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ABSTRACT

It is well-known that some famous probability density functions (PDF) of random variables
are associated with symmetries of these random variables. The Boltzmann and Gaussian PDFs that
are invariant under translation and spherical transformations of their variables, respectively, are
obvious and well-studied examples reflecting not only symmetries of many physical phenomena but
also their underlying conservation laws. In physics and many other fields of interest of complexity,
the transitions from the Boltzmann PDF to the Gaussian PDF, or at least from Boltzmann-like
PDF to the Gaussian-like PDF, i.e from a sharp peak PDF to round peak PDF, are frequently
observed. These observed phenomena might provide clues for a phase transition, namely second-
order phase transition, where the symmetry of given physical quantities in the system under
consideration is broken and changed to another one. The purpose of this work is to study this kind
of transition in the superconductivity by investigating the transformation of envelope functions of
electron and Cooper pair wavefunctions in spatial representation which might correspond to the
change of symmetrical behavior of the space from its normal to superconducting states near the
phase transition critical temperature.

Keywords: Superconductivity; The phase transition; Orthogonal Fluctuations

1.  Introduction

Originally observed in nature and then essentially used as the fundamental example
of collective behavior of a complex system where system properties would be investigated
and “understood only from a holistic description of the properties of the entire system
rather than from a reductionist description of individual” elements (Bak, 1996), the
problem of sandpile dynamics is reformulated in the terms of probability theory and
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statistics that can map several similar phenomena in complex systems to single one that the
shape of an initial probability distribution function or statistical density function of a given
observable quantity concerning a random variable changes along with the evolution of time
into the new one which is different from the initial. These phenomena appear quite often in
many observable processes of complexity, from physical systems to social systems where
the short-time data set provides a typical statistical weight function and the long time data
set with the same variable provides another typical statistical weight function.

On the one hand, it is not easy to explicitly mechanically explain these phenomena
due to the nature of the complexity of the system under consideration and uselessness of
physically microscopic laws for the individuals within the system. However, in another
hand, it is believed that there is at least a universal explanation for all kinds of transitions
due to the universality of these phenomena. Many experimental and theoretical
investigations, especially in econophysics focusing on various datasets of financial markets
(Mantegna and Stanley, 1994, 1995, 1997; Bouchaud, 1999; Anh et al., 2013, 2014b,a,
2015, 2016), have been performed to find out a possible explanation providing deep insight
for universality of the phenomenon and in theoretical aspect, the model of external
fluctuations or noises originally introduced in (Anh et al., 2014a) would be a potentially
promised approach.

The physical idea of the proposed approach is of the modeling all the external factors
affecting on the given system by two kinds of effective fluctuations, in-space, and
orthogonal ones. As it has been expected from physical reasoning, the in-space fluctuations
would cause the expansion of initial probability distribution function to whole space, and
fat and semi-fat tails of the final probability distribution function, while the orthogonal
ones are associated to symmetry broken processes in the given system.

The purpose of this paper is twofold: first is to extend the formalism introduced in
(Anh et al., 2014a) to consider the whole family of phenomena of probability distribution
functions transition, including observable transitions and decay transitions of Gaussian
probability distribution function. Second, by investigating the invariance of probability
distribution functions, a kind of observable transitions is connected to the symmetry
broken in superconductivity utilizing coordinate representation of wavefunctions in
superconducting phase and normal phase to provide another insight into understanding the
statistics of order parameters in a phase transition. The paper would be organized as
follows. Sec. 2 introduces a general mathematical description for probability distribution
functions transition under the influence of noises and their corresponding parameters. The
probability distribution function transition under orthogonal noises is developed in Sec. 3..
The relationship between the probability distribution functions transition and
superconducting phase transition is established in Sec. 4. And Sec. 5 contains some
concluding remarks.
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2.  Mathematical Description of Fluctuation Contributions in Probability
Distribution Functions

Provided a probability distribution function in form fl(x) such that
Jav(x) =1, ®

where the probability distribution function f;(x) is well-defined and continuous
function determined in a finite interval [x‘,,xu] of a random variable x. In most cases of

present consideration, the interval [xl,xu] is expanded in whole space —, otherwise the

integrand of eq. (1) can be rewritten as

0 (—oo,xi]
Ai(x) =1 Al) [xox.] @
0 I:xu,oo)

to expand the integral to the whole space ~— of the random variable. However, it should be
emphasized that the interval [xl,xu] bounded by hard (close) or soft (open) boundaries is

more interesting in identifying and analyzing asymptotical behaviors of final probability
distribution function obtained by integrating over all additional degrees of freedom
characterizing random fluctuations, such as the phenomenon of fat and semi-fat tails
observed in complexity. Furthermore, due to the left-right symmetry of the most
phenomena in complexity (Kleinert and Chen, 2007), the probability distribution function

fl(x) could belong to a class of symmetric functions as

fl(x) =fi(|x—x0 ), 3)

where x, is the symmetric point of the random variable x. And for the sake of simplicity,

the point x, can be chosen as zero.

2.1. Contributions of Fluctuations on the Random Variable and its Distribution
Functions

In general, it is impossible to explicitly take into account all the external factors
affecting the system under consideration or on the dataset of a given observable of the
system because of their unclear collective mechanism and also their complexity. However,
it is still possible to model their effects in the terms of a random fluctuation consisted of

two components, an in-space ¢ and an orthogonal & ones of which the mean value A, and
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standard variances o, would be associated with macroscopic effects of the fluctuations on

the system.
The contributions of these fluctuations to variable should be written as

|x|—) (x—§)2+£2- (4)
The expression eg. (4) implies that an orthogonal fluctuation & should be considered

as an additional dimension which extends “— to “—*, while in-space fluctuations ¢ would

make a shift of variable x within ~ having the same dimensionality as a random variable
x. Below, the physical significance of these two kinds of fluctuations will be discussed by
associating them with changes from initial to final probability distribution functions.

Under the effects of fluctuations & and £, the probability distribution function

j;(x) will be changed, and a new distribution function ff(x) would be obtained by

integrating over all fluctuation degrees of freedom, which are unseen in the process of

transition. The observable final distribution function ff(x) should satisfy
£, (x) =N [ de [z, (€)z, (g)_f;[ (x—¢) 4 ) ©)
ST o
where is A/ is some renormalized constant

deJdEIdCémm (C)f'( (r—é")zﬂ*).» 6)

and gh(g) and gmﬂl(g) are probability distribution functions of in-space and orthogonal

fluctuations, respectively.
2.1.1. Fourier Transformation and Cumulant Generating Function

For an arbitrary function f (x) the Fourier transformations are written as

fip)= Jz—_wdxe (%), )

=— dpcf}’”‘f; pl.
nrd Rl o

Fourier image }!(p) of the probability distribution function j;(x) can be calculated

explicitly in the terms of cumulants as

\/— [dx \/;_ﬁ exp{—H ( s} ]} (©)
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=3

where the function %(p;{(x”)c} ] is cumulant generating function, which is sometimes

A=l
also called the second characteristic function and plays a similar role as the Hamiltonian in

quantum statistical mechanics, and <x"> denotes n-th order cumulant of a random
C

variable x concerning the probability distribution function fl(x)

)=37 Idxe"‘ ()

Inserting eq. (8) into eq. (5) to obtain explicit expression of the resulting probability
distribution function is a simple and straightforward task as

(10)

filx) =N o— J dpf (p J dejde;m
(11)

1 7 ~
N [y ).
o 4 (p) 7 (x.p)

where immediate function ]—‘n(x, p) denotes the integration overall degrees of freedom of

fluctuations

©.p)= e [ag, (), (e (12)

and normalized constant A/ is

N = o ani(p) 7 (p) (13
In general, th IS E;rd to find a universal analytical solution for the immediate function
]-ji(x,p) even with very simple but meaningful probability distribution functions of both
fluctuations, £ and &, such as the Gaussian distribution function.
3. Analytical Properties of Final Probability Distribution Function ff(x)

To investigate the analytical properties of the final probability distribution function
f f(x), it would be useful to recall it in the most abstract form as eq. (5). Its first-order

derivative is
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< 1,(v) —N“(jgdefj{digmh(e)gm(e')%ﬂ( (=¢f e’

(14)

=N dejd@gmh(S)gm(C)%ﬁ(z) , #
e J(x= ) e
It is not easy to draw the whole picture of the analytical properties of the final
probability distribution function ff(x) from its first derivative. However, by considering
separated contributions of each kind of fluctuation, it can show the effects of fluctuations

on the final probability distribution function ff(x). The detailed analysis of total

contributions of both fluctuations is out of the scope of present work and will be discussed
in another work where the full framework would be studied. As the purpose of the present
work, the contribution of orthogonal fluctuations constituting the symmetry breaking is
analyzed below.
3.1. The orthogonal fluctuation

In the case where the in-space fluctuation is off, the eq. (14) should read

%ff (x) = Nl(_[dggmh(f)%ﬁ(\/xz +82)

(15)

d 1
=X N_I dsgol‘tl 8 _f; = T
[ (2[ s ( )dZ ( );: ._x2+£2 sz +£2 J
The second line of eq. (15) implies that the first derivative of the final probability
distribution function ff(x) tends to zero when x goes to zero, i.e. at x =(), the function

f f(x) gets a local extremum. Therefore, the direct consequence of this result is that an

orthogonal fluctuation will cause any symmetric probability distribution function at x =0,

i.e. fi(x)zfi(‘x\) to transform to a new one having local extremum at x=0, Ii.e.

S(x)= ff(|x‘) and

%ff(x)

This primary conclusion confirms that the transition from Boltzmann distribution
i

function fB(x)zﬁe’1 to Gaussian distribution function G(x)z

=0. (16)

=

12

1
620'2 1S

2ro

undertaken by the mechanism of an orthogonal fluctuation.
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Figure 1. Graphical representation of the transition from initial symmetric Boltzmann distribution function
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4. The transition of Envelop Function of Cooper Pair Wavefunction in
Superconducting-Normal Phase Transition
In the long history of the BCS theory, the Cooper pair and its wavefunction as

|*¥)c —Z E"T 1 ), (17)

have been usually analyzed in the momentum-space. The role of the Fermi sea,

| F)= H l‘¢|0) is to Pauli-block states below the Fermi energy & (Ortiz and
k<l
Dukelsky, 2006; Waldram, 1996). The first investigation of Cooper pair in coordinate-

space
Y. (r) o Z”ka exp(ikr)
k

T Y OOS(kT)
M L] —_ 18
VR A =

i () cos(kr)df;‘
vl =NOf N
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was implemented in the work (Kadin, 2007), where it was shown that this leads to an
internal spherically symmetrical quasi-atomic wavefunction, with an identical “onion-like”
layered structure for each of the electrons constituting the Cooper pair. In the expression

2y.2
eq. (18), the sum is taking over all k--states near k., £ =¢ —u, where ¢ = o and
ZkZ
U= 5 E are the free electron kinetic energy and the Fermi energy, and A is the BCS
m

superconducting energy gap. The functions U, and v, are the standard variational

1
parameters of the BCS theory, such that 2u v_ :(gi +A2)7, and the N (0) is the density

of states for a single electron spin per unit energy at the Fermi level.

. q )
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-

(a) Graphical representation of an internal (b) Graphical representation of an internal

L h L L n f
0 -2 -1 0 1 2

spherically symmetrical quasi-atomic  spherically symmetrical quasi-atomic
wavefunction of Cooper pair Yc(x) in wavefunction of Cooper pair density [q(x)|?
coordinate-space in coordinate-space

Figure 2. Graphical representation of Cooper pair and its density in coordinate-space
4.1. Cooper Pair Wavefunction in Coordinate Presentation

Follow the standard routine of calculus manipulation (Kadin, 2007), the internal
structure of Cooper pair wavefunction which is also called the singlet pairing function or
the Gorkov’s wavefunction is obtained and given by

Y. (r)=NC Cos(kFr)KU {R_Léo} (19)
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where ,/\/'C is the normalized constant, K(z) is the complete elliptic integral of the first

kind, k, is the Fermi wavevector at the surface of the Fermi sea and Ko(z) is the zero-
order modified Bessel function with an asymptotic form that is similar to an exponential
Ko(x)~(7r/ 2x)"2exp(—x) for large x (. The function Ko(z) has a weak divergence
z =), which must be cut off by choosing a cutoff energy scale. In the BCS theory, this
cutoff is usually given by an energy comparable to the Debye energy ha,, which is much

larger than the energy gap A.
Denoting dimensionless variable x

r

x=—_, (20)
7,
and parameter
¥y =7k, (21)
the Cooper pair wavefunction is rewritten as
Y. (x) =N, cos(yx)Kﬂ(x), (22)
in which normalized constant J\/’C is now exactly obtained in term of 3 as
2
N, =2 - : (23)
7:(2K(—y‘)+ﬂ)
2 . . 2
1 1
x 0 S B,
5 ° Cw !
-1 -1
[ . I L . I M I -2l I L . I M I
0 1 2 3 4 0 1 2 3 4
(a) Graphical representation of Cooper pair (b) Graphical representation of Cooper

. . . . 2
wavefunction ‘¥, (x) in coordinate-space With  p5ir density |Tc (x] in coordinate-space.
y =20
Figure 3. Graphical representation of Cooper pair and its density in coordinate-space with ¥ = 20
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The Cooper pair wavefunction in coordinate representation corresponds to the
standing wave, with a spatial modulation . Typically, the values of the superconducting

system are approximately

k' ~0.1nm,
(24)
&, ~100nm,
and these waves rapidly oscillate around kF modulated by slowly varying envelope

function with a characteristic scale off &, For graphical representation which is shown in
fig. 3, it would take an empirical value

20
kG = P (25)
or
y =20, (26)
and corresponding normalized constant
|
N, =2 \/ 2
w2k (-r)em)| @27)

=0.843439.

It is not difficult to realize that the envelop function of Cooper pair wavefunction
~Ko(x) is very similar to Boltzmann function for large z. In superconducting state, both

electrons of the Cooper pair would be expected to have the same spatial wavefunction, and
hence the same quasi-static charge distribution. This corresponds to a spherical layered

charge distribution of the Cooper pair, with periodic layers spaced by ~ 2 A (Kadin, 2007),
as shown in the fig. 2.

4.2. The Contribution of The Orthogonal Fluctuations to Cooper Pair Wavefunction in
Coordinate Presentation

In superconductivity, the thermal fluctuations ~(T—TC) are the most considerable
ones causing the superconductivity - normal phase transition when the system temperature
is nearby critical T The contribution of thermal fluctuation in Cooper pair wavefunction

is naturally of the orthogonal fluctuations since they appear in the energy equation in
square form as

E+A e+ A+ (28)
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Using the immediate expression eg. (16), it would be seen that the weak singularity
of the envelope function ~Ko(z) at z=0 z = 0 (Kadin, 2007) of Cooper pair

wavefunction should be canceled to take finite value reflecting the finiteness of quasi-static
charge distribution. It is a great work of an orthogonal fluctuation without a cutoff of
energy scale as it is usually done in BCS theory.

To study the contribution of the orthogonal fluctuation ¢ to Cooper pair
wavefunction in detail, the characteristic parameters of BCS superconducting state in the
last subsection are taken into account and the whole calculating procedure in (Kadin, 2007)
is carefully repeated. In this stage of consideration, due to the non-analyticity of the
integrals, some numerical calculations are performed.

In the regime of small fluctuation ¢ where its variance ¢ is assumed much smaller

than the BCS energy gap A, the envelop function of Cooper pair wavefunction transforms
from weak singularity Boltzmann-like function to round peak Boltzmann-like function in

large values of distance. By increasing o o approach to its physical maximum, BCS

energy gap A, the envelope function under consideration becomes more Gaussian-like
function.

The integration over all the possibles o in the range from zero to BCS energy gap
A delivers a final picture of enveloping function of Cooper pair under influence of thermal
orthogonal fluctuations in the superconducting state nearby critical temperature 77, in fig. 4.

W
=
i

Mo
o Lh
T

Yo () & Yo (x)

-
=
G

e ©
o [¥.]
T

Figure 4. Graphical representation of Cooper pair wavefunction and its envelop function - (x)
(sharp peak in x=0) and ¥ (x) (round peak when x=0) without and with the contributions of
thermal orthogonal fluctuations, respectively
In the last picture fig. 4, the round peak enveloped wavefunction is very similar to

Gaussian wave packet
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Y. (z) ~ cos(y’x)exp{—%xz} , (29)

describing a standing wave of electrons which requires the spherical invariance of the
space. The parameter %’ would be chosen to be fitted to characteristic parameters of a

given superconducting state, in the case, ' =%.
Fig. 4 provides that the contribution of thermal orthogonal fluctuations around
critical temperature T, forces the envelop function of Cooper pair to transform from

Boltzmann-like function to Gaussian ones, i.e. the symmetry of the system changes from
the translation-like invariance to the spherical invariance. This means the happening of
superconductivity - normal phase transition.

5. Conclusion

In this work, we have attempted to finger out why and how the envelope function of
Cooper pairs of superconductivity would change to the Gaussian wave packet utilizing
orthogonal thermal fluctuations.

The analytical and numerical results done in the work show that the contribution of
an orthogonal fluctuation eliminates the mathematical artifacts of singularity in quasi-static
charge distribution, which are not enabled in the BCS theory without the cutoff of energy
scale, also the integration of all possible contributions of thermal orthogonal fluctuations
supplies a possible transition of Cooper pair envelop function in the phase transition from
superconducting phase to normal conducting phase.

We suppose a possible connection between geometrical invariant of space and
envelope functions. The Boltzmann-like form of envelope function of Cooper pair
corresponds to the free moving with plan wavefronts, and the symmetry property of space
is translation invariant. The Gaussian form of envelope function of the Cooper pair
corresponds to the bound state with spherical wavefronts near some fixed point, and the
symmetry property of space is spherical invariant.

The transformation of envelope functions might correspond to the changing of
symmetrical behavior in the space of a Cooper pair from its normal to superconducting

states near the phase transition critical temperature 7. In the superconducting state, the

Cooper pair can move as free quasiparticles without resistance, i.e. translation symmetry of
the space has occurred. The normal state, where electrons can not move freely, will be
corresponded the spherical symmetry of the space.
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TOM TAT

Mgt s6 ham phan bs mdr dg xac suat (probability density function — PDF) cia bién ngau
nhién lién hé chat ché véi tinh doi ximg cua bién ngdu nhién. Cac ham phan bd mdt dé xac suat
Boltzmann va Gaussian bdt bién duwéi phép bién doi tinh tién va cdu twong g cua bién so, 1a
nhing vi du da dwoc nghién citu day dii, phan anh khong chi tinh doi xing cua nhiéu hién firong
vt If ma ca cde dinh ludt bao toan tiém dn. Trong vdt |i thang ké va nhiéu linh viec ciia hé phirc
hop, sur bién ddi tir phan bé mdr dé xac suat tir dang Boltzmann sang dang Gaussian xudt hién kha
pho bién. Nhitng hién firong quan sdt dwepc ndy cung cap bang chiing vé sir chuyén pha, cu thé l1a
chuyén pha logi hai, xuat hién khi tinh déi xirng cia mét dai lwong vdt 1i trong hé bi pha vé. Muc
dich ciua bai bao nay 1a nghién cizu logi dich chuyén trén trong siéu dan théng qua khdo sét sw
chuyén tir ham bao ciia ham séng dién tir va cap Cooper trong khong gian toa dé tiwong iing Véi su
bién doi hanh vy doi ximg cua khdng gian tir trang thai dan sang trgng thai siéu dan tgi ving gan
nhiét dg chuyén pha

Keywords: siéu dan; chuyén pha; thing giang vudng goc
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