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ABSTRACT

Weighted fractional Sobolev spaces have many applications in partial differential equations.
In this paper, we study a class of weighted fractional Sobolev spaces, where the weights are the
distance functions to the boundary of the defined domain. This class has been used to obtain a
weighted Cacciopoli-type inequality for solutions to p-Laplace equations with measure data. Our
result expands to the Cacciopoli inequality in a recent paper by Tran and Nguyen (2021b).

Keywords: Cacciopoli-type inequality; partial differential equations; p-Laplace equations;
weighted fractional Sobolev spaces

1.  Introduction
In this paper, we are interested in the following Dirichlet problem with measure data

—div(A(x,Vu))=u in Q,
u =0 on oQ,

(1.1)

where the domain QQ < R" is open and bounded, and the given data £ is a Borel measure with

finite mass in €2 . The operator A is close to the operator & — |§|p*2 &, £eR", this means

0,(I¢])1d, <0, A(+¢) < g, ()10,
where g, (|£]) = g,(|¢]) ~|¢["* . It is well-known that when p =2, if the data 4 belongs to

the Lebesgue space Lj(Q) then Vu belongs to the Sobolev space Wtd (Q):

loc
pell (Q) = VueWird(Q), 1<g<co, (1.2)
We hope that (1.2) still true for g =1, but instance, in the recent paper by Avelin et

al. (2018), the authors showed that the result just holds for the fractional Sobolev spaces.
More precisely, they proved that

Cite this article as: Tran Quang Vinh (2021). A weighted approach for Cacciopoli inequality for solutions to
p-Laplace equations. Ho Chi Minh City University of Education Journal of Science, 18(9), 1603-1619.
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gl (Q) = Vu eWZ? (@), 0<o<1. (1.3)
Moreover, also in the same paper, the authors gave a very important regularity result

when 2—1 < p<2. Letus recall the following theorem:
n

Theorem 1.1. (Avelin, Kuusi & Mingione, 2018) Let 2 be an open subset of R" and
p>2—%. Assume that u e WP () is a SOLA solution to (1.1). Then for any
o €(0,1) one has

A(Vu) eWZHQ). (1.4)
Moreover, there exists a constant C =C(c 4,o0,n, p) >0 such that
‘A (Vu(x))- A(Vu(y))‘

- dxdy
€ BR/2 IBR’ZIBR’Z =y (15)
C 1 14(Br)
A dx + | LVER) 1
< e Pl )

for every ball By € Q.

We remark that the weak solution to the measure data problem (1.1) may be not
unique. To ensure the existence and uniqueness of the solution to (1.1), we deal with the
SOLA solution which has been defined in Benilan et al. (1995) and Maso et al. (1999).
There are interesting results related to regularity for solutions to the measure data problem
(1.1), such as (Mingione, 2007), (Tran & Nguyen, 2019, 2020a, 2021a), (Balci et al.,
2020), etc.

Recently, Tran and Nguyen established the global regularity result of (1.4) in Tran
and Nguyen (2021). However, they only proved that .A(Vu) belongs to the weighted
fractional Sobolev space, even for the smooth domain €. In the present article, we
improve the result reported by Tran and Nguyen (2021) by proving the inequality similar
to (1.5), where the weights are both on the left-hand and right-hand side. In other words,
we prove the following inequality

‘A (Vu (|x)) —|ﬁ£Vu ( y))‘ xdy

SC(Igdy(x)‘A(Vu(x))‘dx+|y|(Q)),

d*(x)d”
J o], d400d” (y) .

where d(x):=dist(x,0Q) defines the distance from x to the boundary of the domain. Here
the result holds for every «, >0 and y >0 satisfying a>y, >y, a+f-y>o.

Motivated by these works, we first consider some basic properties of the weighted
fractional Sobolev spaces, in which the weights are the power of distances to the boundary.
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Then we prove the weighted Cacciopoli type inequality (1.6) which corresponds to the
SOLA solution to the measure data problem (1.1).

The rest of the article will be organized as follows. In the next section, we introduce
the weighted fractional Sobolev spaces by introducing some basic notation, definitions,
and some properties of weighted fractional Sobolev spaces. Then, we end up with a section
that introduces the main results and proving the main results in this paper, and it allows us
to conclude a weighted approach for Cacciopoli inequality for solutions to p-Laplace
equations (1.1).

2. Preliminaries

2.1. Basic notation
In this article, the constant depends on real numbers« , £, and y will be denoted by

C(a,p,7). From now on, B, (¢)stands for the ball with radius o and centered at { e Q.

Finally, for 1< p<oo, we will denote by L°(€)the usual Lebesgue spaces; and the

Sobolev spaces is signed as W*P(Q) .

2.2. Fractional Sobolev spaces
We now introduce the definition of fractional Sobolev spaces, see (Avelin, Kuusi &
Mingione, 2018) and (Di Nezza, Palatucci & Valdinoci, 2012) for instance.

Definition 2.1. (The fractional Sobolev space) Assume that Q —R" is an open set with
n>2, s is the fraction in (0,1) and pe[l,+x). Then, the fractional Sobolev space

WP (Q) is defined as follows

WP (Q):=1ue L’ (Q): M“ﬂ(y)'e L (QxQ) 2.1)

[x=yl°
with the natural norm
1

[ueo-uy)®

[uhz o) {ﬂ“(xﬂpdxﬁf P dudy | 2.2)

The Gagliardo semi-norm of u is defined by
1
[u()-uy) P,

[Wysp 0y = {I Jo oy xdy} . (23)
Furthermore, we defined W, () as

Wi (Q) = {v e WS (Q,): VO, = Q,Q is compact]. (2.4)

Let us introduce some properties of weighted fractional Sobolev spaces
Lemma 2.2. Assume that Q< R" is an open domain, pe[l+») and u:Q—>R is a
measurable function. Then
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||U||Wé,p(9) < ||u|kNé,p(Q), forall t e (s,1).

It follows that

WP (Q) WP (Q), forall te(s,1).
If we have Q is the bounded Lipschitz domain, then we have the following lemma.
Lemma 2.3. Assume that Q@ — R" is an open bounded and Lipschitz domain, p €[1,+)
and u:Q — R is a measurable function. Then

WEP(Q) cWSP (@), forall se(0,1).

Proof of Lemma 2.2 and Lemma 2.3 can be found in a study by Di Nezza, Palatucci, and
Valdinoci(2012).
2.3. Weighted fractional Sobolev spaces

Since the main content of the article uses some properties of weighted fractional
Sobolev space where the weights are the distance functions to the boundary of the domain.
We will introduce weighted fractional Sobolev spaces via the following definition.

Definition 2.4. (Weighted fractional Sobolev space) Assume that Q< R" is an open,
bounded and Lipschitz domain, qe[l,«), se(0,1) and «, #>0. Then, we define the

weighted fractional Sobolev space as

p
WeP (e, B) = {u eL?(Q): “‘da(x)dﬂ(y)%dxdy <oo}, (2.5)
Q0 |X—Y|
with the natural norm
ubus (i) {f|u(x)|p dx+”d x)d? (y )% dy] . (2.6)

where d(x) = dist(x,0Q).
Similar to the non-weight spaces, the weighted Gagliardo semi-norm of Wg'? (X a,B) is
defined by

R
1 W ::D J, 8 (x)dﬁ(y)%xdy}p. (2.7)

Let us introduce some properties of weighted fractional Sobolev space, which is similar to
fractional Sobolev space.
Lemma 2.5. Assume that u:Q2 — R is a measurable function. Then, there exists a
constantC >1 such that

||u|k,vé,p(9;a] 5 SC||u||Wé,p(Q;a’ g forall te(s).

In particular,
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WEP (e, B) cWEP (s, B), Torall te(s,D).
The proof is similar in spirit to the proof of Lemma 2.2. Now, we establish the connection
between fractional Sobolev space and weighted fractional Sobolev space by the following
lemma.
Lemma 2.6. For every «, >0 we have

: atp

[u]Wé,p(Q;a’ﬂ) <(diam(Q)) q [u]Wé,p(Q),
and it yields

Wé’p(Q) CWé‘p(Q;a,,B).
That means that weighted fractional Sobolev space is the expansion of fractional Sobolev
space, and the result we have obtained is more general. In the following section, we
introduce the main results and prove the main results.

3. Main results
In this section, we state our main results and their proofs.

Theorem 3.1. Let p> 2—%, o €(0,1) and Q be an open bounded and smooth domain in

R". Assume that ueW>M*&P(Q) js a SOLA solution to (1.1). Then for every «,
B >0 and y >0 satisfying >y, >y, a+ -y >0o, there exists a constant C >0
such that

A(Vu(9)-A(Vu(y))

|X— y|n+0'

d*(x)d”
[, ], d%00d”(y) o

< C(de7(x)‘A(Vu(x))‘ dx+|y|(Q)),
where d?(x) == [dist(x,0Q)]’ .
In this section, we always assume that p >2—%, c€(0,)), Q<R" be an open,

bounded and smooth domain. Furthermore, ueW ™&P1(Q) is a SOLA solution to
(1.1). Denote by D(Q) the diameter of €, this means D() = sup d(x,Y).
X,yeQ
First, suppose that 0 < R, < D(Q2)/2, let
Q, Z={X€Q|0<d(X)S%},

be the set of points near 0Q . We define €, as

Q, IZ{XEQ rk+1<d(x)£rk},

with r, =27"R,,Vk e N*. It is clear that
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Q, = JQ, (seeFigure 1).
k=1

Figure 1. The sets of points near the boundary
To shorten notation, we introduce the following function

|A(Vu(|x)) —|ﬁ(UVU(y))| xyeQ,  xzy.
X=y

Let us introduce some lemmas that are necessary for later use.
Lemma 3.2. Assumethat ¢, >0, y20; a>y, >y and a+ [ —y >0o. Then, there
exists a constant C >0 such that

T(x, y)dxdy < C ( Joner d7 ()| A (Vu (x))|dx +|,u|(Q\Q0)). (3.2)
Proof of Lemma 3.2. First, let us establish

(I1I) := jQ\QO jQ\QO T(x, y)dxdy.

T(x,y)=d"(x)d”(y)

-[Q\QO -[Q\QO

We remark that Q\Q, can be covered by actually finite balls centered at z, with radius r;
k=1,N,ie.

N
O\Qyc B (z)= U By ()
k=1 ZkGQ\QO

Let P be the set of all centers, i.e.
Pi={z, eQ\Qy:ke{l,2,...,N}}.
Now, we estimate (III) as follows

(I1T) = T(x, y)dxdy < Z ; P j ; T(x, y)dxdy.
kLI €

-[Q\QO J.Q\Qo rl(zk)‘[Brl(Zl)

Let P, be the set of all centers that are closed to z, , which means

P = {ZI € P 1By 2(7)) M Bayya(zy) # @}-
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It is clear that
By, (z1) = Bsy,12(2)) = Byy, (z), V7, € P, (see Figure 2).

B:r, (zx)

By j2(2i)  Bspya(3)

Figure 2. The centers are closed to z, .

Furthermore, the cardinality of P, is finite, i.e. there exists C >0 such that

So, we can decompose the integral Q\Q, xQ\ Q, as follows

T(x, y)dxdy < >’ jB T(x, y)dxdy

Zk,Z|€P

J.Q\QO IQ\QO q(zk)‘[Bq(zl)

<> > .[Brl(zk)js,l(z.)T(X’Y)dXdy+ > _[Brl(Zk)jBrl(ZI)']I‘(x,y)dxdy.

ZkEP Z|EPZk ZkEP Z|EP\PZk

With the first term on the right-hand side of (3.3), we get

2 2 '[Brl(zk)IBrl(z.)T(X’ y)dxdySCZkZe:P IBArl(Zk)JB4q(Zk)T(X, y)dxdy.

ZkEP Z|€PZk
Applying (1.5) in Theorem 1.1, we have

T(x, y)dxd
j.B4r1(Zk)J‘B4r1(Zk) (x, y)dxdy

47 (%) [A(VU(x)) - A(Vu(y))|

By poth-
< APV r1a+ yIB4ﬂ(Zk)IB4q(Zk) |X_y|n+cr

dxdy

<7 [, o Ao el e

Combining between (3.4) and (3.5), we reach that

Z Z J.Brl(zk)J.Brl(ZOT(x’ y)dxay

ZkEP Z|EPZk
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<cptfrel Y J.Barl(Zk)d7(x)|A(Vu(x))|dx+ > |u|(Bsy) | (3.6)

Zkep ZkEP
Notice that there is a constant C =C(n) > 0 such that
2 X8y (2)(6) SCaq, (8),  VEeQ,

ZkeP

therefore, for all f e Lj,.(R"), we reach that
2 foy ) T€0= T [oo 7, 0@ F @85 <CL, o 10008 (3.7)
|(E kE

Substituting (3.7) to (3.6), we obtain that
z Z J.Brl(zk)J‘Brl(ZOT(X’ y)axdy

ZkEP Z|€PZk

< C.rl"‘+ﬂ‘7“’ UQ\QO d 7(x)|A(Vu(x))| dx+ r1[|,u| (Q\ QO)]). (3.8)
Moreover, it's clear that for any X e Brl(zk), ye Brl(z,), with z, e P and z; € P\ sz , We

get [x—y|> 1. It is easy for us to check that

A
4 0a? () A g
2/ €P\P,, By (2) By (1) |x— o

a+p-y 1 y
=N IB“(ZK)[z|e§p JBq(h)Wdde (X)|A(VU(X))|dX
2

a+p-y—c 1
<g 7 Isq(zk)(f{fa}mTadf]d7(X)|A(VU(X))|O'X

<CRProf o d7 (0]AVU())|dx.

Brl(zk)
Now we estimate the last term in (3.3) as
a+p-y—o %
2 X fBrl(Zk) J B, (ZI)T(X, y)dxdy < C.ry ZZP j B, (20 d” ()| A(Vu(x))|dx
kE

7 €P Z|eP\PZk
a+pf-y-o 14

<Cr jsmo d” (x)|A(Vu(x))|dx. (3.9)

Applying (3.8), (3.9) to (3.3), we reach that

(I11) = IQ\QO jQ\QO T(x, y)dxdy

IN

c.(rlwﬂ—V-f’ jQ\QO d7 (x)|A(VU(x))|dx+ 2 A7t ) (Q\Qo)j

< c.( jQ\QO d” ()| A(VU(x))|dx +| ¢ (Q\QO)) (o Pro

1610



HCMUE Journal of Science Tran Quang Vinh

< C.UQ\QO d7(x)|A(Vu(x))|dx+|y|(Q\QO)), (3.10)

which leads to the desired result. O
Lemma 3.3. Assume that &, >0, y20;a>y, f>y and a+ -y >o. Then, there

exists a constant C > 0 such that

(r+
Proof of Lemma 3.3. First, forany xe Q,, yer, li—j|>2, we get

a 7 B
j j d*(x)d” (y )|| ( y|( ))| y_c—j d7(x)|A(Vu(x))|dx. (3.11)

RS hith -
|x—y|>max i > (see Figure 3).

Figure 3. Distance between x € (); and y € Q;.

It yields
Jo o 0 (x)dﬂu"(;"ﬁ]ﬂ y=Jo fo 4 7(x)dﬂ()|| |( AVUO] 57 gy
a-y.p /4
<K jai[j{&' J}W%d (x)| A(VU(x))|dx
<g° i L e a7 (0] AVu() dx
8 ey o fi i | IR0
7 rf
sc(—j d” (x)| A(Vu(x))|dx. (3.12)
I;
Notice that the fraction rta is integrable since n+o >n. l

<]
Lemma 3.4. Assume that ¢, #>0, y20;a>y, >y and a+ -y >oc. Then, there
exist constants C, >0 and C, >0 such that
7

rjﬂ arﬁ_}’
——— | d”(x)|A(Vu(x)) T d”(y)|A(Vu(y))|dy
i—JZZZ (r + ,)CrI | | (5 +1;)7 IQ; | |
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sCl.IQ d7(x)|A(Vu(x))|dxi rj‘”ﬂ‘7“’, (3.13)
0 j=1
and
a—}/ % ﬂ ,
d” (x)|A(Vu(x)) dX+— d”(y)|A(Vu(y))|dy
PJ ey )"I | G I | |
<Cof,, 07 (MIAVU|dy Y 57, (3.14)
0 i=1
Proof of Lemma 3.4. First, let us establish
D), = ria_yr‘ﬂ d” (x)|A(Vu(x))|dx + arﬁ_y d”( )|A(Vu( ))|d
(D1 = i—éz (F+r )g_[ ()] | WIQJ y y)\ay |,
and
ra 7y ﬁ 0’ ﬂ_V
D= 3| j F OlAVuOO b i o jQ.df(y)|A(Vu<y»|dy}
j-i=2 i J
We have
0 a /4 ﬂ
Ou=3 Y ——d | A7 (9] A(Vu()|dx

j=li=j+2( r.
£'+1J ry

r.

]

_N oS d” (x)| A(Vu(x))| dx
JZ . i= j+2(2J ! 1)GI | |

o[ a Ay Y
L], OO |§2(2“ )

<Zra+ﬁ y-o Z [, d7(x)|A(Vu(X))|dX+ZI“B N dy(y)IA(VU(y))Idy Z r

i=j+2 & i=j+2

Ol

< IQ d” (x)| A(Vu(x)| dxi (Ao cl.i (e jQ_ d” (y)|A(Vu(y))|dy
0 j=1 j=1 J
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<Cuf, 07 ()| A(VU(X)| xS re A7,

j=1
and similarly, we get
Mo 3 [ 4 olamumpiac—o [ g plamuyd
5= — X u(x))|dx + — y u(y))|dy
' jomel (6 +1;)7 7 (fi+1;)° "

<Cypf, d”(|AVu(y)|dy <7,
0 i=1

which provides us (3.13) and (3.14). O
Lemma 3.5. Assume that &, >0, y20;a>y, >y and a+ -y >0c. Then, there

exists constant C >0 such that
> j j T(X, y)dxdy < C j d7(x)|A(Vu(x))|de rathr=o. (3.15)
2
ProofofJLemma 3.5. In this proof, let us set
(1), = g Z>2 Jo Jo, TOx )iy,
i

Applying (3.11) in Lemma 3.3, we get
M@= |, I, T y)dxdy

i—jp2™

< 2 o fo, #4000 0 2 gy 1 00007 (2T g VJ

i-i}>2 x=Y| x—y]

7l ’ ﬂ—y ,

= 07 (9| AVUG|dx + [ a7 (y)| A(Vu(y))|dy

i-je2\ (h +r)aI ¥IAVUE)) (5 +1,)° IQJ- | |
<C.((M1 +@r2), (3.16)

where

7l Krf
D= Y, 7 Jo, 87 AT UEO dx+—— [ d7()|A(Vu(y)dy |,

isjz2| (G +17)7 (r+r7)

and

a—}/ p’
(T2 = Z(r [, dV(x)|A(Vu(x»|dx+“—j dy(y)|A(Vu(y))|dy}

j—i>2 (| J)a

From what have already been proved in (3.13), (3.14) and (3.16), (I); can be estimated as
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(I), <C jQ d” (x)|A(Vu(x))|dx X rF 7,
0 .
j=1
which allows us to get (3.15). O
Lemma 3.6. Assume that &, >0, y20;a>y, >y and a+ -y >0c. Then, there

exists constant C >0 such that
- 4 = a+p-y-o
E jQi jQi T(x, y)dxdy < C ( jQO d7 ()| A(Vu(x))| dx +| ] (QO))i%:r, . (3.17)
Proof of Lemma 3.6. In this proof, let us denote
M2 =3, J, TCx y)dxcy.
i:]. | |

To continue estimates (I),, our idea is to decompose the €; into open balls with a radius
I; then applying the local inequality (1.5) in Theorem 1.1.
|

: : o0 i : :
Notice that €, can be covered with N; NT‘ balls centered at z, € Q; with radius r,,
1

k=1N; . It means

N; _ .
Qi < |JB (%)= U B (k)-
k=1

7, €0
Let P, be the set of all centers, i.e.
P={zf eQ:ke{l,2,...,N;}}.
Now, we estimate (I), as follows

(H)2=§} [, [, Tx y)dxdySi DI (Zi)jB oy TOX Y)becly.
= p ook T B A

I=17j.7/eR

Let P _; be the set of all centers that are closed to 2}, , which means
1Lk

R ::{Z'i € P By (2]) M Bag2(2i) ¢®}.

It is not difficult for us to check that
By, (21) < Bay2(21) < By (7). V2 € R

Moreover, the cardinality of Pizi is finite, means there exists a constant C such that
1Zk

2l <C. So, we can decompose the integral ; x€; as follows

b

.[Q. .[Q. T(x, y)dxdy < 3. IB (zL)IB (Z;)T(X, y)dxdy
e | R ]

Zy,Z| €

1614
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< Z ZP: ."BG(ZL)JBn(zf)T(X’y)dXdy

DIV ) N T )y, (3.18)

ZkEP Z|EP\P i
2k

Applying (3.8), (3.9) to (3.18), we reach that
0z =3 Jio o, TOx )y

<C. [Zrﬂ”ﬂ r=o j d7(x)|A(vU(x))|dx+r“+ﬂ - 0+1|,u|(£20)]
i=1

sc.U d7(x)|A(Vu(x))|dx+|,u|(QO))Zr“”Lﬁ ad (3.19)
i=1
which leads to the desired result. O
Lemma 3.7. Assume that &, >0, y20;a>y, >y and a+ -y >o. Then, there
exists constant C >0 such that
> j j ']I‘(x y)dxdy<C( j d” (x)|A(Vu(x))| dx + y(Qo)erm'B 7o, (3.20)
li—j=1 =1
Proof of Lemma 3.7. Let us establish

@s:= 3 [, o, TO6y)day.

fi-il=L

We estimate (I); with a note that

M= > j j T(x, y)dxdy = 22] j ']I‘(x y)dxdy<2zj j T(x, y)dxdy,

i-iL
where A is defined by

A =Q; UQi+1={XEQZ%<d(X)S ri}.
Similarly, for (I); we may estimate by the same the way to (I), in (3.18) and reach that
()5 < C.UQ d7(x)|A(Vu(x))|dx+y(§20)jz rethro, (3.21)
0 i=1

which leads to the desired result. O
Lemma 3.8. Assume that ¢, >0, y>20;a>y, f>y and a+ -y >0c. Then, there

exists a constant C > 0 such that
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'[Qo '[Qo T(x, y)dxdy <C UQO d” (X)|ACVu(x))| dx +| ¢ (QO))_ (3.22)
Proof of Lemma 3.8. In this proof, let us set
M=, Jo, T y)dxey.

Since Qg = U Q, , we can rewrite (I) as follows
k=1

(I) = i jQ_ jQ_T(x, y)dxdy = > j j 'IF(x y)dxdy + > j j T(x y)dxdy
ij=1

i-j2 i- =1
+Z IQ_ IQ_ T(x, y)dxdy
o i

= (I)y + ()3 + (), (3.23)
with

= 2 Jo [ TOMOdy M= 3 ] [, T y)oxdy

i-ip>2 i li-j]=L
and

(I), = i [, [, TCx, y)dxdy.
=

We can estimate each term on the right-hand side of (3.23) by applying Lemma 3.5,
Lemma 3.6 and Lemma 3.7. Then, we can find a constant C >0 such that

(I)<C ( IQO d” ()| A(VU(x))|dx +| ;4(90)). (3.24)
Note that the assumption a + -y > o helps us to find
1 (a+p-y-o)i
$esre -cgre, wne-$(1 7
i1 i\ 2
which completes the proof. O

Lemma 3.9. For every a, >0, y>0 satisfying a>y, >y and a+f-y >0,
there exists a constant C >0 such that

Toy Jon, TO0 My <C( [ 07 00|AVUC ¢+ ul(@102) | (3.25)
ool

Proof of Lemma 3.9. Note that €; can be covered with N; ~— | balls centered at z|
1

with radius ri, ie.

Q; CUB (z1)= U B, (Z|)

Z|EP
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and Q\ Qg can be covered by finite balls centered at z, with radius r;, i.e.

N
O\ < | By (z) = | By (),
k=1

7 P
where
P={zleQ:lefl,2,..,N}} and P:={z, eQ\Qy:ke{l,2,....,N}}.
It is not difficult for us to check that
By, (/) < By, (%), V2 P,
Now, we estimate (IT) as follows

(1) = jQ jQ\Q T(x,y)dxdy:i jQ_ jQ\Q T(x, y)dxdy
0 0 o 0

<> Z 2 JBn(Zf)IBrl(Zk)T(X' ydxdy=> > > '[Bq(zk)‘[Br, (Zli)’JI‘(x, y)dxdy

i=1 leepl ZkGP i=1 ZkEP ZliePI

<C

ZKEP

Combining between (3.5) and (3.26), we reach that

T(x, y)dxdy.
IB4rl<zk)js4r1(zk) (x. y)dxdy

(3.26)

d” () |A(Vu(x)|dx+1, > | y|(88rl)]. (3.27)

ZkEP

(I) <C(n, p,Cp, 0, R)FEHF 7 ( >

ZkEP

B8I’1 (Zk )
Substituting (3.7) to (3.27), we obtain that

(IT) < C(n, p,Cp, 0, Ry) K47 ( o1, 47 QAU o + B[] (2 QO)]j

<0 P ep 7. 0:R)| [ 0, & OIAVUG el @10) ). 28)
This achieves the proof of the desired result. O

Thanks to some lemmas that have been proved and some important properties of
weighted fractional Sobolev spaces discussed in Section 2, now we prove the main
theorem.

Proof of Theorem 3.1. The integral of T over Q2xQ can be rewritten as

_[Q IQT(X, y)dxdy = on jﬂo T(x, y)dxdy + ZIQO '[Q\Qo T(x, y)dxdy + v[Q\Qo J.Q\Qo T(x, y)dxdy
= (I) + 2(II) + (III), (3.29)
with
(I) = jQO IQO T(x,y)dxdy;  (II) = IQO jQ\QO T(x, y)dxdy,
and

(I1T) = jmo Lmo T(x, y)dxdy.
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We can estimate each term (I), (IT) and (IIT) by using Lemma 3.2, Lemma 3.8, and
Lemma 3.9. Then, there exists constant C =C(n, p,c 4,a, B,7,0,Ry) >0 such that

jQ IQT(X, y)dxdy < c( de 7 () |A(VU(x))|dx+| (Q)), (3.30)
which leads to the desired result (3.1) from (3.30). l
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TOM TAT

Khéng gian Sobolev cdp phan sé cé trong cé nhiéu ing dung trong phwong trinh dao ham
riéng. Trong bai bao nay, ching t6i khao sat lép khdng gian Sobolev cdp phan sé c6 trong, iing Véi
ham trong & ham khodng cdch dén bién cia mién xdc dinh. Lép khéng gian nay dwoc sir dung dé
thu dwoc mét dang bat ddang thirc dang Cacciopoli c6 trong cho bai toan p-Laplace véi dif liéu dg
do. Két qua cia chiing t6i la me réng cua bdt dang thire Cacciopoli trong bai bao gan day (Tran &
Nguyen, 2021b).

Tir khoa: bat dang thic dang Cacciopoli; phuong trinh dao ham riéng; phuong trinh p-
Laplace; khong gian Sobolev cap phan sé c6 trong
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