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ABSTRACT

The purpose of this paper is to combine the Bregman distance with the shrinking projection
method to introduce a new hybrid iteration process for a generalized mixed equilibrium problem and
a Bregman totally quasi-asymptotically nonexpansive mapping. After that, under some suitable
conditions, we prove that the proposed iteration strongly converges to the Bregman projection of the
initial point onto the common element set of the solution set of a generalized mixed equilibrium
problem and the fixed point set of a Bregman totally quasi-asymptotically nonexpansive mapping in
reflexive Banach spaces. This theorem extends and improves the results reported by Alizadeh and
Moradlou (2016) from a generalized hybrid mapping and an equilibrium problem in Hilbert spaces
to a Bregman totally quasi-asymptotically nonexpansive mapping and a generalized mixed
equilibrium problem in reflexive Banach spaces. The result is applied to a generalized mixed
equilibrium problem and a Bregman quasi-asymptotically nonexpansive mapping in reflexive Banach
spaces. In addition, an example is provided to illustrate the proposed iteration process.

Keywords: Bregman totally quasi-asymptotically nonexpansive mapping; generalized mixed
equilibrium problem; hybrid iteration process; reflexive Banach spaces

1.  Introduction
Suppose that X is a real reflexive Banach space, © is a nonempty, closed, and convex

subset of X, and X™ is a dual space of X. Let f:QxQ — R, ¢:Q — R be two functions
and ¢:Q — X" be a mapping. We denote the value of «* € X*at uw € X by (u",u). The
generalized mixed equilibrium problem (GMEP) is to find u € such that

Cite this article as: Nguyen Trung Hieu (2021). Strong convergence of a hybrid iteration for a generalized
mixed equilibrium problem and a Bregman totally quasi-asymptotically nonexpansive mapping in Banach
spaces. Ho Chi Minh City University of Education Journal of Science, 18(9), 1620-1637.
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f(u,v) + (Wb(u), v —u) + ¢(v) > @(u) for all v € €. The set of solutions of (GMEP) is denoted
by GMEP(f, ¢, ) = {u € Q: f(u,v) + ((u),v —u) + p(v) > p(u), Vv € Q}.Note that, if p =0
and « = 0, the problem (GMEP) is reduced into the equilibrium problem (EP) which is to
find u € Q such that f(u,v) >0 forall veQ.

In recent times, there were many methods for solving the above problems. In 2016,
Darvish introduced an iterative method for finding common elements of the solutions set
of the problem (GMEP) and the fixed points set of a Bregman strongly nonexpansive
mapping in reflexive Banach spaces. In 2016, Zhu and Huang introduced a new hybrid
iterative scheme for finding common solutions to the problem (EP) and fixed points of
Bregman totally quasi-asymptotically nonexpansive mappings. In 2018, Ni and Wen
proposed a new iterative scheme for finding a common solution of a system of the problem
(GMEP) and fixed points of a finite family of Bregman totally quasi-asymptotically
nonexpansive mappings. Note that these convergence results extend and improve the
existing results from Hilbert spaces or smooth Banach spaces to reflexive Banach spaces.
Therefore, an interesting work naturally raised is to continue to generalize the existing
convergence results from Hilbert spaces to reflexive Banach spaces.

In this paper, motivated by the iteration process proposed by Alizadeh and Moradlou
(2016), we introduce a new hybrid iterative scheme which is to find common elements of
the set of solutions of the problem (GMEP) and the set of fixed points of Bregman totally
quasi-asymptotically nonexpansive mappings. After that, we prove a strong convergence
theorem for the proposed iteration in reflexive Banach spaces. In addition, a numerical
example is given to illustrate the results.

Now, we recall some notions and results which will be useful in what follows.

Assume that ¢: X — (—oo,+oc] IS a lower semi-continuous, convex, and proper

function. We denote the domain of ¢ by domg={ue X:g(u)<+oo}. For any

u € int(domg) and v € X, we denote by ¢'(u,v) = lim g(“Jr)‘:\)_g(“) (1.1) the right-

e
hand derivative of ¢ at w» in the direction ». The function ¢ is called Géateaux
differentiable at « if the limit (1.1) exists for all ». Then the gradient of g at v is Vg(u),
which is defined by (Vg(u),v) = ¢'(u,v)for all v € X.The function g4 is called Fréchet
differentiable at « if the limit (1.1) is attained uniformly in || v ||=1. The functiong is
called be uniformly Fréchet differentiable on a subset 2 of X if the limit (1.1) is attained
uniformly for v € Q and || v ||=1.

Note that if ¢ is uniformly Fréchet differentiable, then ¢ is uniformly continuous (see
Ambrosetti & Prodi, 1993, Theorem 1.8). If ¢ is Gateaux differentiable and lower
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semi-continuous convex, then ¢ is bounded on bounded sets if and only if Vg is bounded on
bounded sets (see Ambrosetti & Prodi, 1993, Proposition 1.1.11). Furthermore, if ¢ is
uniformly Fréchet differentiable and bounded on bounded subsets, then V¢ is uniformly
continuous on bounded subsets of X* (see Reich & Sabach, 2009, Proposition 1).

Let u € int(domg), the Fenchel conjugate of ¢ is the function ¢ : X~ — (—oc, +o0]
defined by ¢* (u*) = sup{(u",u) — g(u) : v € X} forall v € X"
Definition 1.1. (Chang et al., 2014, Definition 2.2). Let X be a real reflexive Banach space
and g: X — (—oo,+00] be afunction. Then ¢ is called Legendre if

(L1) int(domg) = @, g is Gateaux differentiable on int(domg) and

dom(Vg) = int(domy).

(L2) int(domg*) = @, ¢g° is Gateaux differentiable on int(domg*) and

dom(Vyg") = int(domg").
Remark 1.2. (Chang et al., 2014, Remark 2.3). Let X be a real reflexive Banach space and
g: E — (—o0,+00] be Legendre. Then

(1) ¢ is Legendre if and only if ¢* is Legendre.
(2) Vg=(Vg) " ran(Vg) = dom(Vg') and ran(Vg )= dom(Vg) = int(domg), where
ran(Vg) is the range of Vg.
Definition 1.3. (Censor & Lent, 1981, p.324). Let X be a real reflexive Banach space and
9: X — (—o0,+00] be Gateaux differentiable. Then D :domg x int(domg) — [0,00), defined
by D (u,v) = g(u) — g(v) — (Vg(v),u — v) is called the Bregman distance with respect to 4.
From the definition, we have D (u,v)+ D (v,w)—D (u,w)=(Vg(w)—Vg(v),u—v)
for all v € domg and v, w € int(domyg).
Let g:X — (—oo,+oo] be Géteaux differentiable and V : X x X —[0,00) be
defined by V, (u,u") = g(u) — (u",u) + ¢"(u") forall uw € X and u" € X
Remark 1.4. Let g: X — (—oo,+00] be a Gateaux differentiable function. Then
(1)(Kohsaka & Takahashi, 2005, Lemma 3.2) For any v € X and «* € X, we have
V,(uwu’) = D, (u, Vg (u")).
(2) (Kumam et al., 2016, p.7) V, is convex in the second variable. Furthermore, for

m

any u € domg, {u,};", Cint(domg) and {t,}" <[0,1] with Y ¢, =1, we have
k=1

m m

D195 (31, Vo(u,))) < Y4, (ww,).
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Definition 1.5. (Butnariu & lusem, 2000, p.69). Let X be a real reflexive Banach space,
g: X — (—o0,+00] be Legendre, and €2 be a nonempty, convex, and closed subset of

int(domg).The Bregman projection of u € int(domg) onto € is the unique vector
Fy(u) € Q2 satisfying D (P (u),u) = inf{D (v,u): v € Q}.

Definition 1.6. (Resmerita, 2004, p.1). Let X be a real reflexive Banach space and
g: X — (—o0,+00] be Gateaux differentiable. Then

(1) ¢ is called totally convex atu € int(domg) if any ¢ > 0, we have

v (u,€) = inf{D (v,u):y € domg,[|v—ul|=¢e}> 0.

(2) ¢ is called totally convex if ¢ is totally convex at every point « € int(domf).

(3) ¢ is called totally convex on bounded subsets of X if any nonempty bounded subset £
of X and ¢ > 0,we have v (E,¢) = inf{v (u,e) : u € ENdom g} > 0.

Proposition 1.7. (Resmerita, 2004, Proposition 2.2). Let X be a real reflexive Banach
space, andg: X — R be Gateaux differentiable. Then ¢ is totally convex atu € X if and

only if for any sequence {v,} C X' suchthat lim D (v,,u) = 0, we have lim || v, —u[|= 0.

n—00

Proposition 1.8. (Butnariu & lusem, 2000, Lemma 2.1.2). Let X be a real reflexive
Banach space, andg: X — R be convex and Gateaux differentiable. Then ¢ is totally
convex on bounded sets if and only if for any sequence {u },{v } C X such that {u } is
bounded and lim D (v, ,u )= 0, we havelim |[v, —u, ||= 0.

n—00 n—0o0

Proposition 1.9. (Butnariu & Resmerita, 2006, Corollary 4.4). Let X be a real reflexive
Banach space, g : X — (—oo,+00] be a Gateaux differentiable function and totally convex

on int(domg), €2 be a nonempty, closed, and convex subset and « € int(domg). Then

(1)w = PJ(u) ifand only if (Vg(u)— Vg(w),w—v)>0 forall veQ.

(2) D, (v, Fy(u))+ D, (F)(u),u) < D (v,u) forall ve Q.

Proposition 1.10. Let X be a real reflexive Banach space and ¢: X — R be a function.

(1) [Reich & Sabach, 2010, Lemma 1]. If ¢ is Gateaux differentiable and totally convex on
X,u€ X and {u}CX satisfying {D (u,u)} is bounded, then the sequence {u, }is
bounded.

(2) [Sabach, 2011, Proposition 2.3]. If ¢ is Legendre such that Vg¢" is bounded on bounded
subsets, v € X and {u, } C X satisfying {D (u,u, )} is bounded, then the sequence {u,}is
bounded.
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Definition 1.11. (Zalinescu, 2002, p.203, p.207, p.221). Let X be a Banach space. We
denote by S, = {u € X :|[ul]| <1} and B. = {u € X :[|u|| < e} for some ¢ > 0. Then

(1) g: X — R is called uniformly convex on bounded subsets if p (\)>0 for all
A,e > 0, where the function p_:[0,00) — [0,00) is defined by

g+ (1= 8)g(0) — g(bu+ (=)
u,vEB_[[u—v[[=),6€(0,1) 6(1 _ 6) ’

p.(A) =

a.(\)

(2) g: X — R is called uniformly smooth on bounded subsets if lAir%T: 0 for all

e > 0, where the functiono_ : [0,00) — [0,00) is defined by

o.(A)= sup 8g(u + (1= 8)Av) + (1 = 8)g(u — 6Xw) — g(u)
1I€B[,1,'€SIA§6(O,1) 6(1 o 6)

Remark 1.12. (Naraghirad & Yao, 2013, p.7). The function ¢ is uniformly convex on
bounded subsets if and only if ¢ is totally convex on bounded subsets.
Definition 1.13. (Kohsaka and Takahashi, 2005, p.509). Let X be a Banach space. Then

g: X — (~oo,+oc] is called strongly coercive if  lim Hg(“')' = +00
u||——+0o0 U

Proposition 1.14. [Zalinescu, 2002, Proposition 3.6.3]. Let X be a real reflexive Banach
space, g : X — R be strongly coercive, continuous, and convex. Then ¢ is bounded on

bounded subsets and uniformly smooth on bounded subsets if and only if dom(g") = X",

g is strongly coercive and uniformly convex on bounded subsets.

Proposition 1.15. (Zalinescu, 2002, Proposition 3.6.4). Let X be a real reflexive Banach
space, g : X — R be convex, continuous, and bounded on bounded subsets of X. Then the

following statements are equivalent.
(1) g is uniformly convex on bounded subsets and strongly coercive.

(2) Dom(g") = X, g* is bounded and uniformly smooth on bounded subsets.

(3) Dom(g") = X", ¢"is Fréchet differentiable and Vg* is uniformly continuous on

bounded subsets.
Lemma 1.16. (Naraghirad & Yao, 2013, Lemma 2.2). Let X be a Banach space, r > 0
and g : X — R be convex and uniformly convex on bounded subsets. Then

g( a’y,,u”)Szag(un)_aza]pi(Hul _u./ H)
n=1

n=1
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with 4,5 € {1,2,...,m}, v € B. ={u € X :||u|[<e} and a €[0,1] such that Zm:a =1,

n=1

and the function p_is defined as in Definition 1.11.

We denote by F(S) = {w € Q: Sw = w} the set of fixed points of 5 : Q2 — Q.
Definition 1.17. (Chang et al., 2014, Definition 2.10). Let X be a reflexive Banach space,
) be a nonempty subset of X, S:Q — ) be a mapping, and D, be the Bregman

distance. Then
(1) S is called a Bregman quasi-asymptotically nonexpansive mapping if F(S)= & and

there exists a real sequence {4 } C [1,00) with lim § =1 such that

D (u,8") <6 D (u,v) forall veQ and u € F(S).
(2) S iscalled a Bregman totally quasi-asymptotically nonexpansive mapping if F(S) = @

and there exist nonnegative real sequences {a },{3 } with lima =1limpB =0 and a

strictly increasing continuous function ¢ : R™ — R" with ¢(0) = 0 such that
D (u,8") < D (u,v) + (D, (u,0)) + B, forall v e Q and u € F(S).
(3) S is called a Bregman firmly nonexpansive mapping if
(Vg(Su) — Vg(Sv),Su — Sv) < (Vg(u) — Vg(v),Su — Sv) forall u,v € Q.
(4) S is called a Bregman quasi-nonexpansive mapping if F(S) = o and
D (u,8v) < D (u,v) forall v € Q and u € F(S).
Remark 1.18. [Chang et al., 2014, p.42].

(1) If S is a Bregman quasi-asymptotically nonexpansive mapping, then S is a Bregman
totally quasi-asymptotically nonexpansive mapping with ¢((\) =X for all X\>0,

a, =46 —1 with 6 > lsatisfying limé =1 and g = 0; but the converse is not true.

(2) If S is a Bregman firmly nonexpansive mapping, then S is a Bregman quasi-
nonexpansive mapping.

Definition 1.19. (Zhu & Huang, 2016, Definition 2.10). Let X be a Banach space, €2 be a
nonempty subset of X, §: — Q be a mapping. Then

(1) S is called closed if any sequence {u } in € such that limu =weQ and

n—00

lim Su, = v €, we have Su = v.

n—oo

(2) S'is called uniformly asymptotically regular on € if for all bounded subset U of 2 we
have lim sup || S""'u — S™u ||= 0.

N—00 ycpj

1625



HCMUE Journal of Science Vol. 18, No. 9 (2021): 1620-1637

Lemma 1.20. (Chang et al., 2014, Lemma 2.16). Let X be a real reflexive Banach space, 2
be a nonempty, closed, and convex subset of X, ¢: X — (—oo,+00] be a Legendre function

which is totally convex on bounded subsets of X, S : €2 — €2 be a closed and Bregman totally
quasi-asymptotically nonexpansive mapping. Then F(S) is convex and closed.

In order to solve (GMEP), we suppose that f satisfies the following hypotheses:

(C1) f(u,u)=0 forall u €.

(C2) f(u,v)+ f(v,u) <0 forall u,v € Q.

(C3) hn; sup fOw~+ (1= Nu,v) < f(u,v) forall u,v,w € Q,

(C4) For each u € Q, v — f(u,v)is convex and lower semi-continuous.

Definition 1.21. [Darvish, 2016, Definition 2.4]. Let X be a real reflexive Banach space,
2 be a nonempty, convex, and closed subset of X. Suppose that f:QxQ — R satisfies

(C1)-(C4), ¢: 22— R is convex and lower semi-continuous, 1 : — X" is continuous

monotone. The mixed resolvent of f is the mapping Res|  :X — 2% which is defined by

Res|  (u) ={w € Q: f(w,v) + ¢(v) + (¥(u),v — w)
+(Vf(w) = Vf(u),v—w) > p(w), Vv € Q}.
Note that if ¢g: X — (—oo,+00] is strongly coercive and Gateaux differentiable, then
dom(Res] )= X, see [Darvish, 2016, Lemma 2.7]. We find that the formula of the

function Res| | contains the term «(u) for all u € X.Since domy =Q C X, the value
¥(u) does not exist for all » € X\ Q. Motivated by this confusion, we revise the formula of
the function Res| by replacing the term «(u), u € X by ¢(w), w € Q. This formula has
been stated in (Ni & Wen, 2018, Lemma 2.5), where Res| | is denoted by Tf as follows.
(u) ={w € Q: f(w,v) + ¢(v) + (P(w), v — w)

H(Vf(w) = Vf(u),v—w) > plw), Yo e Q. (1.2)
The following lemma presents some properties of Res| | which is defined by (1.2).

Lemma 1.22. (Ni & Wen, 2018, Lemma 2.5). Let X be a real reflexive Banach space, 2
be a nonempty, closed, and convex subset of X,q:X — R be Legendre and
f:QxQ — R be abifunctional satisfying (C1)-(C4). Then

(1) Res;_, isasingle-valued and Bregman firmly nonexpansive mapping.

Res?

[t

2) F(Res) )= GMEP(f,,¢), GMEP(f,,1)) is convex and closed.

(3) Forall uw € X and v € F(Res ), we have

b
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Dg(v, Resjw(u)) + Dg(Res?M(u),u) < Dg (v,u).
2. Main results

The result shows the strong convergence of a hybrid iteration process for a
generalized mixed equilibrium problem and a Bregman totally quasi-asymptotically
nonexpansive mapping in reflexive Banach spaces.
Theorem 2.1. Let X be a real reflexive Banach space, {2 be a nonempty, closed and convex
subset of X, ¢g: X — Rbe Legendre, strongly coercive, bounded, totally convex, and

Fréchet differentiable on bounded subsets. Suppose thatf : 2 x Q2 — R satisfies (C1)-

(C4), ¢:Q — R is lower semi-continuous and convex, % :{ — X" is continuous
monotone, S : {2 — 2 is a closed, uniformly asymptotically regular, and Bregman totally
quasi-asymptotically nonexpansive mapping with  {a },{3 } C[0,00) satisfying

lima, =limB =0 and a strictly increasing continuous function ¢:R" — R" with

n—oo n n—0o0

¢(0) = 0 such that F = F(S)NGMEP(f,¢,) is bounded and nonempty. Let {z } be a

sequence generated by: z € Q,Q =Q and

u, =Vg'(a,Vy(z,)+(1—a,)Vy(5"z))

0, € Q: f(0,,0) + p(0) + (W1, ), v — 1)+ (Vg(t,) — V(z,),v—0,) = p(v,), Vo € O

1w, = Vg (6,Vy(u,)+1-0b)Vy(S5"v,)) (2.1)
Q. ={we D (uw)<DI(uz)+7,}

z —RZH(zl),neN*

n+1

wherey, = a, sup{((D,(uz,)):u€ F}+ 5, and {a },{b } C[0,1] suchthat lima, =1 and

n—oo

liminfb (1—5 ) > 0. Then the sequence {z, } strongly converges top = P(z).

n—0o0

Proof. We divide the proof of this theorem into six steps.

Step 1. We show that P!(z,) is well-defined. Indeed, it follows from Lemma 1.20 and
Lemma 1.22 that F(S) and GMEP(f,p,+) are closed and convex. Therefore, by
combining this with the assumption, we obtain that F = F(S)NGMEP(f,p,%) is a

1

nonempty, closed, and convex subset of €. This fact ensures that P!(z) is well-defined.

Step 2. We show that P? (z,) is well-defined. We first claim by mathematical induction

that © is convex and closed for all » € N*. Obviously, for n =1, we have Q =Q is
closed and convex. Now we suppose that €2, is convex and closed for some & € N". Then,

by the definition of © ., we have

n+1’?
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Q,, ={ueQ :(Vo(z),u—2)—(Vo(w),u—w) <, —g(z) +glw,)}. (22)

By combining (2.2) with the continuity of Vg(.), we get that Q_ is convex and
closed. Therefore, © is convex and closed for all n e N'. Next, we will claim by
mathematical induction that 7 C Q for all n € N". Obviously, we have F c Q = Q. Now,
we suppose that F c Q,_ for some k< N'. We will show that 7 c ©,_,.Indeed, for any
u e F, we get u € Q. By using Remark 1.4.(2), we have

D (u, uk) =D (u,Vg*(ang(zk) +(1- ak)Vg(Skzk))) < akDg(u, zk) +(1- ak)Dg(u, Skzk)

< a,D (u,2,) + (1~ a,)[D, (u,) + (D, (u,2,)) + 5]
=D, (u,2,) + (1 —a)[((D,(u,2,)) + 8,]< D, (u, 2,) + (D, (u, 2,)) + 5, (2.3)
Furthermore, by the definition of v and definition 1.21, we have v, = Res{ _ (z,). It

follows from Remark 1.18 and Lemma 1.22 that Res|  is a Bregman quasi-nonexpansive

mapping. Therefore D (u,v,) = D (u,Res]  (z,)) <D (u,z,). (2.4)
Next, by using Remark 1.4. (2), we obtain
D (u,w) =D (1,Vg (b Vg(u,)+(1—b)Vg(5",))) <bD (u,u)+1—-0b)D (u,T",)
<D (u,u,)+(1=0b)[D (u,v,)+ (D (uv,))+ 5] (2.5)
It follows from (24) and the strictly increasing property of (¢ that

(D, (u,v,)) < (D, (u,z,)). Then, from (2.4), (2.5) becomes
D (u,w,) <b.D (u,u) + (1 —b)[D,(u,z,) + (D, (u,2,)) + B,)- (2.6)
By substituting (2.3) into (2.6), we have
D, (u,w,) < b[D (u.z,) + (D, (u,2,)) + B ]+ (1= b)[D (u2,) + (D, (u,2,)) + 5]
=D (u,2)+ (D, (uz,))+ 8, <D (uz)+7, (2.7)
This implies that « € @, and hence F C Q. Therefore, we conclude that 7 C 2

for alln € N".By the assumption F =, we obtain @ = @ Therefore, we find that

1

P? (z,) is well-defined.

n+1

Step 3. We show that {D (z,,z)},{z,} is bounded and lim D (z ) exists. Indeed, since

z, = Py (z,), by Proposition 1.9, we get D (y,z,)+ D (z,,2) < D (y.2,), Yy € Q. (2.8)

Let v € F. Since F CQ , we get u € 2 .By choosing y =« in (2.8), we obtain
D (u,z,)+ D (z,,2) < D (u,2). (2.9)
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This implies that D (z,,2,) < D (u,2)— D (u,z,) < D (u,2 ). Therefore, {D (z 2 )} is
bounded. Then, by Proposition 1.10(1), we conclude that the sequence {z } is bounded.
Furthermore, we have 2 =P/ (2)eQ, , cQ . Bychoosing y =z  in(2.8), we get

D (z,,,2)+D,(z,2)<D,(z,,2). This implies that D (z,z) < D,(z,,,,7). This proves that

n+l 1% n+1? n+1’?

{D,(z,,2)} is a nondecreasing sequence. By combining this with the boundedness of the

sequence {D (z,,z,)}, we conclude that the limit lim D (2,2, exits.

n—oo

Step 4. We show that limz =pecQ and lim ||z, —2, ||=0. Indeed, for m >n, we

n—oo

have z =P/ (z,)eQ cQ . Bychoosing y =z in(2.8), we get

D,z

m’

z,)+ D (2,2)<D(z,,2).
Thisimpliesthat 0 < D (2 .z, ) < D (2,.2) — D (z,,7,)- (2.10)

n? ™1

Taking the limit (2.10) as m,n — oo and using the existence of lim D (2 ,z), we get

n—odo

lim D (z

n,m—oo

) =0. (2.11)

By combining (2.11) with the boundedness of the sequence {z }, by Proposition 1.8,

we have lim ||z —z [[=0. (2.12)

n,m—o0

This proves that {z } is a Cauchy sequence in 2. Since X is a Banach space and ©

is a closed subset of X, there exists p € @ such that lim = = p. Moreover, by choosing

=n-+1in(2.11) and (2.12), we obtain lim D (2 (2,.,2,)=0 (2.13)
and lim ||z, , —z, [=0. (2.14)

Step 5. We show that p € F.Indeed, since =z =P/ (z)eQ  cQ ,wehave

Dg (Zn-H’ wn) S D (Zn-H’ ) + ’Y (215)
It follows from (2.9) and the boundedness of {D (z,,z)}that{D (u,z )} is bounded for any
u € F. Then, by using lim o, = lim B, =0, we find that lim y = 0. (2.16)

n—oo

Therefore, from (2.13), (2.15), and (2.16), we conclude that lim D (2

n—00 9

2w )=0. (2.17)
Let v € F. By (2.9) and the boundedness of {D (z ,z )}, we obtain that {D (u,z,)}
is bounded. By combining this with (2.7), we conclude that {D (u,w,)}is bounded.

Furthermore, by Proposition 1.15, we find that ¢* is bounded on bounded sets. Then V¢* is

1629



HCMUE Journal of Science Vol. 18, No. 9 (2021): 1620-1637

bounded on bounded sets. It follows from Proposition 1.10(2) that {w } is bounded. By

combining this with (2.17), from Proposition 1.8, we have lim ||z, —w, [|=0. (2.18)
It follows from (2.14) and (2.18) that lim ||z, —w [|=0. (2.19)
Since ¢ is uniformly Fréchet differentiable, ¢ is uniformly continuous. Then, from

(2.19) we get lim || g(z,) — g(w, ) ||= 0. (2.20)
Since ¢ is uniformly Fréchet differentiable, V¢ is uniformly continuous on bounded

subsets of X.Therefore, from (2.19), we have lim [[ Vg(z,) = Vg(w,) [|= 0. (2.21)

For any« € F, by using similar arguments as in the proofs of (2.3) and (2.4), we obtain
D (uu) <D (uz,)+a (D (uz))+ 6, (2.22)

and D (u,v,) < D (u,2,). (2.23)

By combining (2.22) with the boundedness of {D (u,z )}, we getthat {D (u,u )} is
bounded. By Proposition 1.10(2), we get that {«_} is bounded. It follows from (2.23) and
the boundedness of {D (u,z )} that {D (u,v,)}is bounded. Since {D (u,v,)} is bounded
and D (u,8"v,) <D (uv,)+a((Duv,)+ 06, we find that {D (u,8"v,)} is bounded.
Thus, from Proposition 1.10(2), we get that {S"v } is bounded. Since {u }, {S"v } are
bounded and Vg is bounded on bounded subsets of X, we conclude that {Vg(u )} and

{Vg(S™v )} are bounded. Put r=supmax{||Vg(u)l||Vg(S"v )|[}. Therefore,

neN’
Vyg(u ),Vg(S"v )e B ={uec X" :||u|[<e}. By Proposition 1.14, we find that g¢" is
uniformly convex on bounded subsets of X*. Therefore, by Lemma 1.16, we have
90, Vy(u,)+1-0,)Vg(5",))
<b,9" (Vylu,))+1=b,)g (Vg(S"v,)) =b,(1=0b)p.(|[ Vg(u,) = Vg(5"v,) []),
where p_is defined as in Definition 1.11. By using Remark 1.4.(1) and the definition of
V., we get
D (uw,) =D (u,Vg (bVg(u,)+1=0)Vy(5",))) =V (b Vg(u,)+1-b)Vy(S"v,))
= g(u) =, Vy(u,)+ 1 —=b)Vg(S"v,),u)+ g (b, Vy(u,) + (1 -b,)Vg(S"v,))
= g(u) = (0, Vg(u,)+1—-0)Vg(5"y,),u)
+b,9"(Vy(w,)) + 1= )g"(Vg(S"v,)) = b, =b)p_(I| Vg(u,) = Vg(S"v,) [])
= b,[g(w) = (Vg(u,),u) + g"(Vg(u, )]+ 1 =b,)[gw) = (Vg(S"v,), u) + " (Vg(5"v,))]
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=b,(1=0,)p.(I[ Vy(u,) = Vg(5"v,) |])
=b,V,(w,Vy(u,))+ 1A =b)V (4, Vg(5"v,)) =b,(1 =0 )p.(I| Vg(u,) = Vg(5"v,) |])

=bD (u,Vg (Vy(u,)))+(1—-b)D (v,Vg' (Vg(S"v,)))
=b,(1=b)p.(l| Va(u,) = Vg(S"v,) )

=bD (uwu )+ 1-=b,)D (u,5"v,)=b 1= )p.(I| Vg(u,) —Vg(5"v,) )
<D, (u,u,)+ (1—b)[D,(u,v,) +a,((D, (u,,)) + 5]

=b,(1=0)p.(I| Vg(u,) = Vg(S"v,) I])- (2.24)
Thus, by combining (2.23), (2.24) and the the strictly increasing property of ¢, we get

D (u,w,) <b D (uu)+(1—b)[D,(uz)+alD (uz))+ 6]
—b,(1=b,)p.(1| Vo(u,) = Va(5"v,) ) (2.25)

By (2.22) and (2.25), we get D, (u,w,) < D, (u,2,) +, —b,(1=b,)p.(|| Vg(u,) — Va(5"v,) )
This implies that b, (1— b )p_(|| Vg(u,) — Vg(S™0,)[|) < D, (u,2,) = D, (w,w,) +7,.  (2.26)

Furthermore, by the property of the function Dg, we have

|D,(u2,) = D,(uw,) |=| =Dz, w,) +(Vg(w,) ~ Vo(z,),u—2)|

<[ g(z,) = g(w) |+ Vol )| 2, —w, | +]]w—2, ||| Vo(w )= Vg(z)||.  (227)
Then from (2.19), (2.20), (2.21), and (2.27), we get lim | D (u,z,) = D (u,w,)|=0. (2.28)
By (2.16), (2.26), and (2.28) that lim b, (1, )p. (|| Vg(u,) — Vg(5"s,) |[) = 0. (2.29)
By (2.29) and liminf, (1-5,)>0,we have lim p (|| Vg(u,) = Vg(5",) I]) = 0. (2.30)
By combining (2.30) and the property of p_, we get llj?o || Vg(u, )—Vg(S™v, )||=0. (2.31)
It follows from the assumptions of ¢ and Proposition 1.15 that Vg¢* is uniformly
continuous on bounded subsets. Thus, by (2.31), we get lim || u, —S"v, [[= 0. (2.32)

Furthermore, by Vg = (Vg")"' and the definition of v , we obtain

Vy(u,)=Vg(Vg'(a,Vy(z,) +(1—a,)Vy(S"2,))) = a,Vy(z,)+(1-a,)Vg(S"z,). This
leads to || Vg(u,) ~ Vg(z,)||= (1-a,) || Va(S"z,) ~ Va(z,) . (2.33)
By lim e =1, the boundedness of {z }, (2.33), we get lim | Vg(u,) = Vg(z,) [|= 0. (2.34)

n— 00

Since V4" is uniformly continuous on bounded subsets, from (2.34), we have
lim [|u, —z [|=0. (2.35)

By combining (2.32) and (2.35), we obtain lim ||z —S"v ||=0. (2.36)
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It follows from (2.36) and lim 2 = p that lim S"v = p. Thus, by combining this with the

n—00 n—oo

asymptotically regular property of S and || S""v —p|[<[|S""v, — 8™ [|+]]S"v, —p]l,
we conclude that lim §"*'v = p.This leads to lim S(S"v ) = lim §""'v, = p. Since S is

closed, we conclude that Sp = p and hence p € F(9).

Next, we will prove that p € GMEP(f,,¢). Since v, = Res} _ (z,), we obtain

f(v,,0) + o) +{(v,),v—v,) +(Vg(v,) = Vg(z,),0—v,) 2 ¢(v,) forall ve . (2.37)
Then, from the condition (C,)and (2.37), we have

f,0,) < =f(0,,0) < (W(v,),0 = v,) +(Vglv,) = Vg(z, )0 =v,) + 0(0) = (v,).  (2:38)

Furthermore, since g and Vg are uniformly continuous on bounded subsets of X, by
(2:36), we get lim || g(z,) — 9(S"v,) ||= lim || Vo(z,) — Vg(S"v,)[|=0. (2.39)
We have | D (u.z,)~ D, (u,5"v,) |=| ~D(z,,5"v,) +(Vg(S"v,) ~ Vglz,),u~2,) |

<lg(z,) = 9(S"v ) [+ Vg(S"u ) || Il 2, = S™v, I+ [Ju—z,[|.[|Vg(S"v,) = Vg(z,) . (2.40)
By (2.36), (2.39) and (2.40), we get that lim | D (u,2,) = D (u,8"v,)|= 0. (2.41)
For we 7, by Lemmal.22and v = Res]  (z,),we find that

D (v,,2,) < D (u.2)~ D (uv,) <D (u,2,) D (u,5"0,) +a D (uv))+ 6. (242)

It follows from (2.41), (2.42) and lim a, = lim §, = 0that lim D (v,,z,) = 0. Since
{z,} is bounded, by Proposition 1.8, we have lim [[v, -z, ||= 0.Since Vg is uniformly
continuous on bounded subsets, we get lim || Vg(z,) = Vg(v,) ||= 0. Therefore, by using

(2.38), the lower semi-continuous property of ¢, the lower semi-continuous property in the
second variable of f and the continuous property of 5, we have

f(v, p) < {@(p),v = p) + () — &(p)
and hence f(v,p) + (¥(p), p —y) + ¢(p) — ¢(v) < 0 forall v € Q. (2.43)

For all ¢ €(0,1], put v, =tv+(1—t)p. Since v,p e and Q is convex, we have v, €
Thus, replacing v by v, in (2.43), we get f(v,,p)+ (¥(p),p — v,) + ¢(p) — ¢(v,) < 0. (2.44)

Then, by using the condition (C,),the convexity in the second variable of f, the
convexity of ¢ and (2.44), we have
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0= f(v,v) = f(v,0,) +{&(p),v, =) +e(v,) = ¢(v,)
< Uf(v,0) + (A=) [0, p) + L), v = v,) + AT =E)(p), p = v,) + tep(v) + (1 = t)p(p) = (v,)

tf (v, 0) +(W(p),v = v,) + @(v) = p(v,)]+ (1= )[f(v,, ) + {(p): p = v,) + ¢(p) = p(v,)]
tf(v,,0) + (W(p),y = v,) + (v) = (v,)].

This leads to f(v,,v) +(¥(p),v —v,) +¢(v) —(v,) >0 by ¢ e (0,1]. Letting ¢t — 0"

IN

and using the condition (C,),we have f(p,v)+ (¥(p),y — p) + ¢(v) — @(p) > 0. This proves
that p € GMEP(f,p,%). Therefore, p € F = F(S) N GMEP(f,p,1).
Step 6. We show that p = P/(z,).Indeed, since z ., = P; (z), by Proposition 1.9, we have

(Vg(z2)—Vy(z,,.)2,, —v=>0 forallve Q  .Let ue F.Since F CQ , weget uecQ

n+1? n+l"

By choosing v = u in the above inequality, we get (Vg(z)—Vy(z,.,),2,,, —u)> 0. Taking

n — 0o, Using lim z = p and the uniform continuous on bounded subsets of Vg4, we have

(Vy(z)—Vyg(p),p—u)>0 forall uw e F. By Proposition 1.9, we find that p = P!(z,). ]

Remark 2.2. (1) Theorem 2.1 is an extension of Alizadeh and Moradlou (2016), Theorem
3.1] from a generalized hybrid mapping in Hilbert spaces to a Bregman totally quasi-
asymptotically nonexpansive mapping, and from an equilibrium problem to a generalized
mixed equilibrium problem in reflexive Banach spaces.
(2) Since Theorem 3.1 by Alizadeh and Moradlou (2016) is an extension of Theorem 3.1 by
Tada and Takahashi (2007), Theorem 2.1 is also an extension of Theorem 3.1 by Tada and
Takahashi (2007),
(3) By Remark 1.8(2), we conclude that the conclusion of Theorem 2.1 holds when S is a
Bregman quasi-asymptotically nonexpansive mapping.

Finally, an example is given to illustrate the proposed iteration.
Example 2.3. Let X =R, Q=]0,0.9], g(z)=«" for all ze€R, and S(u)=1’,
o(u) = 10u°, P(u) = 2u, f(u,v) = —9u* + 4uv + 50° forall u,v € Q. Then

2
w

(1) By calculating, we get Vg(u) = 2u, ¢"(w) = R Vg (w) :% forall u,w e R.
(2) Forall w,v € R, we have D (u,v) = uw — v —2v(u —v) = (u—v).
(3) We have F(S) = {0}.Therefore, for w € F(S) and u € €2, we obtain
D (w,5"u) = (0—S"uf = (w)’" <u’ =D (0,u) =D, (wu).
This proves that S is a Bregman totally quasi-asymptotically nonexpansive mapping
with o = =0 forall n e N".
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(4) By directly checking, we find that f satisfies the conditions (C,)-(C,).
(5) We find the formula of w = Res]  (u) for u € X,w € Q asin (1.2). Indeed, w = Res]_ (u)
it f(w,v) + ¢(v) + (Y(w),v = w) +(Vg(w) = Vg(u),v — w) > p(w),v € Q. (2.45)
By substituting f,¢,, Vg into (2.45) and by directly calculating, we get

150 + (8w — 2u)v + 2uw — 23w” > 0.
Put n(v) = 159" + (8w — 2u)v + 2uw — 23w” for all v € Q. Then Aa(v) is a quadratic function
and A = (38w — 2u)’. We consider the following cases.

Case 1. A>0. Then the equation h(v) =0 has two solutions: v, = w € ) and

_ 22w 24 15 order to h(v) >0 forall v € ©, we have the following two cases:

Yy

= % > 0.9, hence u > 17.1.

Casell. v, =0.9 and v, <wv,. Thenw=1v =0.9, v, =

Case1.2. v, =0 and v, <v. Then w=wv =0 and v, =i—§< 0. This leads to u < 0.

Case 2. A <0. Then w:% and h(v) >0 for all veQ. Since w €, we have
0< % <09 and hence 0 <wu<17.1. Therefore, Res] (uv)=w=0 Iif u<0,

Res|  (u)=w= 2 if 0<u<17.1 and Res’ (u)=w=0.9 if u>17.1.
R 19 [

By the above, all assumptions in Theorem 2.1 are satisfied with the given functions
f.e, 4, T. Therefore, by Theorem 2.1, the sequence {z, } which is defined by (2.1) converges

t0 0 € F = F(S) N GMEP(f,¢,4). Next, by choosing ¢ =—"— 5 =""L forall n e,
n+2 o 3n+2
and z, = 0.5 € Q, we have P!(z,) = {0}. The sequence (2.1) becomes
u = i z + (z,)Q”,v _
n n + 2 n n + 2 n n 19 (2.46)
n+1 2n+1 o zZ +w
w = U + (,U ) ,2 " — n n
n 3n + 2 n 3n + 2 n n 2

The convergence of iteration (2.46) is presented by the following figure.
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Figure 1. The convergence of the sequence (2.46) to 0

3. Conclusion

In this paper, a hybrid iterative method is proposed for finding common elements of the
solution set of a generalized mixed equilibrium problem and the fixed point set of a Bregman
totally quasi-asymptotically nonexpansive mapping. After that, a strong convergence result for
the proposed iteration is proved in reflexive Banach spaces. This result is an improvement of
the main results in (Alizadeh & Moradlou, 2016) and (Tada & Takahashi, 2007) from a
generalized hybrid mapping, a nonexpansive mapping, and an equilibrium problem in Hilbert
spaces to a Bregman totally quasi-asymptotically nonexpansive mapping and a generalized
mixed equilibrium problem in reflexive Banach spaces. As an application, we obtain the
convergence result for a generalized mixed equilibrium problem and a Bregman quasi-
asymptotically nonexpansive mapping in reflexive Banach spaces. Moreover, we give a
numerical example to illustrate the proposed iterative method.
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SU HOQI TU MANH CUA DAY LAP LAI GHEP

CHO BAI TOAN CAN BANG HON HQOP TONG QUAT

VA ANH XA TUA TIEM CAN KHONG GIAN HOAN TOAN BREGMAN
TRONG KHONG GIAN BANACH
Nguyén Trung Hiéu
Khoa Su pham Toén — Tin, Truong Pai hoc Pong Thap, Viét Nam
TAc gia lién hé: Nguyén Trung Hiéu, Email: ngtrunghieu@dthu.edu.vn

Ngay nhdn bai: 20-6-2021; ngay nhdn bai swa: 20-8-2021; ngay duyér dang: 01-9-2021

TOM TAT

Muc dich ciia nghién cizu nay 1a két hop khodng cach Bregman vdi phurong phdp chiéu thu hep
dé gici thigu mot day lap lai ghép maéi cho bai toan can bang hon hop téng quét va anh xg tya tiém can
khéng gidn hoan toan Bregman. Sau dé, véi nhitng diéu kién thich hop, chiing tdi chiing minh rang day
ldp dwoc dé xudt héi tu manh dén hinh chiéu Bregman cuia diém xudt phat 1&n giao cia tdp nghiém bai
toan can bang hon hop téng quéat va tdp diém bat dong cua &nh xa tua tiém cdn khong gidn hoan toan
Bregman trong khong gian Banach phan xa. Pinh Ii ndy cai tién két qua trong (Alizadeh & Moradlou,
2016) tir 4nh xg lai ghép tong quat va bai toan can bang trong khong gian Hilbert sang anh xg tya
tiém cdn khodng gidn hoan toan Bregman va bai todn can bang hon hop téng quét trong khong gian
Banach phan xa. Két qud diroc dp dung cho bai toan can bang hon hop tong quét va &nh xg tia tiém
can khdng gidn Bregman trong khong gian Banach phan xa. Bong thoi, mét vi du duoc diea ra dé minh
hoa cho day ldp duroc dé xudt.

Tir khoa: anh xa tua tiém can khong gidn hoan toan Bregman; bai toan can bang hdn hop
tdng quat; day lap lai ghép; khong gian Banach phan xa
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