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ABSTRACT
We consider logistic system

—Au=2f(x,u,v)—g,(x,u) in Q,
—Av=A2f,(xv,u)-g,(x,v) inQ,
Assume that the nonlinearity f;, g, satisfies certain growth condition. Using the fixed point

index and the arguments on monotone minorant, we prove the existence results for the system. This
extends some known results.
Keywords: Logistic system, (p-1) - sublinear, fixed point index.

TOM TAT
S tén tgi nghigm ciza mét l6p hé phuwong trinh logistic
Trong bai b&o nay, ching tdi xét hé phuong trinh logistic sau:
—Au=A1f(x,u,v)—g,(x,u) trong Q,
A v=21f,(x,v,u)—g,(x,v) trong Q,
u=v=0 trén 0Q,

Gida sir c&c ham phi tuyén f;, g; théa man diéu kién vé bdc ting (cuia dan ham) dwoc chi ra
sau. Bang phwong phdp bdc td pd két hop véi |i lugn vé chan dudi don diéu, ching toi chizng minh
s ton tai nghiém cho hé. Pdy la mét két qua mo réng cho céc nghién ciru trude ddy.

Tir khéa: hé phuong trinh logistic, (p-1)-tuyén tinh, bac to po.

1. Introduction
In this paper, we consider the following system
—Au=21f(x,u,v)-g,(x,u) inQ,
A v=21,(xv,u)-g,(x,v) inQ, (1.1)
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where u,v are non-trivial non-negative unknown functions, Q 0™ (N >2) is a bounded

domain with a smooth boundary 0Q, A u=div(Vu P2 Vu) is the p-Laplacian with

1< p<N, 2>0 isareal parameter and f;,g,,i=12 are the suitable functions.
In the special case, when
f (x,u,v) =u+b(x)uv, f,(x,u,v)=u+c(x)uv, g,(x,u) =u?, g,(x,v) =v?
the Problem (1.1) is the symbolic Lotka - Volterra model with diffusion and transport
effects and was studied in [3]. We refer the reader to the papers [4, 7] and to [3, 8] and
references therein for more imformations on the logistic equations and logistic systems,
respectively.
In [8], G. Y. Yang and M. X. Wang have extended the study in [3] and considered
the system
A u=Alul?u+b()[uffPuv-fu) inQ,
-2 _2 .
“ANV=p VT vEe(X) VT vwu—g(v)  iInQ, (1.2)
u=v=0 on 0Q,

where b(x),c(x) are positive continuous functions and f,geC'[0,00] satisfy the
following restricted conditions

i. the functions F(s)= %,G(S) = % are positive stricly increasing,
S S

ii. there exist positive numbers k;,k,,M such that
ks<F(s)<ks+M,k,s<G(s)<k,s+M.

Thus, the functions in the right - hand side of our Problem (1.1) are more general
than the functions in (1.2). On the other hand, our method of studying can be applies to the
case, when the operator A, and the parameter A in second equation of the System (1.1)
are replaced with A, and ., respectively.

In this paper, we consider only the case of (p—1)- sublinear growth for the second
variable in the functions f,i=1,2. The cases of (p—1)- linear and (p—1)- superlinear

growth will be considered in a future paper.
2. Preliminary results
2.1. Equations in ordered spaces
Let E be a Banach space ordered by the cone K c E, thatis, K is a closed convex
subset such that AK —c K for all 2 >0, Kn(-K)={0}and ordering in E is defined by

x<y iff y—-xeK.



TAP CHi KHOA HQC - Trwong DHSP TPHCM Nguyen Bich Huy et al.

If D is a bounded relatively open subset of K and F:D — K is a compact operator
such that F(u)#u,YuedD, then the fixed point index i(F,D,K) of F on D with

respect to K is well-defined. This fixed point index admits all usual properties of the
Leray - Schauder degree (see e.g [6]). In particular, we have the following important
results on computation of the index.

Proposition 2.1. Assume that D is a bounded relatively open subset of K and F:D —K
is a compact operator satisfying F(u) = u,Yu edD . If there exits u, € K, {6} such that

u=F(u)+tu,, vt >0,Vu edD,

then i(F,D,K) =0.
Proposition 2.2. Let (E,K) and (E;,K,) be the ordered Banach spaces and N:K — K;
be a continuous, bounded operator, P:K, - K be a compact operator, P(6) =6 . Let
D c E be a bounded open subset containing 0 . If

u=P[tN(u)],vte[0,1],YuedD K,

then i(PoN, D,K) =1.

Here, we use the notation i(PoN, D, K) instead of i(PoN,D nK,K).
2.2. Areduction to the fixed point equations

Let Q" be abounded domain with smooth boundary, 1< p < N . We denote the
norms in the spaces W;"*(Q) and L'(Q) by |. [land ||. || respectively. In these spaces, we

consider the order cone of nonnegative functions. In order to reduce the boundary value
Problem (1.1) to a fixed point equation in an ordered Banach space, we need the following
result [7].

Theorem 2.3. Assume that the Caratheodory function g:Qx[ —[ satisfies the

following conditions
(91) g(x,0)=0, and g(x,u) is an increasing function with respect to the variable u

forae xeQ,
(92) there exist acl",0<f<p'-1 and bel”¥(Q) such that

[g(x,u)|,, alul? +b(x) for (x,u) e Qx[ .
Then, for any heW ™" (Q), there exists a unique function ueW,"*(Q) such that
g(x,u) e L®) (Q) and
[VulP?vuve+[g(x.u)e =(he), VoW " (Q) (1.3)
Q Q

where (-,-) denotes the duality pairing between W ™" (Q2) and W,""(Q) .
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Definition 2.4. Let f :Qx[ x[J —[J be a Caratheodory function, that is, f.(-,u,v) is
measurable for all (u,v)el] x[J and f,(x,--) is continuous for a.e x e Q0. We say that the
pair (u,v) e W, P (Q)xW, " () is a weak solution of the system

—A U= f,(x,u,v) inQ,

—A,V= f,(x,v,u) inQ,

u=v=0 on 0Q2
if f.(x,u,v), f,(x,v,u)eL®) (Q) and

J.IVulp VuVe = J'f (X,u,V)p
Vo,4 €Wy " (Q).
J'IVV|’) C VIV = J'f (X,v,U)g,
Let the operator A:W,"?(Q) —W ™" (Q) be defined by
(Au,p) = [VUP? VUV, Vu,p e W (Q).
Q

Then we have the following results (see [2, 5]).
Proposition 2.5.

1. The mapping A:W,""(Q) —»W ™" (Q) is continuous and of type S*, that is, for
every sequence {u .} W, (Q) such that

u, —u weakly, and limsup(Au,,u, —u) <0,

we have u, — u strongly.

2. If u,veW,?(Q) satisfying (Au—Av,(u—-v)"y<0, then u<v ae. in Q. Here,
u” =max{u,6}.

3. The inverse operator A is compact from L*(Q) into C}(Q).
Proposition 2.6. (see [7]) The operator P:W ™" (Q) —>W,"*(Q) that assigns each
heW™"(Q) the unique solution of problem (2.3) has the following properties:

1. P isincreasing in the sense that h, <h, implies P(h) <P(h,). Here, h, <h, means
that (h, —h,,u) > 0,Vu eW,""(Q),u>0.

2. P is continuous and P(M) is bounded if M is bounded (we also say that P is a

bounded operator).
3. 1f §>(p’), then P iscompactfrom L°(Q) into W "*(Q).
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Proposition 2.7. Let f:Qx[ x[J x[J be a Caratheodory function and let N, be the
associated Nemytskii operator defined byN, (u,v)(x)= f(x,u(x),v(x)) for all
u,veWw,"(Q).
1. Assume that
| £ uv) |, g(xful|vi),
where g:Qx[*"x0*"—0 is a Caratheodory function which is nondecreasing with
respect to the second and the third variables, and satisfies the following condition
u,veL? (Q),u,v>0= g(,u,v)e L’ Q) (14)
for some o&e(lo). Then, the Nemytskii operator N, is continuous from
WP (Q)xW,P(Q) into L°(Q).
2. Assume that the function f satisfies

| TOGuv) L mO) ful” +n) v, ()
where a,y < p -1 and me L(Q),ne L (Q) with q> (L)’, r> (p—)’
l+a 1+y

Then the Nemytskii operator N, is continuous and bounded from W,;" (€2) xW,"? ()

into L°(Q) with 5=min{ w__ ™ *}>(p*)'.
x+p ry+p

Proof 1. Assume that u, —U,,v, =V, in W,"*(Q), we shall prove that some subsequence
of N, (u,,v,) convergesto N, (u,,V,).

Passing to a subsequence if necessary, we may assume u, —U,,V, =V, a.e in Q
and and there exist u,v e L” (Q) such that

[u, (X) ], u(x),|v,(x)]. v(x) ae.in Q.

Then we have Ny (u,,v,) = N (Ug, V) a.e. in Q and
IN,(U,,V,) ] g% u(x),v(x)) e L°(©). This along with the Dominated Convergence
Theorem yields N, (u_,v,) = N, (u,,V,) in L°(Q).

@ L
2. For u,vel® (Q),u,v=0, we have m(x)u® e L**P (Q),n(x)v’ e L"*? () which

implies m(x)u® +n(x)v’ € L°(Q2). Therefore, N, is continuous by the first assertion. The

boundedness of the operator N, follows from

ING ) < lm ) fu g + i I ) <c(lim  lu i+ T ) D ).
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Corollary 2.8. If the Caratheodory functions g:Qx0" 07, f:Qx0"x0" 07
satisfy conditions (gl1), (92), (f), then the operator PoN, is compact from
WP (Q)x Wy P (Q) into W,-P(Q).

Now, we reduce the Problem 1.1 to the fixed point problem. Denote by N, the
Nemytskii operators associated to f,,i=1,2 and by P the operators defined in Proposition
2.3 for g,,i=12. Itisclearly thatif f,,g,,i=12 satisfy conditions (g,),(9,),(f) then the
mappings RoN,,i=12 are compact from W, (Q)xW;*(Q) into W, (Q). Let
N(u,v)=(N(u,v),N; (u,v)) and PoN :=(RoN,,P,0oN,) then PoN is also compact
from W,-? () xW,"?(Q) into itself and (u,v) e W, P (Q)xW,; " (Q) is a solution of Problem
(1.1) if and only if (u,v) = PoAN(u,v).

3. The main results

Throughout this section, we always use C to denote a positive constant that is
independent of the main parameters involved but whose values may differ from line to
line. We consider the cone K ={(u,v)eW,"(Q)xW,;"(Q):u,v>6} and by
vy e vl Ny [p=llu [+ v I, we denote the norms in

WP (Q) x W,y P () and L°(€Q)xLP(QQ) respectively. Noting that, for any t > 0, one has

0 I 1)< e v <2 (o I+ I 1).9)

Theorem 3.1. Assume that the Caratheodory function g,:Qx0 " —[",i=12 satisfies
conditions (g1), (g2) in Section 2, and the Caratheodory function f :Qx[]*x0" —[J,
i =1,2 satisfies:

(H1) @) 0<f(x,z,t)<m(X)z” +n,(X)t", where o< p-1m(x)el’(Q), with

q>[lp—j,i=1,2
+a

(b) f.(x,2,0)=0,V(x,2) e Qx0",i=12.
(H2) At least one of the following conditions holds

(@ y<p-Ln(x) el (Q),r >max{(p—y)’,[L**j},i =12;
yp+p

10
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, g;(x,t)>at’ —b(x), where B and b(x) are as in condition

) < B+(-D
p

(92),i=1,2 and n (x)e Lr(Q),r>[MJ.
yp+p+1

(H3) There exist an open subset Q, D Q, and positive numbers & <a,&,m,, Ny, 1,
such that

f(x,z,t) >mz“°t°, g.(X,2) <nu*", ¥(x,z,t) € Q, x[0,1,]x] ,i =1,2.

Then, for all 2 >0 the Equation (1.1) has a non-negative solution (u,v) satisfying
u,v>60 and u#6,v£6.
Proof. For the sake of simplicity, we shall put 1 =1 and write N(u,v) instead of AN(u,Vv)

. We split the proof into several steps.
Step 1. We shall prove that there is a sufficiently large number R such that

(u,v) = P[tN (u,v)], Vt€[0,1], Vu,v...0, ll(u,v) [ER.

Assume in the contrary that there exist sequences {t }c[0,1], and
u,v,...0, ll(u_,v.) |ls o suchthat (u v )="P[t N(u_v )], orequivalently, one has
(Aun,go>+_[gl(x,un)go=_ftn f.(x,u,,v,)e

Q Q

Vo, eWH (Q). (1.6)
(A, 8)+ [ 6, (V)8 = [, £, (v, U, )

Choosing ¢ =u,,¢ =V, in (1.6) and using (H1) we obtain

luy 1P+ gy O Uy i [ (U + [y (VU
° ° ° (1.7)

IV, 1P+ 9 06 Vo Vo [ (VR + [ 1, (XU,
Q Q Q

In the case that condition (a) in (H1) holds, by adding sides by sides of the
inequalities in (1.7), we have

C. ll(u,,v.) IFSJ'ml(x)uﬁ*“ +J'm2(x)vﬁ*“ +J'n1(x)vr{un +J'n2 (x)u’v,. (1.8)

By Holder's inequality, Young's inequality and some simple computations we obtain
o, P € (limy 1+ lim, 1) l,v,) B +

’ ’ (1.9)
C( ||n1 ”’ + ||n2 ”’)[8 ||(un’vn) |£/I‘ +C(‘9) ||(un’vn) |t/f:|,

here S=y (—J x’ and we have used the inequality

(a+b)’ <a’ +b’, va,b>0, VO < (0,).

11
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It follows from (1+a)q’,s < p~ and (1.9) that
I, va) P CCliu,,vo) B+ N, v,) 1F7),
which contradicts to [|(u_,v,) [> o and 1+a < p,—,< p.

r

Next we consider the case (b) in (H1). Adding sides by sides of the inequalities in
(1.7), we deduce

lw, ) P+ C lltw,v) i< (limg f+ lim, IL) I, v,) ILW
+J'[nl(x)vr{un+n } J' X)u, +b, ( ] (1.10)

By the Holder's and Young's inequalities we have

[[0:0u, +b, (x)v, ] <Ce ll(u,,v,) i+ C)[[ (BN +(b, () ], (1.12)
JIn0duv, +n,09vzu, J<C] oy I+ Tin, | [ kv B +CGe) Nl 7]

(1.12)
where s:y[r—p,j’ r.
From (1.10), (1.11), (1.12) it follows that
lw,,v,) P+ liu,,v.) Igjéc( Qu,ovy) e + g,y IE° +l). (1.13)
Since (1+a)q' < p’1+a<p, (1.13) implies
I, v,) 1P+ llw,.v,) BisC liw,,v,) B (1.14)

Since s< [ +1 we deduce from (1.14) that
leuy v P+l vo) 1< C g, o) 15

which yields that [|(u,,v,) I};,;—> 0 and that is a contradiction because i <B+1.
r'

Step 2. We claim that there exists a sufficiently small number r > 0 such that

(u,v) # P[N (u,v)] +t(u,,u,), vt > 0,Vu,v>8, ll(u,v) lEr, (1.15)

where the functions u, is given as follows. Let U be the positive eigenfunction
corresponding to the principal eigenvalue A, of the problem
—Au(X) = A u"? uin Qg u(x) =0, on 8Q,.
Then we put u, =ct inQ,,u,=0inQ, €, where c is sufficiently small number.
Itis proved in [1] that

(Ao, ) < [U5 9, Vo e WGP (Q), 0> 0
) (1.16)

12
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Before proving (1.15) we need some preliminary results. We define the function k
by setting

mu“?v’ ifxeQ,,
k(x,u,v)={ 0 _ 2%
0 ifxeQ, Q (1.17)
Denote by N, the Nemytskii operator corresponding to k . We will show that for a
sufficiently small t > 0 and for a number o such that 1> o > max {L; } one has
p-1 a+e¢
RoN ; (tu,tu,) = (RON, (tu,, tu,) = t°u, (1.18)
and
R,ON ;. (tuy, tug)) = P,oN, (tuy, tu,)) 2 t7u,. (1.19)

We will only prove (1.18), assertion (1.19) is proved similarly. Putting
w = PoN, (tu,,tu,) , we have by definition of P, that

(AW, ) = J.[k(x,tuo,tuo) - gl(X’W)](D’ Vo e\Nol'p-
Q (1.20)

Taking ¢ = (t°u, —w)" in (1.16), (1.20) we easily deduce that
(At°U,) — Aw, (t7u, —w)*) < I [Aot“(”‘”ug +0, (X, w) — k(x,tuo,tvo)](tc’u0 —Ww)
o

=[ [ 26t 05 + 0,0, W) ~my tu)” ](t7up —w) = [,
& (1.21)

where Q, ={tu, > w}.

Itis easyto see that h<0 in ©,, €. On the other hand, in @, "€, we have

h <[ 257 Pug —my (tu,)* + 1, (7U,) ™ ] (t7U, — )

= (tu,)" [ﬂot“(p‘l"“ —my + Nty ] (t°u, —V)

Therefore, by the bounded-ness of u,, we have h<0 in Q, provided that t is
sufficiently small.

Consequently, (A(t”u,)— Aw, (t°u,—w)") <0 which implies t°u, <w. The first
inequality in (1.18) holds by the increasingly of the operator P,. Hence, (1.18) is proved.

We now prove that (1.15) holds. Assume by contradiction that we can find t, >0,
U, v, 26, ll(u,,v,) >0 such that

(un’vn): PON(un'Vn)+tn(u0’u0)' (122)

13
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Then we have (u,,v,) >t (u,,U,), and we denote by s, the maximal number such

that (u_,v.)>s (u,,U,). We have s, >0 and s, -0 (note s, >t , and C [(u,,v,) || >

I v) = s, lleug,ug) [L).
From (1.18), (1.19), (1.22) it follows that
(u,,v,)=P[N(u,,v,)]=(PoN,(u,,v,),PoN,(u,,v,))
> (PoN, (s, (uy,uy)), B,oN, (s, (Uy,uy)) = s (Uy, Uy).
This, by definition of s, yields s7 <'s_ which is a contradiction to that o <1,s, -0

Step 3. From Steps 1, 2 and Propositions 2.1, 2.2 we get
i(PoN, B((0,0),R),K) =1, for large R,

and
i(PoN, B((0,0),r),K)=0, asr is small.

Therefore, there exists (u,v)>(0,0) such that r< |l(uv) | <R and
(u,v) =PoN(u, V). This means that the Problem (1.1) has a positive solution.

Finally, we prove that this solution (u,v) satisfies u#6 and v#8. Indeed, if u=6
then by assumption f,(x,v,0) =0 we have

—AV+,(XVv)=0

which implies that v =86, a contradiction.
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