'—’—g = TRUONG DAl HOC SU PHAM TP HO CHIi MINH HO CHI MINH CITY UNIVERSITY OF EDUCATION
.SF.] TAP CHi KHOA HQC JOURNAL OF SCIENCE
ISSN: KHOA HOC TU NHIEN VA CONG NGHE NATURAL SCIENCES AND TECHNOLOGY

1859-3100 Tép 14, S0 12 (2017): 66-79 Vol. 14, No. 12 (2017): 66-79

Email: tapchikhoahoc@hcmue.edu.vn; Website: http://tckh.hcmue.edu.vn

A FRAMEWORK FOR GENERATING GRAPHIC USER

INTERFACE SOURCE CODE FROM UML CLASS DIAGRAM

Tran Anh Thi", Vu Thanh Nguyen

Faculty of Software Engineering, University of Information Technology, Vietnam,
Received: 10/10/2017; Revised: 09/11/2017; Accepted: 04/12/2017

ABSTRACT

Producing source code that implements the GUI takes a great deal of effort in software
development, especially for interactive software systems. This work load, generally considered
tedious and burdensome, is inadequately automated given the richness of conceptual design and
behavior models generated in earlier stages of the development process. A few frameworks have
been proposed for generating GUI code based on formal specification or code annotation,
requiring extra work to be done in addition to conceptually designing the software system in
question. We propose a mechanism that generates GUI code from UML class diagrams expressed
in XMI. Our approach takes into account the associations between design concepts and their
composition hierarchy that is explicitly expressed in the UML language.

Keywords: code generate, software abstraction, UML, XMI, graphic user interface.
TOM TAT

Mgt cong cu phét sinh mé giao dién nguwoi dung tee luge dé op trong UML

Xay dung ma nguon giao dién cho nguoi dimg dwoc xem 1a mét cong viéc ton kém cho nhiing
nha phaét trién phan mém, dgac biét 1a nhing phan mém c6 do twong tdc cao. Nhitng cong viéc nay
thuong té nhat, ton kém thoi gian va trang ldp. Pdy ciing 1a cdng Viéc khé khan trong giai doan dau
cia thiét ké phan mém khi cac yéu cau ciing nhir cic mé hinh ¢ mirc khéi niém con chua 0 rang.
Hién nay ciing cé mét sé cong cu dia ra hirong phét sinh ma giao dién ti dong tir cdc dac ta ciing
nhuwe nhitng cha thich tir md hinh. Hudng nay ddi héi phai xi |i nhiéu thong tin thém vao cho mé hinh
ddc ta ma né nam ngoai khéi niém thiét ké hé thang phan mém. Chiing téi dé xuat mét hwomg tiép cdn
phét sinh ma giao dién nguoi ding tir md hinh 16p trong UML thong qua XMI. Cach tiép cdn nay,
chling tdi dua vao céc tinh chat ciia mai quan giiza cac khai niém trong thiét ké va hé thang phan cdp
rd rang trong UML nham cung cdp thém thdng tin cho bai ton phét sinh mé giao dién.

Tir khéa: phét sinh mé, triu twong héa phin mém, ngdn ngir MO hinh héa théng nhat
(UML), XM, giao dién nguoi dung.

1. Introduction

Software engineering has long been related to tools, theo- ries, and methods. It
connected together for cost-effective software development [1]. However, connecting
theories and tools for developing software simply do not exist. The consensus in this
regard is that software engineers should explicitly consider the domain of the software
system to be built. A domain is characterized by the business processes being automated or

* Email: thitta.10@grad.uit.edu.vn

66

TAP CHi KHOA HOC - Trwérng PHSP TPHCM Tran Anh Thi etal.

the real world problem being addressed by a software program. Having a good
understanding of software domains is essential for the success of any software
development project [2]. Narrowing down the software domain will open the door for
tailored methods and tools that enable a few activities in the development process to be
automated. Consequently, it will effectively cut down the developmet cost and time. This
is the rationale behind domain-specific modeling. There are many domains in software
engineering such as mobile applications [3], robot applications [4], web applications [5],
etc. In the desktop application based domain, the challenge is to combine the graphic user
interface with the objects in conceptual model (UML class, entity relationship, etc,.). This
means code generation in a desktop application from a model is a real challenge in the
future.

Unfortunately, not much effort has been put in building framework for desktop
applications from conceptual model. Our research in this direction has initially come to the
idea of combining constraint and the UML (Unified Modeling Language) class in
application as a domain-specific modeling framework for desktop applications. Producing
source code that implements the GUI (Graphics User Interface) takes a great deal of effort
in software development, especially for interactive software systems. This work load,
generally considered tedious and burdensome, is inadequately automated given the
richness of conceptual design and behavior models generated in earlier stages of the
development process. A few frameworks have been proposed for generating GUI code
based on formal specification or code annotation, requiring extra work to be done in
addition to conceptually designing the software system in question. We propose a
mechanism that generates GUI code from UML class diagrams expressed in XMI (XML
Metadata Interchange). Our approach takes into account the associations between design
concepts and their composition hierarchy that is explicitly expressed in the UML language.

The remainder of this paper is organized as follows. Section Il gives the
preliminaries of our work. Section 111 presents our research motivation and formulates our
research problems. Section IV is the core of our paper — a framework that explicitly
addresses the research problems identified. Section V reports experiments conducted on our
framework. Section VI surveys related work. Section VII draws some concluding remarks
and points out the future work.

2. Background
2.1. The Model Driven Architecture

The Model Driven Architecture (MDA) is a framework for software development
defined by the Object Management Group (OMG). Key to MDA is the importance of
models in the software development process. Within MDA the software development

67

TAP CHi KHOA HOC - Trwdng DHSP TPHCM Tdp 14, S6 12 (2017): 66-79

process is driven by the activity of modeling your software system [6]. The MDA
development life cycle is not very different from the traditional life cycle. The artifacts of
the MDA are formal models, i.e., models that can be understood by computers. The
following three models are at the core of the MDA: Platform Independent Model (P1M), a
model with a high level of abstraction that is independent of any implementation
technology; Platform Specific Model (PSM), a model tailored to specify your system in
terms of the implementation constructs that are available in one specific implementation
technology. A PIM is transformed into one or more PSMs; Code, a description
(specification) of the system in source code. Each PSM is transformed into code.

2.2. UML

The Unified Modeling Language® provides a variety of diagram type for integrated
specification of both the structure and the behavior of system [7]. Currently, there are
many tool to support development of software. It often do not only support the analysis and
design of system, but also contain code generator to automatically. Basing XMI on the
XML metalanguage by W3C.XMI (XML Metadata Interchange) intends to provide a
standard way for users to exchange any kind of metadata that can be expressed using the
MOF (Meta-Object Facility) specification by the Object Manage- ment Group (OMG) [8].
It integrates three industry standards: MOF (OMG), UML (OMG), and XML (W3C) [7].

2.3. XML and XMl

XML (eXtensible Markup Language) was envisages as a language for defining
document formats for the Web as HTML [9]. XMI defines four elements (we refer to them
as differential elements) used to support differential description of UML models:
XMl.difference is the parent element used to describe differences from the base (initial)
model; it may contain zero or more differences, expressed through the ele- ments
XMl.difference, XMl.delete, XMl.add and XMl.replace. XMl.delete represents a deletion
from the base model, XMl.add represents an addition to the base model and XMl.replace
represents a replacement of a model construct with another model construct in a base
model [10].

XMI document that represents the actual UML specification of this model. Each
component change has a XMI-change document that specifies how a model version was
constructed from the predecessor schema. As introduced before not only the UML models
will be specified according to the XMI standard, but also model changes [11].

* http://www.uml.org

68

TAP CHi KHOA HOC - Trwérng PHSP TPHCM Tran Anh Thi etal.

3. Motivation and research problems
3.1. Example

In this subsection, we briefly describe an example in which a developer needs to
build a shopping application. Figure 1 is a UML class diagram for the conceptual design of
this software management timetable in shopping manager. There are many classes,
cardinality and relationships between of them. The Customer class is presented the
customer and product is presented the product in shopping etc,. In this UML class diagram,
there are some classes and relationship of every class. The Customer class corresponds to
the customer in shopping. The Order class corresponds to the customer’s order in
shopping, etc. These classes in this diagram have many type relationships. For example,
the Account class have aggregation relationship with the Order class. There are also many
other relationships such as: Association, multiplicity, aggregation, composition,
inheritance, generalization. In every class, there are many attributes. For example, in
Customer class has custome id, phone, address, email, node attributes. We want to build a
shopping application by this UML class diagram.

This application has some functions. It helps employees to make order, to find a
product or to do something for reporting, progress and backup database. It must have a
friendly interface running on the desktop. In addition, defining rules for mapping data
types of class attributes to elements in the Java GUI is also a challenge. How to generate
source code automatically for graphic user interface in this application?

3.2. Research Problems

The gap from such a high-level description of a shopping application given in
Subsection 111-A to concrete source code (e.g., in Java) poses a few research questions as
follows.

* Leveraging a conceptual design to generate GUI widgets that correspond to all
attributes declared for UML class diagram.

» Making GUI tables based on the multiplicity of the UML classes diagram specified in
the conceptual design.

 Dealing with the hierarchy of the UML composition and the isomorphism of UML
generalization in the conceptual design.

69

TAP CHi KHOA HQC - Trwong DHSP TPHCM Tap 14, Sé 12 (2017): 66-79

] Address + address 1] Customer = Account
L - streetAddress: string [1] T eustoe] EL - customer_id: String (1] €4 - id: String (1]
€2 - city: String [1] |1 customer_address | E& = phone: String [1] E - bill_address: Address []
ur- - state: String [1] [- address: Address (1 €L - is_close: EBoolean [1]
: - zipcode: ELong [1] E2 - email: String (1] + customer acc_Customer L - open: EDate (1
B) 2 - Note: String [1] —_— J €2 - close: EDate [1]
1
customer + account }
+ account
account_payment
Used_customer
Account_Orde
ser
= - |+ payment +order
«Enumeration» & User & Payment] order
(€] UserState €4 - login_id: String 1] €L - payment_id: String (1 = - -
= new £ - password: String [1]| | €L - paid: EDate [1 +oraeltE Z:gz:':a(?r?&[é i
= Active ListUserState %o - state: Userstate [1] L - total: EDouble [1 + payment s ship e .EDa(e i
= — L - ils: Stri ., Order_ t Ea = ! 5
f=\Blocked [Lusesstate ruser e U e i - shipAddress: Address (1
SR i €i - status: OrderStatus [1]
€2 - total: EDouble (1
.....
Uer fCart +order [
£ Lineltem y—torde
- o‘sho‘ppmg(ml 2 - quantity: EInt [l] + lineitem order_Lineltem
£ ShoppingCart |, shoppingcar |22, - price: EDouble [1
€2 - Craeted: ED.. Loy ke
Cart_Lineltem
0.1 + lineitpm
+ orderstatus
lineitem «Enumeration»
[OrderStatus
product_Lineltpm = New
+ produc
= Hold
& Product = Shipped
2 - product_id: String [1] = Delived
2 - product_name: String [1]] = Closed
i - supplier: String [1]

£ - dicription: String (1]

Aﬁ

[1
= Electronics £ Book
€L - WaterProofRating: EBoolean [1] €2 - Title: String [1]
EZ - Author: String [1]

Fig. 1. UML class diagram for shopping application

4. Framework

In this section, we concretely present a proposed a framework with regards to
software abstraction (Subsection IV-A), code generation and handling the dynamics of
objects manipulated by shopping applications corresponding to the class diagram in the
software abstraction (Subsection 1V-B). Regarding the shopping application system
depicted in Figure 2, there are many frames including single class, aggregation class,
association class.
4.1. Software Abstraction

One of the pillars of a domain-specific framework is to raise the level of abstraction
in making software specification. As we narrow down the domain (of software) to UML
class diagram, we are able to employ a high-level declarative language such as the graphic.
The classes are the objects in the shopping applications. The Figure 2 is progress in our
proposed framework that is described in Figure 3. Our framework has 4 steps to generate
source code from UML class diagram.

70

TAP CHi KHOA HOC - Trwérng PHSP TPHCM Tran Anh Thi etal.

Software spec /
in UML i
(Class in UML)

Software
abstraction

Code Generation N
Generate GUI

5 4
— Export Xmi XMI Parse v
I Optional
Papyrus Plugm‘ Rule Engine [LEBEEES | [Optional]

(Code Java)
+ class frameUser.java
+ class frameCustomer.java/ /

UML tool

Fig. 2. Our framework supports code generation
of the graphics user interface from UML class diagram
% Step 1: Creating a UML class diagram and defining attributes. This step, the
software developers will design the class diagram for applications by any tool.

s Step 2: Mapping UML to XMI. By default, XMl is generated automatically for
modeled classes. This step, we used Papyrus plug-in to parse the class UML.

+ Step 3: Defining context. Show all objects which pro- gramer selects the object for
the conceptual design. Algorithm 1 presents the main idea of this step. This algorithm
parser the XMI document to list of classes, list of data- types, list of enumerations and list
of associations. Result of Algorithm 1 is to built a structure of the application. The

HCodeStruct at line 6 corresponds to the structure of the application.

R/

% Step 4: Generating GUI source code. Algorithm 2 present the main idea of this step.
This algorithm generates source code for the GUI in Java from structure of the application
above and list of templates. In this step, the rule in Table | and Table 11 will be the basis for
mapping attributes, relationships in UML class diagram with GUI in Java
4.2. Generating Source Code for Graphic User Interface

We also developed a simple tool that allows a software developer can generate code
java for GUI widgets by class diagram [12]. They are declared class diagram by UML tool.
Then, the engine will check classes and relation between classes, converted into XMI. In
step 4, when the software developer has it taken steps in our framework, the program will
automatically generate source code for the application. In which the structure of the
application will be divided into a packages. View package will focus on the part of the
graphic user interface, the package control will focus on the control handle and package
model rule would specify the character in the application.
4.3. Attribute

The UML classes show the structural and behavioral fea- tures in the object oriented
Model. These features include attributes, association, generation [7]. On the other hand,
each attribute in a class diagram that contains information mapping to GUI. Thus, mapping

71

TAP CHi KHOA HOC - Trwdng DHSP TPHCM Tap 14, Sé 12 (2017): 66-79

UML classes to Graphic User Interface are quite straightforward. In general, the UML
attribute name is directly used as the GUI component name in the mapping process.
However, class attributes in UML will have data types. In Table I, we built a rule that
allowed us to map data types from UML to XMI, and then to the GUI component in Java.

Transformation Model

First Transformation
UML_to_XMI

second Transformation
XMI_to_GUI

Fig. 3. Transformation from UML class diagram to presenta- tion model in MDA

4.4. Multiplicity
The problem is solving polymorphism. We take care of relationship of the UML

class diagram generation. The GUI elements generated depends on attributes and
demonstrate the relationship between classes. When programmer changes profile map
layers, the GUI generating code section in the paper. This solution will update the GUI.
Input parameters for the parser is the node iterator documentation of XMI. It is generated
by using the class diagram papyrus tools. Element is a list of self-definition layer elements
in XMI [13]. The build data structures to store information material was analyzed from
XML.

s A list of classes parsed from the XMI. Each class has a list of attributes and
optionally methods.

% A list of UML relationships, which could be UML association or generalization.
Each relationship links a pair of classes.

+« A list of enumerations, each of which defines the data type for some attributes
declared above.

72

TAP CHi KHOA HOC - Trwérng PHSP TPHCM Tran Anh Thi etal.

Table 1. Mapping Uml Class Diagram to Swing in Java for The Attributes

UML Type Java Type Java Swing Object

EDate Java.util.Date JTextField
EByte, EShort, Elnt Interger JTextField
ELong Long JTextField
EFloat Float JTextField
EDouble Double JTextField

EBoolean Boolean JRadioButton
String String JTextField

Object Reference Reference Type JCombobox

Algorithm 1: Parsing the XMI document to hist of data-types, list of classes, list of enumerations and list of associations.
Input : UML File, XML Type type
Output: Hepg.5ru0: the HashTable is defined by M,

1 Lx METypeElement — X MIParsing(XML File);

2 foreach ¢ = type do

3 Miype m + X MIParsing.parseType(L x MLTypeElemnent, 1)

4 Mrpype +— Mrpyp U m;

s end

6 Heoodestruer +— HashTable(keys, Mryp:): b keys = {Enum, DataType, Class, Association}

7 return Heodestruct:

Algorithm 2: Generate source code for the GUI in Java from list of classes, list of enumerations, list of associations and

list of templates.

Input : HeoodeSirue: that s a list of data-type. classes. enumerations and associations from XMI document
LTemplateSingie. LTemplateDetait those are the list of templates of graphic user interface defined
Qutput: Lpanerjave that 1s a list of classes for graphic user mterface in Java
1 foreach h € Hepge 5000 A0

2 switch h.getkey() do
3 case Enumeration do

4 foreach e < h do

5 | generatedCodeSupport(e);

[end

7 end

8 case DataTvpe do

9 foreach e = h do

10 generatedCodeSupport(e);

11 end

12 end

13 case Class do

14 foreach e c h do

15 | L'J)GJIG.EJU{'U = L‘Prlf:c:me'a (W] gcnerﬂ[edcodeGUI(L'T(.lnp!u.‘c.‘v‘l’ng.‘f LEN
16 end

17 end

18 case Association do

10 foreach e = h do

] | LPallc.L'..l’rJz'rJ ~ LPrmciJal;a U genemledcc'deGU“LTf-m,n.'u:\ Details €);
21 end

2 end

pi! end

24 end

25 return E‘.I"mir:f.:'cu'-z:.

73

TAP CHi KHOA HOC - Trwdng DHSP TPHCM Tdp 14,56 12 (2017): 66-79

In Table 2, we built a rule that allowed us to map relationships from UML to XMl,
and then to the GUI component in Java. Every UML object responds to class in Java and
object in Java Swing package.

Table 2. Mapping UML class diagram to Swing in Java for the associations

UMLODbject Java Code Java Swing Object
Enumeration JEnum JCombobox
DataType Support class JCombobox
Class Support class Detail Panel
Association Multicipiliti 1..* Support class JTree[1]-DetailPanel[*]

5. Experiments

In this section, we report measurement we conducted for the application of our
framework to two different applications. The first application is the running example
described in Subsection I11-A. Table Il summarizes the UML class diagram for the
specification and Java code generated by our code generation techniques for the
implementation of the application. The sec- ond application is an application management.
The Figure 5 is the UML class diagram of this application. There are 5 classes and one
interface. This application supports the management of employees in a company.
Employees are classified into categories such as: Volunteers, executives and hourly. Each
employee has common attributes and unique attributes. In the UML class diagram, there
are some relationships between the classes, such as: Inheritance, generalization, realization.

Table 3. Measurements conducted on the application of the code generation in our
framework to 2 separate case-studies. As for the software abstraction, we report the
number of class, association and inheritance of UML class diagram. As for Java source
code generated, we report the number of Java classes, number of associations and
inheritances captured in Java code and of course the number of Java line of code for each

application.
UML
Short Java
class - Visualization #Classes #Relationships #JFrames
. description LOC
diagram
The
Figure 1 Shopping Figure 4 13 14 9 1,605
Application
The
Figure 5 Management Figure 6 6 5 4 595
Application

74

TAP CHi KHOA HOC - Trwérng PHSP TPHCM Tran Anh Thi etal.

[BON) <<project name >>
Entities JESNJEENILGH

Show FrameProduct_Lineltem
Show FrameShoppingCart_Lineltem
Show FrameAccount_Payment
Show FrameOrder_Payment

Show FrameOrder_Lineltem

FrameProduct_Lineltem
Product Lineltem details

list quantity:

price:
Add Delete

quantity price

Fig. 4. The GUI of shopping application
is generated from our framework with UML class diagram

L] staffMember

e Interface
i # name: String (1] @‘: Displayl:lfo
3 # address: String (1) _ _ _________ oS

3 # phone: String (1]
& + getinfo(): String

48 + toString0: String
@ +pay0: double

Ar
| |

] Volunteer D employee
53 # socialSecurityNumber: String [1]
& + pay(: doubl 3 # payRate: double [1

3 # note: String [1]

& + toString(): String
& + pay(: String

Ar

£ Executive £ Hourly
% - bonus: double [1 €4 - hourWorked: int (1
@ + awardBonus(in excecBonus: double): doub]| & + pay0: doubl
& + pay(: doubl

75

TAP CHi KHOA HQC - Trwong DHSP TPHCM Tdp 14, S6 12 (2017): 66-79

(XX <<project name >>

Fig. 6. The GUI of management application is generated
from our framework with UML class diagram

6. Related work
6.1. MIDAS framework

MIDAS is a methodological framework for the agile devel- opment of WIS, which
proposes a Model Driven Architecture based on the MDA approach. MIDAS proposes to
model the WIS according to two orthogonal dimensions. On the one hand, taking into
account the platform dependence degree (based on the MDA approach), two group of
activities are considered: to specify the whole system by Computation Independent Models
(CIMs), Platform Independent Models (PIMs) and Platform Specific Models (PSMs); and
to specify the mapping rules between these models. On the other hand, MIDAS considers
the modeling of the WIS according to three basic aspects: hypertext, content and behavior.
Besides, MIDAS suggests using the Unified Model Language as unique notation to model
both PIMs and PSMs [14]

6.2. UML and OCL

The Unified Modeling Language is popular specification. It allows to design structure,
behavior, data structures and business processes model [8]. UML also uses diagrams to
describe the models. A UML diagram does not provide con- straints between objects in
models. However, every element has some constraints between of them. Those constraints
must be declared by another language. That is The Object Constraint Language (OCL).
The OCL is the constraint lan- guage of UML. It is a precise, declarative language that is
simple to understand for people who are not mathematicians or computer scientists. It does
not use mathematical operators, but maintains mathematical rigor in its definition [15]. The
graphical notation of UML has no equivalent in textual style. Therefore, only with OCL is
possible to specify additional constraints of the model in text. OCL can be used to specify

76

TAP CHi KHOA HOC - Trwérng PHSP TPHCM Tran Anh Thi etal.

restrictions such as invariants, preconditions, post-conditions, among others. OCL is often
referred as a “side-effects-free” language since the state of the system does not change due
to an OCL expression.

6.3. Eclipse Modeling Framework

In the world of model-driven software development the Eclipse Modeling
Framework (EMF) [16] is becoming a key reference. It is a framework for describing class
models and generating Java code which supports to create, modify, store, and load
instances of the model. Moreover, it provides gener- ators to support the editing of EMF
models. EMF unifies three important technologies: Java, XML, and UML. Regardless of
which one is used to define a model, an EMF model can be considered as the common
representation that subsumes the others. For example, defining a transformation approach
for EMF, it will become also applicable to the other technologies.

However, EMF have limited usability for code generated due to the following
reasons: Limited capacities in construc- tion of visual representations of language
concepts; Complex integration of different meta-models (DSLs); Lack of flexibil- ity in
model transformations to an suitable target language; and Unsuitability for a specification
of a larger amount of model variations [17].

7. Conclusions and future work

Software abstraction is welcome in the early phases of software engineering where
model-based representations are to be shared by stakeholders whose interests differ
substantially. In this paper, investigate how to make software abstraction tak- ing the
viewpoints of requirements engineering and software design combined. We narrow down
the scope of our work to desktop application. We presented how UML can be used as a
domain modeling language. Our choice of UML class diagram as a model for software
abstraction was justified in its ability to: (i) conceptually and declaratively specify class
rules and application concepts and (ii) turn the formal representation of class rules into
computer-interpretable models, which opens the door for further automation in the later
phases of software development. In our paper, we have designed and implemented two
algorithms (Algorithm 1, Algorithm 2) to mapping UML class diagram to components in
Swing package of Java.

As for the future work, we consider the following research directions. First, we will
to expand the scope of desktop applications (e.g., generate database) for making software
abstraction. Second, we leverage the underlying engine of rule in generating source code
for the implementation of the desktop applications. Third, we will develop mechanisms for
monitoring the data structure of an application against its class rules.

77

TAP CHi KHOA HOC - Trwdng DHSP TPHCM Tdp 14,56 12 (2017): 66-79

[1]
[2]
[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

+ Conflict of Interest: Authors have no conflict of interest to declare.

REFERENCES
I. Sommerville, Software Engineering. 10th Ed. New York: Pearson, April 2015.
M. Fowler, Domain-Specific Languages. Pearson Education, 2010.

D. Kramer, T. Clark, and S. Oussena, “MobDSL: A Domain Specific Language for multiple
mobile platform deployment,” in Proceeding of the 2010 IEEE International Conference on
Networked Embedded Systems for Enterprise Applications. Suzhou, China, IEEE Computer
Society, November 2010, pp. 1-7.

A. Nordmann, A. Tuleu, and S. Wrede, “A Domain-Specific Language and Simulation
Architecture for the Oncilla Robot,” in Proceedings of the ICRA 2013 Workshop on
Developments of Simulation Tools for Robotics & Biomechanic. Karlsruhe, Germany: IEEE
Computer Society, May 2013, pp. 25-26.

A. Charland And B. Leroux, “Mobile Application Development: Web vs. Native,”
Communications Of The ACM, Vol. 54, No. 5, pp. 49-53, 2011.

W. B. A. Kleppe, J. Warmer, Mda Explained: The Model Driven Architecture: Practice
And Promise. Boston, USA, Addsion Walley, 2003.

A. Bruckerandj. Doser, “Metamodel-Based UML notations for Domain-Specific
Languages,” vol. 2, Zurich, Switzerland, 2007, pp. 25-26.

D. Jackson, “A comparison of Object Modelling Notations: Alloy, UML and Z,” MIT, Tech.
Rep., August 1999.

E. Visser, “WebDSL: A case study in domain-specific language engineering,” Springer
Berlin Heidelberg, vol. 2, 2008.

J. Kovse and T. Harder, “Generic XMI-based UML model transformations,” Object-
Oriented Information Systems, pp. 183-190, 2002.

F. Keienburg and A. Rausch, “Using XML/XMI for tool supported evolution of UML
models,” in Proceedings of the 34th Annual Hawaii International Conference on System
Sciences. Hawaii, IEEE Computer Society, pp. 10—pp, 2001.

C. Atkinson and T. Khne., “Concepts for comparing modeling tool architectures,” Springer
Berlin Heidelberg, 2005.

R. Gronback, “Eclipse modeling project: a Domain-Specific Language (DSL) toolkit,”
Addsion Walley, vol. 20, 2009.

78

TAP CHi KHOA HOC - Trwérng PHSP TPHCM Tran Anh Thi etal.

[14] J. Vara, V. DeCastro and E.Marcos,“WSDL automatic generation from UML models in a
MDA framework,” in Proceedings of the International Conference on Next Generation Web
Services Practices, 2005, Seoul, South Korea, IEEE Computer Society, 2005, pp. 6—pp.

[15] D. Jackson, “Software Abstractions: logic, language, and analysis,” MIT press, vol. 2, 2012,

[16] E. Biermann, K. Ehrig, C. Ko'hler, G. Kuhns, G.Taentzer and E. Weiss, “Graphical
definition of in-place transformations in the Eclipse modeling framework,” in Proceedings of
the 9th IEEE/ACM International Conference on Model, vol. 4199 of Lecture Notes in
Computer Science. Springer, 2006, pp. 425-439.

[17] V. Djukic’, I. Lukovic’, A. Popovic', and V. Dimitrieski, “Domain- Specific Modeling Tools
as Client Applications Providing the Production of Documents,” in Proceedings of the
Industrial Track of Software Language Engineering workshop. Dresden, Germany: Springer,
2012, pp. 6-pp

79

