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ABSTRACT

In this paper, finite difference schemes are proposed to approximate solutions of stochastic
advection-diffusion equations. We used central-difference formula of third-order to approximate
spatial derivatives. The stability, consistency and convergence of the scheme are analysed and
established. A numerical result is also given to demonstrate the computational efficiency of the
stochastic schemes.

Keywords: stochastic partial differential equation, finite difference method, convergence,
stability.
TOM TAT

Mgt xdp xi nghiém ciia phwong trinh khuéch tan binh lwu ngdu nhién

Trong bai bdo nay, phuwong phép sai phdan hitu han dwoc sir dung dé xdp xi nghiém ciia
phuong trinh khuéch tan binh leu ngau nhién. Chang t0i &p dung cong thitc sai phdn trung tam bdc
ba dé wéc lwong cic dao ham riéng. Sw on dinh va s héi tu ciia lwoe do sai phan dwoc nghién ciu
va ddnh gid. Mot vi du tinh todn sé ciing dwoc xem xét dé minh hoa tinh diing ddn va hiéu qud cia
phiong phdp xdp xi dwoe dé xuat.

Tir khéa: phuong trinh dao ham riéng ngau nhién, phuong phap sai phan hiru han, sy hoi ty,
su on dinh.

1. Introduction

Many applications in engineering and mathematical finance has developed with a
heavy emphasis on stochastic partial differential equations (SPDEs). Apparently,
appropriate algorithms that can approximate these equations have attracted many
researchers since we can hardly find explicit formula of the corresponding solutions. In [2],
[3], [4], [5], the authors studied the weak and the strong numerical schemes for SPDEs.

In this paper, we would like to propose a finite difference scheme for the following
advection-diffusion

u, (X, t) +vu, (x,t) = yu, (X,t) + cu(x, )W (t) (1)
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with respect to an [1*-valued Wiener process (W (t),F,) defined on a probability space

(), F,P), adapted to the standard filtration (F,). The parameter y is the viscosity

coefficient and v is the phase speed, and both are assumed to be positive. One may refers
to [1] for applications of advection-diffusion equations in geophysics and [8] for its
applications in consensus.

It is known that Young and Grygory [13] established an approximation scheme for

one dimension advection-diffusion equation in 1973.
Later, [10], [11] proposed the idea of using three-point and five-point finite difference
schemes to approximate the solution of stochastic diffusion equations without advection
but unable to verify the corresponding stability and convergence. Similar approach using
seven-point schemes is also implemented in [5] for the same equations. In 2011, [12]
presented stochastic alternating direction explicit methods for advection-diffusion
equations. In this paper, we would like to study the stability and convergence of a
numerical scheme using three-point finite difference scheme for stochastic advection
diffusion equations.

This paper is organised as follows: The next section introduces some preliminaries
regarding to stochastic advection diffusion equation. In section 3, a three-point central
difference scheme is presented and the stability and the convergence of the proposed
scheme are carried out. Finally, the computational performance of the stochastic difference
method is demonstrated in section 4.

2. Preliminaries

In this paper, we study a finite difference scheme for a stochastic advection diffusion
equation

u, (X, t) +vu, (x,t) = yu (X,t) + cu(x,t)W (t), forallt [0,T], x €[0,1] (2
with initial-boundary conditions

u(x,0) = u,(x), forallx €[0,1]

u@,t)= f,(t) and u(l,t)=f,(t), forallte[0,T] @)

where W(t) isa [ '_valued Brownian motion, and v, y and o are constants. One may
refers to [12] for further discussions on the solutions of equations (2)-(3), including the
existence and uniqueness.

For simplicity, we denote by L the following operator

Lu =u, (X, t) +vu, (X,t) = yu, (X,t) —ou(x, )W (t). (4)
Then equation (2) becomes
Lu(x,t) =0. ©)
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3. Three-point central difference scheme

In this section, we will apply three-point central difference formula to estimate the
solution of (2).

Let Ax and At be the space step and the time step respectively such that N =i

I e
and K = ™ are positive integers.
X

t

Let 2 =2 and p=-—g.Forall n=0,...,N, we denote

AX (Ax)

n+ n VAN n VAN o
ut = (1_27/0)uk +(VP‘?)uk-1+(VP+7)uk+1
+oulAW,, k=1.. K-1

W= (n+DAY) (6)
urt = f((n+1)A)
u. = u(kax,0), k=0,...,K.

where AW, =W_,, —W_ These equations give an approximation scheme for the solution of

equations (2)-(3). For convenience, put x, =kAX and t, =nAt, and we introduce the
following operator

U,y —Uy At
L'u, =u™ —u? +vAt[ MZAXHJ_}/ o (Ul —2u +uy,)

—oU [W(t, ) -W(t,)]
where u_ = (ug,...,ug) and U, =[u(x,,t,),...,u(Xc,t,)].
We can then verify that (6) is equivalent to
Lu, = 0
U = U

We refer to [5] for the following definitions, but first we introduce for sequences

u=(..,U...) the sup-norm |u, = [sup|u, [ .
k

Definition 3.1.
A stochastic difference scheme Lju, =0 approximating the stochastic partial

differential equation Lv =0 is convergent in mean square at time t if, as Ax >0
2
EHuN —VN“ -0

where u™ =(...,u),..) and v =(...,v),..).
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Definition 3.2.
A stochastic difference scheme is said to be stable with respect to a norm in mean

square if there exist positive constants A_x0 and A_to and nonnegative constants K and [
such that

Eflu” [P<Ke™E[Ju’ |,
for all 0 < Ax<Ax, and 0 <At <AL, .

In what follows, we will study the consistence, the stability and the convergence of
scheme (6). For convenience, we use notation |- | to denote the supremum norm.

Theorem 3.3.

If % <y < % then scheme (6) with a fixed space step Ax is conditionally stable. In

fact, there exists a constant C such that
SUpE|u; P<CsupE|ul > forall n>0.
k k

Proof. Equation (6) implies that

Elu™ P=E|(1-2pp)u’ + (50 —%)Uk”_l +( +%)Uk”+1

“H+E(*)ADEw P (7)

If yp> % , then (7) becomes
Eluy” P<E[1+0°At] sup E|ujf
k=0,...,K

Thus
sup E|u™ P<(@+o°At) sup E|up
k=0,...,.K k=0,...,K
for all n>0. Consequently,
sup E|ul P <(L+o’At)" sup E|ulf
k=0,...,K k=0,...,K (8)

<e” sup E|ulf
k=0,...,K

O
Theorem 3.4.

If %g ypS% then scheme (6) converges in norm || to the solution of equations

(2)-(3).
Proof. First of all, (6) implies that

18



TAP CHi KHOA HOC - Trwérng PHSP TPHCM Nguyen Tien Dung et al.

U= U +y AAxt (ur, —2u7 +u7,,)—vat —"*12 )L:"n‘l )
+ou! (W ((n+1)At) W (nAt)).
On the other hand, denote by v, the value of the solution of equation (2) at (X,.,t,).
Assume that se[t,,t,,,]. We have

(VAEYA At
— k+1 k—l+

Ve (%, S) 2 Ax 2 A [V Xian ot S O)A) =V (X 4 b+ &, 1(S)At)]
O [y 0440, (980,8) v, 5 -0, 9] (1)

where 0<6, ,(r),6,.,(r) <1. Similarly
1 n n
Vi (X 8) = ~ () [Vk 1~ 2v, +Vk+1:| (AX )z —7 Vi (X i+ G (S)AY)

—2v (X, £+ (S)A ) +v, (X 00t + &y 1 (S)AT)]

11

AX [Vxxxx(xk +0k+1 (S)AX S) +Vxxxx( k 1(S)AX S)] ( )
where 0<¢, ,(9),&,(5),&,..(S) <1. For the sake of simplicity, we denote

l//l:+1 (S) xxx(xk + 9k+1 (S)AX S)

l//k_—l(s) - Vxxx(xk - k—1(S)AXIS)
and

$i(8)  =Vi(Xe,i oty + G, (S)AL)
for all i=-1,0,1. Integrating both sides of equation (2) from t, to t,.,, and then

substituting v, and v,, given by equations (10) and (11) into the resulting equation, we
deduce
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VAV —vJ.t”*1 v, (%,,8)ds + }/J.:M v, (X, S)ds + o-J.:m1 v(%,,S)dW (s)

" vk+1 LAt _
j [ W SORURC)

tha 1 n n n 12
+ }/J.in [W (Vi =2+ 4) (12)

(A ) —— (A1 (8) 26, (5) + ¢, ,(5)]

e WOV O+ o] W)

Put z; =v;—u. and z"=(z;,...,zg). We can derive from (9) and (12) that for all
k=1..,K-1

n+1

2" =1=-2yp)z, +(p __)Zk L+ +Z )Zk+1

[ (0.0 -0.6) - (wk+1(s)+wk1(s))]ds

(13)
]! “[ (¢k 1(9)-24, (s)+¢k+1(s))
—;(w;ﬂ(s)w;_l(s))]w Ji" W06, 9) -unaw (s)
If o 2ﬂ then
2
|- 210)2] + (o - )Zk L+ o+ 2 )ZM
s[(l—zyp)+(yp—7)+(yp+7)] sup |7} | (14)
k=1,...,K-1
= sup |z
k=1,...,K-1
Besides, for any given &, >0 and real numbers a and b.
(a+b)? < ca’ + —b? (15)
c-1

where c=1+5,At >1.
It can be derived from equation (13) to (15) that
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n+ n vA n vA n
Elz ' |2 <(@+5AtE | (1-2yp)z, + (o _?)Zk—l +(yp +?)Zk+1
tn+1 n 2
o, (V(X,,5) —u)dW (s) |

T+5AL |t
! S.At E| I [ (¢k+1() 6..(5))

(AX)

(wm(s)wk ()]s

yj “[ (¢k1(s> 20,(9) +4,.4(5))
—?(w;ﬂ )+ ()]os< @500 sup Efzf
+ L+ SADE(”)x sup I: E|v(X,5)~V" [ ds

+(L+SADE@?). sup L‘“*E|z; 2 ds

1+9,At
J’_
O, At

< (L+8,A1) (1+ E(az)At)k_lsuE)( Elz 2 +Kat A%+ (ax)?]

K(aty2[ 42 +(ax)?]

We choose &, > E(c?) . Then for all k and n
E |z P< (1+5,At) sup Ely 2 +Kat A2+ (ax)?]

which implies that
Ell2" |2<@+S,A)°E] 2" |2 +KAt[2? + (ax)]
where z" =(---,z],---). Since z° =0, it follows that
n-1
Ell2"|F <@+8A)™E [|2°|F +KAt[2% + (ax)2]Y @+ 5,at)
i=0
](1+5At)2”
26, + 52At

26T -1

25, +82At

<K[A% +(ax)

<K[27 +(ax2] S

2
whose the right-hand side decays to 0 as both Ax and %

the proof of this theorem.

(16)

approach 0. This completes

O

21



TAP CHi KHOA HQC - Trwong DHSP TPHCM Tdp 14, S6 9 (2017): 15-23

4. Numerical results

In this section, the performance of the presented numerical techniques described in
the previous sections for solving the proposed SPDEs is considered and applied to a test
problem. For computational purposes, it is useful to consider discretised Brownian motion
where W (t) is specified at discrete t values.
Example 4.1.  Letus consider the following advection diffusion equation

u, (X, t) = yu,, (X, t) +vu, (x,t) + ou(x, t)dw (t), forall t €[0,1], x €[0,1]

u(x,0) = x*(1-x)?, forall xe[0,1] (17)

u(0,t)=u(Lt)=0
where ¥ =0.001, v=0=1, and W(t) is Brown motion. We will use algorithm (6) to
approximate the solution of equation (17) as follows

n+ n vA n vA n n
Uy b= (1_27P)Uk +(7P‘7)Uk-1 +(7P+7)Uk+1 +oU AW, (18)
Assume that At =% and Ax = ﬁ . As stated in theorems Theorem 3.3 and Theorem 3.44,

the sufficient condition for the stability and the convergence of scheme (18) is yp < % If

M =150 then we need N >45. Figure 1 shows that the stability and the convergence of
scheme (18) are achieved as expected.

Centered Difference scheme with 3 points for ADE Centered Difference scheme with 3 points for ADE
2500 0.15

— N=250 — N=350
2000 — N=280 — N=400

1500 4 01

1000

300 ‘ ’ 1 =

-500 b‘“ \ |

-1000 ‘ 1 005

-1500 L 1 ‘\‘ l ‘ I l ‘ l ‘

(@ N=250 v N =280 (b) N =350 v N =400
Figure 1. Approximation of u(x;1) with different N

ufX,1)

-2000 e .
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