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ABSTRACT

The energy levels of the heavy elements In, Sn* and Sn are presented in this article.
Dominating corrections beyond the relativistic Hartree-Fock method are included to all orders in
the Coulomb interaction using the Feynman diagram technique and the correlation potential
method. The configuration interaction technique is combined with the many-body perturbation
theory to construct the many-electron wave function for valence electrons and to include core-
valence correlations. The good agreement of the results of our calculation with experiment data
illustrates the power of the method.
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TOM TAT
Tinh toan trong gén diing tit ci cdc bic nguyén té ngng Indi (In) va Thiée (Sn)

Trong bai bao ndy, ching tdi trinh bay phé ndng lirong ciia cac nguyén té nang Indi (In), ion
Thiéc (Sn*) va Thiéc (Sn) Véi do chinh xdc khd cao. Phwong phap Hartree-Fock twong doi tinh
duoc Két hop véi nhing hiéu chinh trong tat ca cdc béc cia twong tac Coulomb sir dung gian do
Feynman V& phuwong phdp thé. Bén canh d6, phwong phdp li thuyét nhiéu loan cho hé nhiéu hat
dwge két hop véi tuwong tic cau hinh dé xdy dung ham séng nhiéu electron cho nhiing electron
Ngoai vé va bao gom su twong quan 18i-vé. S sai léch rat it cia két qua véi dir liéu thuc nghiém
chiing to duwoc sic manh cia phuwong phép.

Tir khéa: phd ning luong, phuong phap Hartree-Fock tuong déi tinh, twong tac cau hinh.

1. Introduction

Apart from huge activity in the theoretical and experimental nuclear physics there are
also many theoretical works in atomic physics and quantum chemistry with attempts to
predict the chemical properties of the heavy elements In and Sn, their electron structure
and the spectra [1-3]. Accurate atomic calculations are very important for a number of
applications, such as the search for prediction of the properties of atoms and their ions,
especially in calculation of the spectra of the elements.

The best results for atoms with one external electron above a closed-shell core are
achieved by the use of all-order techniques based on different versions of the correlation-
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potential (CP) method [4,5]. For heavy atoms with several valence electrons the highest
accurate methods include the multiconfigurational Hartree-Fock method (MCHF) [6] and
different versions of the configuration-interaction (CI) techniques. Here, we apply this
method to calculate In and Sn* which have one external electron above a closed-shell core.

The many-body perturbation theory (MBPT) combined with the CI method to
include core-valence correlations (the MBPT + CI [7]) turned out to be a very effective
tool for accurate calculations for many-electron atoms having two or three valence
electrons [8-10]. In this method, an effective ClI Hamiltonian included core-valence
correlations in second order of the MBPT. The Sn atom have two valence electrons is
applied to control the accuracy of this method.

In the present paper, we perform relativistic calculations for the energy levels of the
heavy element In, the singly-ionized Sn and the neutral Sn applying the same approach as
our earlier works for superheavy elements E119 and E120* [11], E113 and E114 [10],
E120 [8] and E112 [9].

2. Method of calculations and results for In and Sn*

We have performed the calculations with the use of the method which has been
described in detail in the previous works [10,11]. Here we repeat its main points with the
focus on the details specific for current calculations.

Calculations are done in the VN-* approximation, which means that the self-consistent
potential are formed by the N-1 electrons in the core (VN potential). A complete set of
single-electron orbitals is obtained in this way. The orbitals satisfy the equation

RV AT 1)

where h, is the relativistic Hartree-Fock Hamiltonian

h, =cap+(B-1 2 28 \yna 2
, =Co.p+(B-1)mc TV (2)

2.1. Correlations
Calculations start from the relativistic Hartree-Fock (RHF) method in the VN
approximation. States of valence electron are calculated with the use of the correction

potential < :
(h,+2)w, =£,v,. ®)
The correlation potential operator S is constructed in such a way that its average
value for the valence electron coincides with the correlation correction to the energy
55=<a|i|a>. Here, £ is non-local operator. The many-body perturbation theory

expansion for 3 starts in second order in the Coulomb interaction. There are direct and
exchange contributions to the correlation potential.
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The calculations may be improved by including three dominating higher-order
diagrams into the second-order correlation potential [4]. These are (i) screening of the
Coulomb interaction, (ii) the hole-particle interaction in the polarization operator, and (iii)

chaining of the correlation potential .

In particular, (i) and (i) are included into the direct diagrams of £ using the
Feynman diagram technique. For the exchange diagrams, we use factors in the second-

order £ to imitate the effects of screening. These factors are f,=0,62, f =0,60,
f,=085, f,=089, f,=095, f,=0,97, f,=1; the subscript denotes the multipolarity

of the Coulomb interaction.
2.2. Breit interaction

The Breit interaction is included to claim high accuracy of the calculations [11]. The
Breit operator in the zero-energy-transfer approximation has the form

hBZ_al-a2+(al-n)(a2-n)’ (@)

2r
where r = n.r, I is the distance between electrons, and « is the Dirac matrix.

Similar way to the Coulomb interaction, we determine the self-consistent Hartree-
Fock contribution arising from Breit. Other words, Breit interaction is included into self-
consistent Hartree-Fock procedure. This is found by solving Eq. (2) in the potential

(VA VAR VAN (5)

here V ©is the Coulomb potential, Vv ® is the Breit potential.
2.3. QED corrections

We use the radiative potential method introduced in Ref. [11] to include quantum
electrodynamics radiative corrections to the energies. The radiative potential has the form

Viaa (1) =V (r) +V, (r) + V. (r) (6)

where V,, is the Uehling potential, v  is the potential arising from the magnetic

formfactor and V, is the potential arising from the electric formfactor.

As for the case of Breit interaction, this potential is added to the Hartree-Fock
potential,

vNt=y Nty (7

We included it in the self-consistent solution of the core Hartree-Fock states. Core
relaxation, demonstrated to be important for the energies of valence p-states, is therefore
taken into account.
2.4. Results for In and Sn*

The removal energies for the low-lying states s, pi2, and ps2 have been calculated.
The results are presented in Table 1 in different approximations. The “RHF” column
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obtained by solving Eq. (3) without S presents Hartree-Fock energies. The “®” column

2)

obtained by solving Eq. (3) with second-order correlation potential =2 presents

Brueckner energies and the column «$)» listed the ab initio results of the energy levels

obtained by solving Eq. (3) with all-order %. Moreover, the Breit corrections are also
calculated in the self-consistent Breit-Hartree-Fock potential with the results are presented
in the “Breit” column. The “QED” column present the results for quantum electrodynamics
(QED) radiative corrections. They are calculated at the Hartree-Fock level, with correlation
corrections included. The Breit and QED corrections are relatively small. Thus, our results
should only be considered estimates, to give an idea of the size of these corrections.
However, adding them generally leads to better agreement with the experiment in some
case for In (for example, 6s, 75, 5pu, 5pa. states).

The results for In and Sn* are present in Table 1 and compared with the experiment.

It is clear by looking at the “S” column, the differences in all cases are small, up to
0.8%. This is consistent with the estimate of the accuracy based on similar method for
E113 [10].

Table 1. Energy levels of In and Sn* (units cm 1) in different approximations together with

Breit and QED corrections and experimental data. A=100(E,, —E,;,)/ E -

Atom State RHF 3@ =  Breit QED  Total A(%) Expt.
In 6s 20572 22749 22424 -7 -9 22408 05 22297
7s 9867 10459 10390 -2 -3 10385 02  10.368
8 5816 6066 6035 -1 -1 6033 00 6033
Spy, 41507 48839 46982 57 25 46950 0,6  46.670
6py. 13979 14892 14779 -8 2 14773 05 14853
Tpy, 7488 7809 7768 3 1 7766 06 7809
Bp2 39506 46503 44819 25 18 44812 08 44457
6py2 13719 14598 14491 -4 1 14488 05 14555
Tpy2 7388 7699 7660 -2 0 7658 05 7697
sn* 6s  57.995 61971 60.663  -22 27 60614 08 61131
7s 30735 31967 31536 -8 -9 31519 07 31737
8 19133 19692 19492 -4 -4 19484 07 19615
Bpy, 111452 120411 117545  -117 30 117458 05 11';301
6pu2 44483 46383 46349 25 3 46327 04 46523
Tpy, 25253 25979 25955  -10 1 25046 06 26114
5py,  107.358 116.018 113736  -57 22 113701 01 113766
6Py  43.691 45499 45465  -14 2 45453 04 45640
Tpy, 24917 25613 25590 -6 1 25585 0,6 25751
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3. Method of calculations and results for Sn
3.1. Method of calculations

We performed the calculations with a method that combines the configuration
interaction (CI) technique with many-body perturbation theory (MBPT).

Calculations are carried out in the VN2 approximation [12]. This means that the
initial Hartree-Fock procedure is performed for the doubly ionized ion, with the two
valence electrons removed. This approach has many advantages. It simplifies the inclusion
of the core-valence correlations by avoiding the so-called subtraction diagrams [7,12].
This in turn allows one to go beyond second order in many-body perturbation theory in the
treatment of core-valence correlations. Inclusion of the higher-order core-valence
correlations significantly improves the accuracy of the results [2,12].

We use the effective ClI Hamiltonian for an atom with two valence electrons,

He :hl(rl)+h1(r2)+h2(r1’r2) (8)
The single-electron Hamiltonian for a valence electron has the form
h,=h, + Z1 ' 9)

where ﬁo is the relativistic Hartree-Fock Hamiltonian,
~ 2
b = cap+B-1me? 2 yn2, (10)
r

and ﬁl is the correlation potential operator, which represents the correlation interaction of

a valence electron with the core.
The interaction between valence electrons is given by the sum of the Coulomb

interaction and the correlation correction operator %, ,

N ez

h, +iz(r11r2)- (11)

r-r)
The operator ﬁz represents screening of the Coulomb interaction between valence

electrons by core electrons.
The two-electron wave function for the valence electrons y can be expressed as an

expansion over single-determinant wave functions,

‘I’ZZCi(Di (rlarz)' (12)

Where @, are constructed from the single-electron valence basis states calculated in
the V-2 potential,

@, (1.0) = v (v (2)vi (v ()] 13)
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The coefficients ¢, and two-electron energies are found by solving the matrix
eigenvalue problem
(H"-E)X =0, (14)

where H;" =<d>i|[|:ieff @) va X={c,.C,o......C,}-

Calculation of the correlation correction operators il and ﬁz is the most
complicated part. Here, we use MBPT and the Feynman diagram technique to do the
calculations. The MBPT expansion for £ starts from the second order in the Coulomb
interaction. Inclusion of the second-order operators £ and @ into the effective
Hamiltonian (8) accounts for most of the core-valence correlations. However, further

improvement is achieved if higher-order correlations are included into il and ﬁz.

Where, the higher orders are included into il in the same way as for a single-
valence electron atom [4]. Two dominating classes of higher-order diagrams are included
by applying the Feynman diagram technique to the part of ﬁl that corresponds to the direct

Coulomb interaction. These two classes correspond to (a) screening of the Coulomb
interaction between valence and core electrons by other core electrons and (b) the
interaction between an electron excited from the core and the hole in the core created by
this excitation [4].

Table 2. Screening factors f, for inclusion of higher-order correlations into the exchange

part of ﬁl and into ﬁz as functions of the multipolarity k of the Coulomb interaction.

k 0 1 2 3 4 5 6
$er o6 0.60 0,85 0,89 0,95 0,97 1,00
$ 0,90 0.72 0,98 1,00 1,02 1,02 1,02

2

The screening factors f, (see Table 2) is introduced to approximate the effect of

Coulomb interaction by the core electrons in the exchange diagrams. We assume that
screening factors f,_ depend only on the multipolarity of the Coulomb interaction k. The

screening factors were calculated in our early work [4] and then used in a number of later
works. It turns out that screening factors have very close values for atoms with similar

electron structure. The screening factors for ﬁf““ were found by calculating the direct part

of ﬁl with and without screening.
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We also use a similar way of approximate inclusion of higher-order correlations via
screening factors for ﬁz. The values of the factors, however, are different (see Table 2).

These factors were found by comparing ﬁl in second order and in all orders with both
screening and hole-particle interaction included.

A complete set of single-electron states is needed to calculate < and to construct the
two-electron basis states (13) for the CI calculations. We use the same basis in both cases.
It is constructed using the B-spline technique [11]. We use 40 B-splines of order 9 in a
cavity of radius R max = 40 ag, where ag is Bohr's radius. The upper and lower radial

components R:"(r) of the Dirac spinors for single-electron basis orbitals v, in each

partial wave are constructed as linear combinations of 40 B splines,
40
u,l _ ul
Ra (r) - iZ_llbai Bi(r)' (15)
The coefficients b;’i" are found from the condition that y/, is an eigenstate of the

Hartree-Fock Hamiltonian ﬁo (10).
3.2. Results for Sn

The results of our calculations for Sn are presented in Table 3. The column %)~
listed the ab initio results of the energy levels of the element. Results of calculations with

second-orders correlation potential appear in the column “=@”; and without correlation
potential in the columns “CI”. In the column “A™ present the percentage deviation from
experiment and other calculations. Experimental numbers are taken from [13].

It is seen from Table 3 that the deviation from experiment for the ab initio results are
ranges between 0,1% and 1,0% with the exception of the larger deviation for the 5p? (J=2)
configuration of 1,2% and the largest deviation for the 5p6p (J=2) configuration of 1,5%.
Our final results do not include either Breit or radiative corrections. The reason is that from
our results for In and Sn* (see Table 1) the contribution are relatively small. As can be
seen, the reaults of only few state are better with a small fraction of a percent. This results
for Sn is the same level as the accuracy for Pb and E114 [10]

Table 3. Energy levels of Sn (units cm ). A=100(E,, —E,,;;) / E ¢ -
Config. Term J Cl 32 3 A(%) Expt.
5p? ip 0 0 0 0 0 0
5p? ip 1 1560 1717 1691 0,1 1692
5p? ip 2 3292 3588 3469 1,2 3428
5p? D 2 8519 8762 8698 1,0 8612
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5p? D 0 16.365 18.464 17.316 0,9 17.162
6s5p ip 0 30.970 36.064 34.814 0,5 34.641
6s5p ip 1 31.243 36369 35.193 0,8 34914
6s5p ip 2 34.827 40.192 38.938 0,8 38.629
6s5p Ip 1 38.298 40.519 39.835 0,2 39.257
5p6p D 1 40.375 43.634 42.553 0,5 42.342
5p6p D 2 41.042 44.560 43.864 1,0 43.430
5p6p D 3 45.305 48.209 47.242 0,5 47.007
5p6p ip 1 37.874 44.120 43.456 0,2 43.369
5p6p ip 0 39.186 45.446 43.930 0,3 43.799
5p6p ip 2 46.756 48.427 47.943 15 47.235
5p6d E 2 42.432 45.569 44.119 1,0 43.683
5p6d E 3 43.450 45.270 44.754 0,4 44,576
5p6d E 4 47.013 49.200 48.491 0,8 48.107
5p6p D 2 42.923 45.172 44.320 0,4 44,144
5p6p D 1 42.904 45.577 44.687 0,4 44.509
5p6p D 3 46.317 48.822 47.725 0,5 47.488
4.  Conclusion

The energy levels of low-lying s and p states of the heavy elements In, Sn* and Sn

have been performed. The accuracy of our calculations is estimated within one percent.
The results were compared with the experiment for further tests of the accuracy.
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