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ABSTRACT 

Method of separation of variables plays an important role in mathematical physics 

problems, especially in the scattering problem containing hyperbolic equations with the survey 

domain limited by coordinate surfaces of arbitrary shapes. In this paper, the method of separation 

of variables in the spherical coordinate system is developed for calculating the scalar stationary 

scattering problem on a prolate spheroid with an arbitrary ratio between wavelength and size of 

the spheroid. 
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1. Introduction 

Generally, the problem of scattering is extremely difficult and there have been few 

problems whose solutions can be expressed in analytical form. There have been a number of 

studies on spheroids (oblate and prolate) by (King, & Van Buren, 1972; Bowman et al., 1969; 

Handelman, & Sidman, 1972) and many others. However, the solution has always been in 

terms of spheroidal wave functions (radial and angular functions).  

Figure 1. Shapes of a prolate spheroid with 2
0, 1, 2, 3   (from left to right) 

                                                 
Cite this article as: Luong Le Hai, Vu Hoang Thanh Trang, & Gusev Alexander Alexandrovich (2020). 

Calculation of scalar scattering on a prolate spheroid. Ho Chi Minh City University of Education Journal  

of Science, 17(3), 500-508. 

mailto:haill@hcmue.edu.vn
https://en.wikipedia.org/wiki/Separation_of_variables
https://en.wikipedia.org/wiki/Separation_of_variables


HCMUE Journal of Science Luong Le Hai et al. 

 

501 

In this work we consider the axial symmetry scalar stationary scattering problem on a 

prolate spheroid by using the method of separation of variables. Prolate spheroid is an 

oblong ellipsoid whose semi-major axis is Oz (Acho, 1992). Choosing semi-minor axes of 

prolate spheroid for a unit length, the equation of a prolate spheroid in a spherical 

coordinate system has the form (Меiхnег, 1959; Flammer, 1962):  

  2 21 cosr r      , 

where   is a parameter depending on the ratio between the semi-major and semi-minor 

axis of a prolate spheroid. Shapes of a prolate spheroid are shown on Figure 1 at 

2
0, 1, 2, 3  . 

 

 

Figure 2. Scattering geometry for a prolate spheroid. 

On Figure 2 the scattered field in the far-field zone is represented in the spherical 

coordinate system ( , , )r   .   is the scattering angle. The origin of the Cartesian 

coordinate system is at the center of the spheroid while the Oz axis coincides with its axis 

of revolution.  is the incident angle (the angle between the direction of the incident wave 

and the Oz axis in the Oxy plane).   

2. Method of separation of variables 

In the Helmholts equation 2 0k    , where max

2

1r r     (outside the 

spheroid with 0   or   , then 
2cos 1  ) the wave function  is expanded into 

series: 
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– Hankel function of the first and the second kind. 

Due to 
' '

2

2
( ) ( ),n n n nn nr r

ikr
            , thus 

n nY   and 
nn Y  are incident and 

outgoing waves, respectively. 

In scattering problem, the amplitudes of incident wave 
nc  are given, and the ones of 

outgoing wave 
nc  are expressed by 

nc  with the boudary condition on the surface of the 

scattering spheroid, i.e: ( , ( )) 0r    ,  then: 2 21 sin . ( )
( )

|ik q
r rn


   




  


. 

For the coefficients 
nc  we have: 

0

( ) [ ( )] ( ) sin .n n nq r Y dc


     

         (1) 

Based on the expression (1), we need to find 
nc  with the given value of 

nc  and the 

unknown quantity ( ).q   

First, we expand the function ( )q   into a series of spherical functions: 

                                                   
0

( ) ( )m m
m

q Y  




  .                                                  (2) 

Substitute (2) in (1) and denote: 
0

[ ( )] ( ) ( ) sin ,mn n n ma r Y Y d


         we obtain an 

infinite system of algebraic equations for the coefficients of 
m : 

                                           
0

, 0, 1, 2,...m nmn
m

a c n






     (3) 

After solving this system we obtain 
m , then the amplitudes 

nc  are calculated by the 

formula:  

0
n mn m

m

ac 


 



  . 

With the obtained values of 
nc , the differential scattering cross-section can be 

calculated by the following formula: 
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0
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





  . 

Due to 11 krn i

n i e
kr

     at the large of r  we have: 

                                   
2

0

1
( ) | ( ) | , ( ) ( )n

n n
n

I f f i c Y
ik

   


 



   .                                      (4) 

The main difficulty of solving this problem is the infinite number of equations of the 

system (3). However, in principle the system (3) can be considered finite because effective 

scattering can be calculated in the case of a finite number of waves, i.e:

21 3.n N k      

This is easily confirmed in the case 0  , then (1)mn n mna    , 
(1)

(1)
n

n

n

nc
c











. 

At the large of n  ( )n k  we have: 1 exp[ (2 1)( )]nc

cn

i n ch 



     , where 

1

2
n

k
ch



 . 

Table 1. The values of nc


 and 
2

| |nc


 at 0, 1, 2, 3, 4, 5n   

n  0 1 2 3 4 5 

nc


 
-0.7071 -1.2247i 1.5811 1.8708i -2.1213 -2.3452i 

2
| |nc


 

0.5 1.5 2.5 3.5 4.5 5.5 

 

3. Calculation of scattering 

In this section with given values of the amplitudes of the incident wave 
nc  we will 

calculate the amplitudes of outgoing wave 
nc  and differential scattering cross-section.  

Suppose that the incident wave is plane and has the form 
0 exp( cos )ikr   and 

nc  can be given in the form: 
2 1

2

n

n

n
c i
 
  .  

The values of 
nc  with corresponding squared modulus 

2
| |nc


 are evaluated and 

shown in Table 1.     
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Table 2. The values of 
nc , 

2

nc
, 

NS   ( 0, , 4n N N  ) and   at 
1

2
k   with

2
0, 1, 2, 3 

 

 2
0   

2 1   
2 2   

2 3   

0c  0.382-0.595i 0.268-0.633i 0.193-0.648i 0.111-0.644i 

1c  0.089+1.222i 0.173+1.212i 0.268+1.195i 0.365+1.168i 

2c  -1.581+0.002i -1.587-0.002i -1.595-0.004i -1.604-0.002i 

3c  -1.871i 0.001-1.871i 0.003-1.871i 0.006-1.182i 

4c  1.121 2.121 1.121 2.121 

2

0c
 

0.5 0.483 0.458 0.427 

2

1c
 

1.5 1.5 1.499 1.498 

2

2c
 

2.5 2.517 2.543 2.573 

2

3c
 

3.5 3.5 3.501 3.503 

2

4c
 

4.5 4.5 4.5 4.5 

4s  12.5 12.5 12.5 12.501 

  0.935 1.215 1.514 1.815 

The values of 
nc  with corresponding squared modulus 

2
| |nc


 are shown in Table 2 

and Table 3.   

The solution of the problem depends on two parameters: k  and  . We choose 

1

2
k   and 1k   with 2

0,1,2,3  . (Sеniоr, 1960; Barlow, & Einspruсh, 1961). 

Table 3. The values of 
nc , 

2

nc
, 

NS   ( 0, , 5n N N  ) and   at 1k   with 
2

0, 1, 2, 3   

 2 0   
2 1   

2 2   
2 3   

0c

 
-0.294-0.643i 0.350-0.456i -0.315-0.284i -0.220-0.165i 

1c

 
0.510+1.114i 0.806+0.908i 1.013+0.626i 1.111+0.316i 

2c

 
-1.582+0.054i -1.629+0.119i -1.66+0.249i -1.654+0.427i 
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3c

 
-0.002-1.871i 0.013-1.878i 0.032-1.898i 0.051-1.932i 

4c

 
2.121 2.121+0.002i 2.121+0.99i 2.123+0.021i 

2

0c

 

0.5 0.332 0.18 0.075 

2

1c

 

1.5 1.474 1.418 1.335 

2

2c

 

2.5 2.669 2.819 2.917 

2

3c

 

3.5 3.529 3.604 3.736 

2

4c

 

4.5 4.5 4.501 4.509 

2

5c
 

5.5 5.5 5.499 5.496 

5s  18 18 18 18.006 

  0.846 1.044 1.271 1.511 

The quantity 
2

0

| |
N

N n
n

S c
 



   characterizes the consumption of the flow of incident 

and outgoing waves. The values of this quantity are evaluated and expressed in Tables 2 

and 3. 

For calculating the differential scattering cross-section, the loss part of the series (4) 

is expressed in the form: 
1

(1 cos ).
ik
   

The quantity ( )f   at 0   is considered as a sum of series: 

1

0

2 1

2

1
( )

n n

n n
n

n
c i i Y

k



  






 
  

, the coefficients of which gradually decrease at 

n N . 

The total scattering cross section   is calculated by the following formula: 

2

0 0

2 ( ) sin d dI

 

       . 

 

The values of   are expressed in table 2 and Table 3. 
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Figure 3. Normalized scattering function ( )T   at 
1

2
k   (left) and 1k   (right) 

The normalized scattering function ( )T   is expressed in the form (Wallander, 1963): 

( )
( )

I
T





 , 

and is shown on Figure 3 at 
1

2
k   and 1k   with 

2
0, 1, 2, 3  . 

 

 

Figure. 4. Probability density function 
2

( , )r   (left), real Re( ( , ))r   (middle) and 

imaginary part Im( ( , ))r   (right) of the scattering wave function ( , )r   at 
1

2
k   with 

2
1   (upper panel) and 1k   with 

2
3   (lower panel) 
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Probability density function 
2

( , )r  , real Re( ( , ))r   and imaginary part 

Im( ( , ))r   of the scattering wave function ( , )r   are shown on Figure 4. 

4. Conclusion 

The calculation results have shown that the method of separation of variables 

developed in this work gives practical convergence for solving scattering problems 

containing Helmholts equation. In general, this method can be applied for calculating 

boundary scattering and diffraction problems on objects of arbitrary shapes in the case of 

medium and long waves. Furthermore, the calculation results obtained in this problem can 

be compared to the ones calculated in an analytical form in a spheroidal coordinate system 

of other works.  
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TÓM TẮT  

Phương pháp tách biến đóng vai trò quan trọng trong các bài toán vật lí toán, đặc biệt trong 

bài toán tán xạ có chứa phương trình dạng hyperbolic khi miền khảo sát được giới hạn bởi các bề 

mặt tọa độ có hình dạng bất kì. Trong bài báo này, chúng ta sẽ sử dụng phương pháp tách biến 

trong hệ tọa độ cầu cho việc tính toán tán xạ dừng vô hướng trên một phỏng cầu dài với tỉ lệ bất kì 

giữa bước sóng và kích thước của phỏng cầu. 

Từ khóa: phỏng cầu dài; tách biến; tán xạ  
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