 2012), can be
formulated as

p
LI

where 1< p <oo, in which the constant P is known as the best constant. The Hardy

p-1
integral inequality and its generalizations then have been studied extensively since they
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play an important role in various branches of analysis such as approximation theory,
differential equations, the theory of function spaces.

The generalized Hardy operator was first introduced in 1984 by C. Carton-Lebrun and M.
Fosset (Carton-Lebrun, & Fosset, 1984), in which the authors defined the weighted Hardy
operator U, as follows. Let y :[0,1] —[0,o0) be a measurable function, and let f be a
measurable complex-valued function on R". Then the weighted Hardy operator U, is

defined by
U, f(x) =], f (bt xeR"

It was in the work mentioned above that C. Carton-Lebrun and M. Fosset showed
that U, is bounded on BMO(R").

Then in 2001, J. Xiao proved in (Xiao, 2001) that U,, is bounded on L°(R") if and
only if
1 -n/
Bi= jot P (t)dt < oo

and that the corresponding operator norm is exactly 5. Also, J. Xiao obtained
BMO(R") —bounds of U, which sharpened the main result (Carton-Lebrun, & Fosset,

1984).
Recently, Z. W. Fu, Z. G. Liu and S. Z. Lu in 2009 presented a necessary and
sufficient condition on the weight function y which characterizes the boundedness of the

commutators of weighted Hardy operators U, on L°(R"), 1< p <oo, with symbols in
BMO(R") (Fu, Liu, & Lu, 2009).
In addition, the topic of boundedness of U, and its commutator has been

investigated extensively on classical Morrey spaces, Campanato spaces, Triebel-Lizorkin-
type spaces by a number of authors (see (Fu, & Lu, 2010), (Kuang, 2010), (Tang, & Zhai,
2010) and (Tang, & Zhou, 2012)).

Inspired by the above papers, in this work we consider the generalized weighted
Hardy-Cesaro operator and its commutator, which are defined as follows.
Definition 1.1.

Let w:[0,] >[0,0) and s:[0,1] >R be measurable functions. Then the

generalized weighted Hardy-Cesaro operator U.,,,s is defined by

U, f(x)= j: f(s(t)X)y (),

for measurable complex-valued functions f on R".
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Definition 1.2.

Let b be a locally integrable function on IR". The commutator of b and the operator
U, . is defined by

U, f=bu, (f)-U, (bf).

v,S

Our primary goal in this paper is to study weighted norm inequalities for the

b

generalized weighted Hardy-Cesaro operator U,, . and its commutator UW’S,

with symbols

b being CMO functions, on generalized weighted Morrey spaces Mw(a)) which are

introduced by V. S. Guliyev in (Guliyev, 2012) as follows.
Definition 1.3.

Let 0< p <o, @ be a positive measurable function on R" x (0,o0) and let @ be a
weight function on R". We denote by M Fw(ao) the generalized weighted Morrey space
which is defined by

1
M, (@) = {f € Lo @)zt = sup [o06OI @BOGON [ty < oo},

and by M (w) the generalized weighted central Morrey space which is defined by

p.e
L"“(B(0.r)) < oo}

Precisely speaking, we present certain sufficient conditions imposed on the functions
S, v, @ and @ which guarantee the boundedness of the weighted Hardy-Cesaro operator

Mpo(@) ={f € L)l =s0plo0.0T L0(BO.O °

U, . and its commutator on generalized weighted Morrey spaces M | (@) . These results

extend the results in (Xiao, 2001), (Fu, Liu, & Lu, 2009) and (Fu, & Lu, 2010) in some
sense.

Throughout the paper, the letter C is used to denote (possibly different) constants
that are independent of the essential variables. We denote a ball centered at x of radius r

and its Lebesgue measure by B(X, r) and ‘B(X, r)‘, respectively. In addition, for each ball
B(x,r) and t>0, tB(x,r) means B(tx,tr).

2. Main results
In this section, we will first show the boundedness of the generalized Hardy-Cesaro

operator U,, . on spaces M | (@) for the class of weights @ and ¢ below.
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Definition 2.1.
Let o be a real number. Then we denote by V. the set of all weight functions @ on

R" which are absolutely homogeneous of degree «, that isw(tx) =|t

te R\{0},xeR" and 0< _[a)(y)do(y) <oo,where S, ={xeR":|x|=1.
S

n

|a

w(x), for all

Let us describe some typical examples and properties of W) .

For a weight @ € WV, by standard calculations, it is easy to see that w € L _(R") if
and only if & >-—n.

For n>1and a>-n, o(x)= x|* isin YW and has the doubling property, that is
there exists a positive constant C such that @(B(x,2r)) <Cw(B(x,r)), for all balls
B(x,r).

In addition, if @,,®, arein W , then so are 8w, + Aw, forall 6,4 >0.

Definition 2.2.

Let >0 and ¢ be a positive measurable function on R" x (0,00). We say ¢ is a
subhomogeneous function on R"x(0,00), denoted by ¢ € SH”(R" x(0,0)), if there
exists a positive constant C such that for all (x,r) e R" x(0,o0) and for all t € (0,0),
one has ¢(tx,tr) < Ct’p(x,r).

We say ¢ is a weak subhomogeneous function on R"x(0,0), denoted by
@ eWSH” (R" x (0,00)), if there exists a positive constant C such that for all r e (0,0)
and for all t € (0,00), one has ¢(0,tr) < Ct’¢(0, ).

Examples of such functions are ¢(X,r)=r” or homogeneous functions of
degree /.

Our first main result in this section is formulated as follows.
Theorem 2.3.

Let 1< p<oo, S, :[0,1] —[0,0) be measurable functions such that s(t) >0 a.e.
te[0,1], e W), forsome a>-n,and ¢ SH”(R"x(0,)) for some S > 0. Then

1
U, s isboundedon M, (@), provided that Is(t)ﬁw(t)dt < o0,
0

Proof.

1
Assume that j s(t)’ w (t)dt < oo.
0
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Forany f eM (@), xeR" and r >0, it follows from the Minkowski inequality
that

B(x,r)

[o(x, r)]{[w(s(x, O | \uw,sf(w\”w(y)dyJ

p

[T (s®y)w
B(x,r)|0

=[p(x, NI {o(B(x, If))]p[ w(y)dYJ

<lp(x NI ToBXx] *[| [ |f (s(t)y)\"ww)dprw(t)dt

B(x,r)

1
_Nt+a

f (y)\”a)(y)dyJ s() " y (Ot

=[p(x 0] [@(BX, )] °

B(s(t)x,s(t)r)

< J'—(D(S(tii’:gt)r)[gp(s(t)x,s(t)r)]1[a)(B(X,r))]p[ [ \f(y)\pw(y)dy]psa) "yt
0 B(s(t)

<[y, o] qo(s(tii igt)r) Mdt<Cff, ., [s® vt

where the last inequality comes from the assumption that ¢ € SH” (R" x (0, 0)).
Clearly, the estimates above together imply

1
lu,.f \Mw(w) <C[fl, ! s(t)” y (t)dt < .

In other words, U,  is defined as a bounded operator on M, (@) and

HUV/'S M, ,(@)>M, (o)

< cjs(t)ﬂw(t)dt,

which completes the proof of Theorem 2.3.
Analogous to the proof of Theorem 2.3, we can give a sufficient condition such that
the integral operator ), ., which is defined by

v,st

W, F(x) = j (s@®x)w(®)dt,

is bounded on M | (@) as follows.
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Theorem 2.4.
Let 1< p<oo, let s,y :[0,00)—>[0,00) be measurable functions such that

s(t) >0 ae. te[0,0), let @)W, for some & >-n, and let ¢ € SH” (R" x (0,00)) for
some S >0.Then ), . isboundedon M (), provided thatjs(t)ﬁw(t)dt < o0,
0

The rest of this section is devoted to establishing the boundedness of generalized
weighted Hardy-Cesaro commutators, with symbols in weighted central bounded mean
oscillation spaces, on generalized weighted central Morrey spaces.

Let us recall here the definitions of weighted bounded mean oscillation spaces

BMO(w) and weighted central bounded mean oscillation spaces CMOP® ().

Definition 2.5.
The weighted bounded mean oscillation space BMO(w) is defined by

BMO(e):={ f & Lbo (@) f gy, <o},

where
Nen,. = L offo- d
BMO(a})_Sl;p EE[' (X) - B’w|a)(X) X |s
w(B) = j w(X)dx
B
and fg  isthe mean value of f on B with weight @, namely

1
fo, = o) ! f (X)(X)dX.

Definition 2.6.

The weighted central bounded mean oscillation space CMOP®(w), for p>1, is
defined by

CMO® (w)={ T e Li(@) fll 0, <o,

where

£l =sup

CMOP (o)

1 p Up
r>0 [m B(!J)' F() = faono @(X)de .

In the sequent, we will need the following key lemmas relating to BMO(w) and
CMOP(w) spaces.
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Lemma 2.7.
Assume that @ is a weight function with the doubling property. Then
for any 1< p <oo, there exists some positive constant C such that

1p
1
o =58 1100 0 00| <,

Proof.
The proof of Lemma 2.7 is similar to the proof of Corollary 6.12 in
(Duoandikoetxea, 2000) with slight modifications. So we omit the details here.

The next lemma describes the inclusions between spaces CMOP(w), p>1, and

between CMOP (w) with BMO(w) .

Lemma 2.8.
(a) Let @ be a weight function. If 1< p<q <o then CMO® (@)= CMOP(w) and for
any b e CMO"(w), we have Il bl <l bl

CMOP (@) CMO%(w) "
(b) Assume in addition that @ holds the doubling property. Then
BMO(w) = CMOP(w), for all p €[1,00). Moreover, for any b € BMO(w), there exists

a positive constant C, such that Il bl <C, lIbllgyo -

CMOP (w)
Proof.

The part (a) of the lemma follows from the definitions of the spaces CMO® (@) and

PP
Let us now prove part (b). Indeed, in view of Lemma 2.7, if b € BMO(w) then there

from the Holder inequality with the pair [ﬂ,[ﬂJ J

exists a positive constant C, such that I bll, ; <C_ Ibllgye, -

On the other hand, it is clear to see that

Up
1
ol Bmop(w)zSrgf(mj.s(o,r)b(x) =By 0110 " a)(X)de =l bl CMO® (o)

The last two estimates then prove part (b) of this lemma.
Lemma 2.9.
Let @ be a doubling weight function. Then, there exists some positive constant C

such that for any balls B, = B(x,,1;), B, =B(X,,r,), whose intersection is not empty, and
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%rz <1, <2r,, thenw(B) <Cw(B,),i =1,2. Here, B is the smallest ball which contains

both B, and B,. Moreover, for each function b € BMO(w), we have
b, ,, —bs, | <2C I b5y, -

Proof.
Since @ has the doubling property, there exists a constant C, such that

B,,@ -

w(B(x,2r))<Cw(B(x,r)), for any xeR" and r>0. Without loss of generality,
assume that r,<r <2r,. Let B =B(x,r), B,=B(X,,I,) be two balls whose
intersection is not empty and I, <r, <2r,, and B be the smallest ball which contains both
B, andB,. Take xe B, " B,. Then,

o(B) < w(B(x,2r,) < Cw(B(x,1)) < Clo(B(x,, 21,)) < Cw(B,),
and

w(B) < w(B(x,4r,) <Clw(B(x,1,)) < Clo(B(X,,1,)).
We now choose the constant C = max{C’,C.’}.
On the other hand, one has

by, ,, b5, ,| < + |05, —bg_, |-

- ‘bBla) - bB,a)
In the light of choosing the constant C, we deduce that

bm—%A=%w &n , D)e(y)dy

b, lo(y)dy <

(B 18 o6 = o(y) =By oY)y £ C bl

Finally, one estimates the left term in a similar way and completes the proof of Lemma 2.9.
Lemma 2.10.
Let @ be a doubling weight function. Then, there exists some positive constant C

such that for any balls B =B(0,r), B,=B(0r,), and %rz <1, <2r,, then
o(B)<Cw(B,), i=1 2. Here, B=B(0,r) is the smallest ball which contains both B,
and B, . Moreover, for any function b e CMOP (w), p >1, we have

b, , ~bs, [ <2CHbI

Proof.
Thanks to Lemma 2.9, it suffices to prove

B CMOP (w) *
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s, ~ b5, ,[<2C I b1l

Obviously, we have

CMOP(w) *

bB]_,aJ _bBZ,aJ‘ S ‘bBl,aJ - bB,(u +‘bB,a) - sz,a)"

One now can observe that

by, —bBM,\ =|b

B~ (B s b(y)w(y)dy

bg . fo(y)dy < —— | [b(y)—bs Jo(y)dy <ClI b0,

C
(B ) 7B o(B)
where the last estimate follows from the Holder inequality for the pair (p, p') if p >1.

One then can estimate the remaining term analogously to end the proof of
Lemma 2.10.

We are now in a position to state the following main result.
Theorem 2.11.

Let 1<p<qg<o, S, :[0,1]]—[0,0) be measurable functions such that
O0<s(t)<1 ae te[0,1], @eW, hold the doubling property for some «a>-n,
@ €WSH” (R" x (0,00)) for some />0, and b e CMO* (@), 4> A" =3P

q-p

Then Ub is bounded from M (% (@) to M (), provided that

n+a

j sty ¢ 2—log, s(t) )y (t)dt < co.

Proof.

n+a

Suppose that_[s(t) “ (2-log, s(t) )w(t)dt < o,

Let B be any ball centered at the origin of radius r, and let f be any function in

M5 (@). By applying the Minkowski inequality, we obtain

! =(¢(o, r)"’%ﬂ%s f (y)\pw(y)dy)p

<| [co(o r)” pﬁ [1(o(y) =b(s®) f (s®)y)’ w(y)dy) p(t)dt.
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At this point, in use of the Minkowski's triangle inequality to the right-hand side of
the above estimate, it is clear to see that

I <C(,+1,+1,),
where

I, = j{q)(o ) p—j\(b(y) b,.,) f (5()Y)|” co(y)dyj w(t)dt,

( sa)B,w—bB,,,)f(s(t)y)\"wmdyjp y (O,

1\)_
Il
O ey

00,1 (1)1

20, r)pﬁ [ CECRI YL (s(t)y)\"w(y)dyjp w(dt,

l5

Il
O ey

and the constant C depends only on p.

Let us now estimate the term 1,. It follows from the Holder inequality with the pair

[I :ﬂ,l':ij for the term |, that
P q-p

1 1

<000’ [% Jlf s w(y)dyjq (ﬁ j Ib(y) by, | w(y)dy)ﬂ w(H)dt.

Due to Lemma 2.8, we then deduce that

1y <[blloyor o, @17 ( 5] JIf sy co(y)dyj w(t)dt

n+a

o) j s T p(t)dt

n+a

< Clolly o ijsa) (2~ log, s())y (.

Similarly, one can use the same argument above to have

n+a

Fllyen oy j sty ¢ 2—log, s(t) )y (t)dt.

<Clp|

CcMO* (a))

Iy <C|p|

cMo? (a))

For the term 1, rewrite this term as

406



HCMUE Journal of Science Tran Tri Dung

1

=] {(p(o r)” P— j £ (st)y)” w(y)dyj b, =, s, |w (D)l

Then we employ the Holder inequality with the pair [I :ﬂ,l'zij for this
p q-p

term to get

< [ca(o, r? ﬁ It sy w(y)dy]q s~ By D)t

n+a

1 g
<C ” f | ME () ”bB,w - bs(t)B,w‘S(t) Ty (t)dt
0

n+a

e
s(t) ¢ w(t)dt.

<C| ],

cen( ) Z j ‘bB,a) - bS(t)B,(u

m= ° te[O 127" L<s(t)<2” }

At this stage, observe that for each m e N, we have

m
‘bew - bs(t)va‘ < Zol‘bz”s,w B bz*i B,w‘ + ‘bzfmle,m B bs(t)B,w '
i=l

Therefore, in light of Lemma 2.10, we deduce that

nN+a

Y ] me2s) Ty

m= O{te[Ol] 27 MLeg(t)<2” }

12 <Clblgygr I

nN+a

oY (2-log, s®)s(t) * w(t)dt
v (@)

m=0 {te[ou 27 Igs(t)<2” }

<Clp|

CMO* (w) ” |

n+a

<Pl i 5 (200, O 0

which, combined with the last estimates of |, and |, above, completes the proof of

Theorem 2.11.
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CAC BAT PANG THUC CO TRQONG VE CHUAN CUA TOAN TU VA HOAN TU
HARDY-CESARO TONG QUAT TREN CAC KHONG GIAN MORREY
CO TRONG TONG QUAT VOI CAC BIEU TUQNG TRONG KHONG GIAN CMO
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TOM TAT

Trong bai bao nay, muc dich chinh cua chung téi la nghién cuiu tinh bj chgn cua hoan ti
Hardy-Cesaro c6 trong trén cac khdng gian Morrey tong quat M 0o (). Ching i thiét ldp duoc
mét sé diéu kién du cho tinh bj chan cua toan tir Hardy-Cesaro va hoan ti ciia no trén cac khong
gian Morrey c6 trong tong quat M | (@) khi cac biéu arong thugc khong gian CMO.

Tir khoa: toan tir Hardy-Cesaro c6 trong; hoan tir; khéng gian Morrey c6 trong tong quat;
khong gian CMO
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