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ABSTRACT 

In this work, our main aim is to study the boundedness of the weighted Hardy-Cesàro 

operators and commutators on generalized weighted Morrey spaces , ( )pM   . We establish 

certain sufficient conditions which imply the boundedness of the weighted Hardy-Cesàro operators 

and their commutators with symbols in CMO spaces on generalized weighted Morrey spaces 

, ( )pM   . 

Keywords: weighted Hardy-Cesàro operator; commutator; generalized weighted Morrey 

space; CMO space 

 

1. Introduction 

 Consider the classical Hardy operator U  defined by  

0

1
( ) ( ) , 0

x

Uf x f t dt x
x

   

for 
1

loc( )f L . A celebrated Hardy integral inequality, see (Guliyev, 2012), can be 

formulated as 

 
( ) ( )

,
1

p pL L

p
Uf f

p



‖ ‖ ‖ ‖  

where 1 ,p    in which the constant 
1

p

p 
 is known as the best constant. The Hardy 

integral inequality and its generalizations then have been studied extensively since they 
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play an important role in various branches of analysis such as approximation theory, 

differential equations, the theory of function spaces.  

The generalized Hardy operator was first introduced in 1984 by C. Carton-Lebrun and M. 

Fosset (Carton-Lebrun, & Fosset, 1984), in which the authors defined the weighted Hardy 

operator U  as follows. Let :[0,1] [0, )    be a measurable function, and let f  be a 

measurable complex-valued function on .n
 Then the weighted Hardy operator U  is 

defined by  

1

0
.( ) ( ) ( ) , nU f x f tx t dt x    

It was in the work mentioned above that C. Carton-Lebrun and M. Fosset showed 

that U  is bounded on ( )nBMO .  

Then in 2001, J. Xiao proved in (Xiao, 2001) that U  is bounded on ( )p nL  if and 

only if  

1
/

0
: ( )n pt t dt     

and that the corresponding operator norm is exactly .  Also, J. Xiao obtained 

( )nBMO bounds of U which sharpened the main result (Carton-Lebrun, & Fosset, 

1984). 

Recently, Z. W. Fu, Z. G. Liu and S. Z. Lu in 2009 presented a necessary and 

sufficient condition on the weight function   which characterizes the boundedness of the 

commutators of weighted Hardy operators U  on ( ),p nL  1 ,p    with symbols in 

( )nBMO  (Fu, Liu, & Lu, 2009).  

In addition, the topic of boundedness of U  and its commutator has been 

investigated extensively on classical Morrey spaces, Campanato spaces, Triebel-Lizorkin-

type spaces by a number of authors (see (Fu, & Lu, 2010), (Kuang, 2010), (Tang, & Zhai, 

2010) and (Tang, & Zhou, 2012)). 

 Inspired by the above papers, in this work we consider the generalized weighted 

Hardy-Cesàro operator and its commutator, which are defined as follows. 

Definition 1.1. 

Let :[0,1] [0, )    and :[0,1]s   be measurable functions. Then the 

generalized weighted Hardy-Cesàro operator ,sU  is defined by  

  
1

,
0

( ) ( ) ( ) ,sU f x f s t x t dt     

for measurable complex-valued functions f  on .n
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Definition 1.2. 

Let b  be a locally integrable function on .n
 The commutator of b  and the operator 

,sU  is defined by 

, , ,( ) ( ).b

s s sU f bU f U bf     

Our primary goal in this paper is to study weighted norm inequalities for the 

generalized weighted Hardy-Cesàro operator ,sU  and its commutator ,

b

sU , with symbols 

b  being CMO functions, on generalized weighted Morrey spaces , ( )pM    which are 

introduced by V. S. Guliyev in (Guliyev, 2012) as follows.  

Definition 1.3. 

Let 0 ,p     be a positive measurable function on (0, )n    and let   be a 

weight function on 
n
. We denote by , ( )pM    the generalized weighted Morrey space 

which is defined by 

,
,

1

, 1

, ( ) ( ( , ))
, 0

( ) ( ) : sup [ ( , )] [ ( ( , ))] ,p
p n

p n p

p loc M L B x r
x r

M f L f x r B x r f 




 
  




 

  
     
  

 

and by , ( )cen

pM    the generalized weighted central Morrey space which is defined by 

,
,

1

, 1

, ( ) ( (0, ))
0

( ) ( ) : sup[ (0, )] [ ( (0, ))] .cen p
p

cen p n p

p loc M L B r
r

M f L f r B r f 




 
  






  
     
  

 

Precisely speaking, we present certain sufficient conditions imposed on the functions 

,s  ,   and   which guarantee the boundedness of the weighted Hardy-Cesàro operator 

,sU  and its commutator on generalized weighted Morrey spaces , ( )pM   . These results 

extend the results in (Xiao, 2001), (Fu, Liu, & Lu, 2009) and (Fu, & Lu, 2010) in some 

sense.  

Throughout the paper, the letter C  is used to denote (possibly different) constants 

that are independent of the essential variables. We denote a ball centered at x  of radius r  

and its Lebesgue measure by  ,B x r  and ( , )B x r , respectively. In addition, for each ball 

 ,B x r  and 0t  ,  ,tB x r  means  .,B tx tr     

2.  Main results 

In this section, we will first show the boundedness of the generalized Hardy-Cesàro 

operator ,sU  on spaces , ( )pM    for the class of weights   and   below. 
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Definition 2.1. 

Let   be a real number. Then we denote by   the set of all weight functions   on 

n
 which are absolutely homogeneous of degree  , that is ( | | () )tx t x   , for all 

\{0}, nt x   and 0 ( ) ( )

nS

y d y    , where { :| | 1}.n

nS x x     

Let us describe some typical examples and properties of  .  

For a weight  , by standard calculations, it is easy to see that 
1

loc( )nL  if 

and only if n   .  

For 1n   and n   , ( ) | |x x    is in   and has the doubling property, that is 

there exists a positive constant C  such that ( ( ,2 )) ( ( , )),B x r C B x r   for all balls 

( , ).B x r   

In addition, if 1 2,   are in  , then so are 1 2   for all , 0   . 

Definition 2.2. 

Let 0   and   be a positive measurable function on (0, ).n    We say   is a 

subhomogeneous function on (0, )n   , denoted by ( (0, ))nSH    , if there 

exists a positive constant C  such that for all ( ), ,) (0nx r    and for all (0, )t  , 

one has ( , ) ( , )tx tr Ct x r  . 

We say   is a weak subhomogeneous function on (0, )n   , denoted by

( (0, ))nWSH    , if there exists a positive constant C  such that for all (0, )r   

and for all (0, )t  , one has (0, ) (0, ).tr Ct r   

Examples of such functions are ( , )x r r    or homogeneous functions of  

degree .   

Our first main result in this section is formulated as follows. 

Theorem 2.3. 

Let 1 ,p    , :[0,1] [0, )s     be measurable functions such that ( ) 0s t   a.e. 

[0,1]t ,    for some n   , and ( (0, ))nSH     for some 0  . Then 

,sU  is bounded on , ( )pM   , provided that 

1

0

( ) ( ) .s t t dt    

Proof.  

Assume that 

1

0

( ) ( ) .s t t dt    
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For any , ( ), n

pf M x    and 0r  , it follows from the Minkowski inequality 

that  

 

 
 

1

1 1

,

,

1

, 0

1

1

1

[ ( , )] [ ( ( , ))] ( )

[ ( , )] [ ( ( , ))] ( )

( )

( ) ( )

s

B x r

B x

p
p

p

r

p

p

x r B x r y dy

x

U f y

f s t y t dtr B x r y dy

  

  

 




 
 
 
 

 
 
 
 



 

  

 

1
1 1

1

0 ( , )

( )[ ( , )] [ ( ( , ))] ( ) ( )
p

p

B x r

p

x r B x r y dyf s t y t dt  



 

  
 
 
   

 

1

1 1

1

0 ( ( ) , ( ) )

[ ( , )] [ ( ( , ))] ( )) ) ((

np

p p

B s t x s t

p

r

x r B x r y y dy sf t dt t



   


 


 




 
 

    

 

1

11

1

0 ( ( ) , ( ) )

( ( ) , ( ) )
[ ( ( ) , ( ) )] [ ( ( , ))] ( ) ( )

( ,
( )

)

np

p p

B s t x s t r

ps t x s t r
s t x s t r B x r y dyf y t dts t

x r



 


 



 


 

  
 
 

 

, ,

1 1

( ) ( )

0 0

( ( ) , (
( )

) )
(( )

)
,

(
)

,p pM M

s t x s t r
f t dt C tf s dtt

x r 



 
 




     

where the last inequality comes from the assumption that ( (0, )).nSH     

Clearly, the estimates above together imply  

,,
( )

1

,

0
( )

( ) ( ) .
pp

s MM
U f C s t tf dt





 
    

In other words, ,sU  is defined as a bounded operator on , ( )pM    and      

, ,( ) ( )

1

,

0

( ) ( ) ,
p pMs M

U s t tC dt
 

  




   

which completes the proof of Theorem 2.3.  

Analogous to the proof of Theorem 2.3, we can give a sufficient condition such that 

the integral operator ,s , which is defined by 

  ,
0

( ) ( ) ( ) ,s f x f s t x t dt 


   

is bounded on , ( )pM    as follows.  
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Theorem 2.4. 

Let 1 ,p    let , :[0, ) [0, )s      be measurable functions such that 

( ) 0s t   a.e. [0, )t  , let    for some n   , and let ( (0, ))nSH     for 

some 0  . Then ,s  is bounded on , ( )pM   , provided that

0

( ) ( ) .s t t dt


    

The rest of this section is devoted to establishing the boundedness of generalized 

weighted Hardy-Cesàro commutators, with symbols in weighted central bounded mean 

oscillation spaces, on generalized weighted central Morrey spaces.  

Let us recall here the definitions of weighted bounded mean oscillation spaces 

( )BMO   and weighted central bounded mean oscillation spaces ( ).pCMO   

Definition 2.5. 

The weighted bounded mean oscillation space ( )BMO   is defined by 

 loc ( )( ): ( ) : ,p

BMOBMO f L f     ‖ ‖  

where 

( ) ,

1
sup | ( ) | ( ) ,

( )
BMO B

B
B

f f x f x dx
B

  


 
  

 
‖ ‖  

( ) ( )
B

B x dx    

and ,Bf   is the mean value of f  on B  with weight  , namely  

,

1
( ) ( ) .

( )
B

B

f f x x dx
B

 


   

Definition 2.6. 

The weighted central bounded mean oscillation space ( )pCMO  , for 1p  , is 

defined by 

 loc ( )
( ): ( ) : ,p

p p

CMO
CMO f L f


    ‖ ‖  

where 

1/

(0, ),( )
0

(0, )

1
sup | ( ) | ( )

( ( )
.

0, )
p

p

p

B rCMO
r

B r

f f x f x dx
B r






 
  

 
 

‖ ‖  

In the sequent, we will need the following key lemmas relating to ( )BMO   and 

( )pCMO   spaces. 
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Lemma 2.7.  

Assume that   is a weight function with the doubling property. Then  

for any 1 ,p    there exists some positive constant pC  such that  

1/

,( ) ( )

1
sup ( ) ( ): .

( )
p

p

p

BBMO BMO
B

B

pf f x f x
B

dx fC 




 
  

 
  

Proof. 

The proof of Lemma 2.7 is similar to the proof of Corollary 6.12 in 

(Duoandikoetxea, 2000) with slight modifications. So we omit the details here. 

The next lemma describes the inclusions between spaces ( ), 1pCMO p  , and 

between ( )pCMO  with ( )BMO  . 

Lemma 2.8. 

(a) Let   be a weight function. If 1 p q     then ( ) ( )q pCMO CMO  and for 

any ( ,)qb CMO   we have 
( ) ( )

.p qCMO CMO
b b

 
‖ ‖ ‖ ‖   

(b) Assume in addition that   holds the doubling property. Then 

,( ) ( )pBMO CMO   for all [1, ).p   Moreover, for any ( )b BMO  , there exists 

a positive constant pC  such that 
( )( )

.p p BMOCMO
b C b 

‖ ‖ ‖ ‖   

Proof. 

The part (a) of the lemma follows from the definitions of the spaces ( )pCMO   and 

from the Holder inequality with the pair 

'

, .
q q

p p

  
     

   

Let us now prove part (b). Indeed, in view of Lemma 2.7, if ( )b BMO   then there 

exists a positive constant pC  such that 
( )( )

.p p BMOBMO
b C b 

‖ ‖ ‖ ‖   

On the other hand, it is clear to see that  

1/

(0, ),( ) ( )(0, )0

1
sup | ( ) | ( )

( (0, ))
.p p

p

p

B rBMO CMOB rr

b b x b x dx b
B r

 




 
   

 
‖ ‖ ‖ ‖   

The last two estimates then prove part (b) of this lemma.  

Lemma 2.9. 

Let   be a doubling weight function. Then, there exists some positive constant C  

such that for any balls 1 1 1( , )B B x r , 2 2 2( , )B B x r , whose intersection is not empty, and
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2 1 2

1
2

2
r r r  , then ( ) ( )iB C B  , 1,2.i   Here, B  is the smallest ball which contains 

both 1B  and 2.B  Moreover, for each function ( )b BMO  , we have  

1 2, , ( )2 .B B BMOb b C b    ‖ ‖  

Proof.  

Since   has the doubling property, there exists a constant 1C  such that 

   1( ,2 ) ( , )B x r C B x r  , for any 
nx  and 0r  . Without loss of generality, 

assume that 2 1 22r r r  . Let 1 1 1( , )B B x r , 2 2 2( , )B B x r  be two balls whose 

intersection is not empty and 2 1 22r r r  , and B  be the smallest ball which contains both 

1B  and 2.B  Take 1 2x B B  . Then, 

        2

1 1 1 1 1 1 1 1( ) ( ,2 ( , ) ( ,2 ) ,B B x r C B x r C B x r C B         

and 

      2 3

2 1 2 1 2 2( ) ( ,4 ( , ) ( , ) .B B x r C B x r C B x r       

We now choose the constant 
2 3

1 1max{ , }C C C . 

On the other hand, one has  

 
1 2 1 2, , , , , , .B B B B B Bb b b b b b           

In the light of choosing the constant C , we deduce that   

 
1

1
, , ,

1

1
( ) ( )

( )
B B B

B
b b b b y y dy

B
   


     

 
1

, , ( )

1

1
( ) ( ) ( ) ( )

( ) ( )
.B B BMO

B B

C
b y b y dy b y b y dy C b

B B
   

 
      ‖ ‖  

Finally, one estimates the left term in a similar way and completes the proof of Lemma 2.9. 

Lemma 2.10. 

Let   be a doubling weight function. Then, there exists some positive constant C  

such that for any balls 1 1(0, )B B r , 2 2(0, )B B r , and 2 1 2

1
2

2
r r r  , then 

( ) ( )iB C B  , 1, 2i  . Here, (0, )B B r  is the smallest ball which contains both 1B  

and 2B . Moreover, for any function ( ), 1pb CMO p  , we have  

1 2, , ( )
2 .pB B CMO

b b C b  
  ‖ ‖  

Proof. 

Thanks to Lemma 2.9, it suffices to prove 
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1 2, , ( )
2 .pB B CMO

b b C b  
  ‖ ‖  

Obviously, we have  

 
1 2 1 2, , , , , , .B B B B B Bb b b b b b           

One now can observe that 

 
1

1
, , ,

1

1
( ) ( )

( )
B B B

B
b b b b y y dy

B
   


     

 
1

, , ( )
1

1
( ) ( ) ( ) ( ) ,

( ) ( )
pB B CMOB B

C
b y b y dy b y b y dy C b

B B
  
 

 
      ‖ ‖  

where the last estimate follows from the Holder inequality for the pair ( ,  ')p p  if 1p  . 

One then can estimate the remaining term analogously to end the proof of  

Lemma 2.10.  

We are now in a position to state the following main result. 

Theorem 2.11. 

Let 1 ,p q     , :[0,1] [0, )s     be measurable functions such that 

0 ( ) 1s t   a.e. [0,1]t ,   hold the doubling property for some n   , 

( (0, ))nWSH     for some 0,   and *( ), .
qp

b CMO
q p

     


 

Then ,

b

sU  is bounded from , ( )cen

qM    to , ( ),cen

pM    provided that 

 
1

0

2( ) (2 log ( ) ) .

n

q ss t t dt t









    

Proof. 

Suppose that  
1

0

2( ) (2 log ( ) ) .

n

q ss t t dt t









     

Let B  be any ball centered at the origin of radius ,r  and let f  be any function in 

, ( ).cen

qM    By applying the Minkowski inequality, we obtain  

,

1

1
1

0

1
(0, ) ( ) ( )

( )

1
(0, ) ( ( ) ( ( ) )) ( ( ) ) ( ) ( ) .

( )

pp
p

B

p
pp

B

b

sI r f y y dy
B

r b y b s t y f s t y y dy t dt

U

B

 


  






 
  
 

 
  

 



 
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At this point, in use of the Minkowski's triangle inequality to the right-hand side of 

the above estimate, it is clear to see that  

1 2 3( )I C I I I   , 

where  
1

1

1 ,

0

1
(0, ) ( ( ) ) ( ( ) ) ( ) ( )

( )

p
pp

B

B

I r b y b f s t y y dy t dt
B

  



 

  
 
  , 

1
1

2 ( ) , ,

0

1
(0, ) ( ) ( ( ) ) ( ) ( ) ,

( )

pp
p

s t B B

B

I r b b f s t y y dy t dt
B

   



 

  
 
 

1
1

3 ( ) ,

0

1
(0, ) ( ( ( ) ) ) ( ( ) ) ( ) ( )

( )

pp
p

s t B

B

I r b s t y b f s t y y dy t dt
B

  



 

  
 
  , 

and the constant C  depends only on p .  

Let us now estimate the term 1.I  It follows from the Holder inequality with the pair 

, 'l l
p q p

q q 
  

 
 for the term 1I  that  

*
*

1 1
1

1

1 ,

0

1 1
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I r f s t y y dy b y b y dy t dt
B B



   
 


   

    
   
  

 

Due to Lemma 2.8, we then deduce that  
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Similarly, one can use the same argument above to have 

 
,

3 2

0

( ) ( )

1

( ) 2 log ( ) ( ) .cen
q

n

q

CMO M
I C b f s ts t t dt
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







   

For the term 2I , rewrite this term as 
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1
1

2 , ( ) ,
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(0, ) ( ( ) ) ( ) ( ) .
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   



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 
   

Then we employ the Holder inequality with the pair , 'l l
p q p

q q 
  
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 for this 

term to get 
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At this stage, observe that for each m , we have  

1 1, ( ) , ( ) ,2 , 2 , 2 ,
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.i i m

m

B s t B s t BB B B
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Therefore, in light of Lemma 2.10, we deduce that 
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


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which, combined with the last estimates of 1I  and 3I  above, completes the proof of 

Theorem 2.11. 
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TÓM TẮT 

 Trong bài báo này, mục đích chính của chúng tôi là nghiên cứu tính bị chặn của hoán tử 

Hardy-Cesàro có trọng trên các không gian Morrey tổng quát , ( ).pM    Chúng tôi thiết lập được 

một số điều kiện đủ cho tính bị chặn của toán tử Hardy-Cesàro và hoán tử của nó trên các không 

gian Morrey có trọng tổng quát , ( )pM    khi các biểu tượng thuộc không gian CMO. 

 Từ khóa: toán tử Hardy-Cesàro có trọng; hoán tử; không gian Morrey có trọng tổng quát; 

không gian CMO   


