

TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH

TẠP CHÍ KHOA HỌC
HO CHI MINH CITY UNIVERSITY OF EDUCATION

JOURNAL OF SCIENCE
ISSN:

1859-3100
KHOA HỌC TỰ NHIÊN VÀ CÔNG NGHỆ
Tập 14, Số 12 (2017): 66-79

NATURAL SCIENCES AND TECHNOLOGY
Vol. 14, No. 12 (2017): 66-79

 Email: tapchikhoahoc@hcmue.edu.vn; Website: http://tckh.hcmue.edu.vn

66

A FRAMEWORK FOR GENERATING GRAPHIC USER

INTERFACE SOURCE CODE FROM UML CLASS DIAGRAM
Tran Anh Thi*, Vu Thanh Nguyen

Faculty of Software Engineering, University of Information Technology, Vietnam,
Received: 10/10/2017; Revised: 09/11/2017; Accepted: 04/12/2017

ABSTRACT
Producing source code that implements the GUI takes a great deal of effort in software

development, especially for interactive software systems. This work load, generally considered
tedious and burdensome, is inadequately automated given the richness of conceptual design and
behavior models generated in earlier stages of the development process. A few frameworks have
been proposed for generating GUI code based on formal specification or code annotation,
requiring extra work to be done in addition to conceptually designing the software system in
question. We propose a mechanism that generates GUI code from UML class diagrams expressed
in XMI. Our approach takes into account the associations between design concepts and their
composition hierarchy that is explicitly expressed in the UML language.

Keywords: code generate, software abstraction, UML, XMI, graphic user interface.
TÓM TẮT

Một công cụ phát sinh mã giao diện người dùng từ lược đồ lớp trong UML
 Xây dựng mã nguồn giao diện cho người dùng được xem là một công việc tốn kém cho những
nhà phát triển phần mềm, đặc biệt là những phần mềm có độ tương tác cao. Những công việc này
thường tẻ nhạt, tốn kém thời gian và trùng lắp. Đây cũng là công việc khó khăn trong giai đoạn đầu
của thiết kế phần mềm khi các yêu cầu cũng như các mô hình ở mức khái niệm còn chưa rõ ràng.
Hiện nay cũng có một số công cụ đưa ra hướng phát sinh mã giao diện tự động từ các đặc tả cũng
như những chú thích từ mô hình. Hướng này đòi hỏi phải xứ lí nhiều thông tin thêm vào cho mô hình
đặc tả mà nó nằm ngoài khái niệm thiết kế hệ thống phần mềm. Chúng tôi đề xuất một hướng tiếp cận
phát sinh mã giao diện người dùng từ mô hình lớp trong UML thông qua XMI. Cách tiếp cận này,
chúng tôi dựa vào các tính chất của mối quan giữa các khái niệm trong thiết kế và hệ thống phân cấp
rõ ràng trong UML nhằm cung cấp thêm thông tin cho bài toán phát sinh mã giao diện.

Từ khóa: phát sinh mã, trừu tượng hóa phần mềm, ngôn ngữ Mô hình hóa thống nhất
(UML), XMI, giao diện người dùng.

1. Introduction

Software engineering has long been related to tools, theo- ries, and methods. It
connected together for cost-effective software development [1]. However, connecting
theories and tools for developing software simply do not exist. The consensus in this
regard is that software engineers should explicitly consider the domain of the software
system to be built. A domain is characterized by the business processes being automated or

* Email: thitta.10@grad.uit.edu.vn

TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tran Anh Thi et al.

67

the real world problem being addressed by a software program. Having a good
understanding of software domains is essential for the success of any software
development project [2]. Narrowing down the software domain will open the door for
tailored methods and tools that enable a few activities in the development process to be
automated. Consequently, it will effectively cut down the developmet cost and time. This
is the rationale behind domain-specific modeling. There are many domains in software
engineering such as mobile applications [3], robot applications [4], web applications [5],
etc. In the desktop application based domain, the challenge is to combine the graphic user
interface with the objects in conceptual model (UML class, entity relationship, etc,.). This
means code generation in a desktop application from a model is a real challenge in the
future.

Unfortunately, not much effort has been put in building framework for desktop
applications from conceptual model. Our research in this direction has initially come to the
idea of combining constraint and the UML (Unified Modeling Language) class in
application as a domain-specific modeling framework for desktop applications. Producing
source code that implements the GUI (Graphics User Interface) takes a great deal of effort
in software development, especially for interactive software systems. This work load,
generally considered tedious and burdensome, is inadequately automated given the
richness of conceptual design and behavior models generated in earlier stages of the
development process. A few frameworks have been proposed for generating GUI code
based on formal specification or code annotation, requiring extra work to be done in
addition to conceptually designing the software system in question. We propose a
mechanism that generates GUI code from UML class diagrams expressed in XMI (XML
Metadata Interchange). Our approach takes into account the associations between design
concepts and their composition hierarchy that is explicitly expressed in the UML language.

The remainder of this paper is organized as follows. Section II gives the
preliminaries of our work. Section III presents our research motivation and formulates our
research problems. Section IV is the core of our paper – a framework that explicitly
addresses the research problems identified. Section V reports experiments conducted on our
framework. Section VI surveys related work. Section VII draws some concluding remarks
and points out the future work.

2. Background

2.1. The Model Driven Architecture

The Model Driven Architecture (MDA) is a framework for software development
defined by the Object Management Group (OMG). Key to MDA is the importance of
models in the software development process. Within MDA the software development

TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tập 14, Số 12 (2017): 66-79

68

process is driven by the activity of modeling your software system [6]. The MDA
development life cycle is not very different from the traditional life cycle. The artifacts of
the MDA are formal models, i.e., models that can be understood by computers. The
following three models are at the core of the MDA: Platform Independent Model (PIM), a
model with a high level of abstraction that is independent of any implementation
technology; Platform Specific Model (PSM), a model tailored to specify your system in
terms of the implementation constructs that are available in one specific implementation
technology. A PIM is transformed into one or more PSMs; Code, a description
(specification) of the system in source code. Each PSM is transformed into code.

2.2. UML

The Unified Modeling Language1 provides a variety of diagram type for integrated
specification of both the structure and the behavior of system [7]. Currently, there are
many tool to support development of software. It often do not only support the analysis and
design of system, but also contain code generator to automatically. Basing XMI on the
XML metalanguage by W3C.XMI (XML Metadata Interchange) intends to provide a
standard way for users to exchange any kind of metadata that can be expressed using the
MOF (Meta-Object Facility) specification by the Object Manage- ment Group (OMG) [8].
It integrates three industry standards: MOF (OMG), UML (OMG), and XML (W3C) [7].

2.3. XML and XMI

XML (eXtensible Markup Language) was envisages as a language for defining
document formats for the Web as HTML [9]. XMI defines four elements (we refer to them
as differential elements) used to support differential description of UML models:
XMI.difference is the parent element used to describe differences from the base (initial)
model; it may contain zero or more differences, expressed through the ele- ments
XMI.difference, XMI.delete, XMI.add and XMI.replace. XMI.delete represents a deletion
from the base model, XMI.add represents an addition to the base model and XMI.replace
represents a replacement of a model construct with another model construct in a base
model [10].

XMI document that represents the actual UML specification of this model. Each
component change has a XMI-change document that specifies how a model version was
constructed from the predecessor schema. As introduced before not only the UML models
will be specified according to the XMI standard, but also model changes [11].

1 http://www.uml.org

TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tran Anh Thi et al.

69

3. Motivation and research problems

3.1. Example

In this subsection, we briefly describe an example in which a developer needs to
build a shopping application. Figure 1 is a UML class diagram for the conceptual design of
this software management timetable in shopping manager. There are many classes,
cardinality and relationships between of them. The Customer class is presented the
customer and product is presented the product in shopping etc,. In this UML class diagram,
there are some classes and relationship of every class. The Customer class corresponds to
the customer in shopping. The Order class corresponds to the customer’s order in
shopping, etc. These classes in this diagram have many type relationships. For example,
the Account class have aggregation relationship with the Order class. There are also many
other relationships such as: Association, multiplicity, aggregation, composition,
inheritance, generalization. In every class, there are many attributes. For example, in
Customer class has custome id, phone, address, email, node attributes. We want to build a
shopping application by this UML class diagram.

This application has some functions. It helps employees to make order, to find a
product or to do something for reporting, progress and backup database. It must have a
friendly interface running on the desktop. In addition, defining rules for mapping data
types of class attributes to elements in the Java GUI is also a challenge. How to generate
source code automatically for graphic user interface in this application?

3.2. Research Problems

The gap from such a high-level description of a shopping application given in
Subsection III-A to concrete source code (e.g., in Java) poses a few research questions as
follows.

• Leveraging a conceptual design to generate GUI widgets that correspond to all
attributes declared for UML class diagram.

• Making GUI tables based on the multiplicity of the UML classes diagram specified in
the conceptual design.

• Dealing with the hierarchy of the UML composition and the isomorphism of UML
generalization in the conceptual design.

TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tập 14, Số 12 (2017): 66-79

70

Fig. 1. UML class diagram for shopping application

4. Framework
In this section, we concretely present a proposed a framework with regards to

software abstraction (Subsection IV-A), code generation and handling the dynamics of
objects manipulated by shopping applications corresponding to the class diagram in the
software abstraction (Subsection IV-B). Regarding the shopping application system
depicted in Figure 2, there are many frames including single class, aggregation class,
association class.
4.1. Software Abstraction

One of the pillars of a domain-specific framework is to raise the level of abstraction
in making software specification. As we narrow down the domain (of software) to UML
class diagram, we are able to employ a high-level declarative language such as the graphic.
The classes are the objects in the shopping applications. The Figure 2 is progress in our
proposed framework that is described in Figure 3. Our framework has 4 steps to generate
source code from UML class diagram.

TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tran Anh Thi et al.

71

Fig. 2. Our framework supports code generation
of the graphics user interface from UML class diagram

 Step 1: Creating a UML class diagram and defining attributes. This step, the
software developers will design the class diagram for applications by any tool. 
 Step 2: Mapping UML to XMI. By default, XMI is generated automatically for

modeled classes. This step, we used Papyrus plug-in to parse the class UML.  
 Step 3: Defining context. Show all objects which pro- gramer selects the object for

the conceptual design. Algorithm 1 presents the main idea of this step. This algorithm
parser the XMI document to list of classes, list of data- types, list of enumerations and list
of associations. Result of Algorithm 1 is to built a structure of the application. The
HCodeStruct at line 6 corresponds to the structure of the application.  
 Step 4: Generating GUI source code. Algorithm 2 present the main idea of this step.

This algorithm generates source code for the GUI in Java from structure of the application
above and list of templates. In this step, the rule in Table I and Table II will be the basis for
mapping attributes, relationships in UML class diagram with GUI in Java
4.2. Generating Source Code for Graphic User Interface

We also developed a simple tool that allows a software developer can generate code
java for GUI widgets by class diagram [12]. They are declared class diagram by UML tool.
Then, the engine will check classes and relation between classes, converted into XMI. In
step 4, when the software developer has it taken steps in our framework, the program will
automatically generate source code for the application. In which the structure of the
application will be divided into a packages. View package will focus on the part of the
graphic user interface, the package control will focus on the control handle and package
model rule would specify the character in the application.
4.3. Attribute

The UML classes show the structural and behavioral fea- tures in the object oriented
Model. These features include attributes, association, generation [7]. On the other hand,
each attribute in a class diagram that contains information mapping to GUI. Thus, mapping

TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tập 14, Số 12 (2017): 66-79

72

UML classes to Graphic User Interface are quite straightforward. In general, the UML
attribute name is directly used as the GUI component name in the mapping process.
However, class attributes in UML will have data types. In Table I, we built a rule that
allowed us to map data types from UML to XMI, and then to the GUI component in Java.

Fig. 3. Transformation from UML class diagram to presenta- tion model in MDA

4.4. Multiplicity
The problem is solving polymorphism. We take care of relationship of the UML

class diagram generation. The GUI elements generated depends on attributes and
demonstrate the relationship between classes. When programmer changes profile map
layers, the GUI generating code section in the paper. This solution will update the GUI.
Input parameters for the parser is the node iterator documentation of XMI. It is generated
by using the class diagram papyrus tools. Element is a list of self-definition layer elements
in XMI [13]. The build data structures to store information material was analyzed from
XMI.
 A list of classes parsed from the XMI. Each class has a list of attributes and

optionally methods.
 A list of UML relationships, which could be UML association or generalization.

Each relationship links a pair of classes.
 A list of enumerations, each of which defines the data type for some attributes

declared above.

TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tran Anh Thi et al.

73

Table 1. Mapping Uml Class Diagram to Swing in Java for The Attributes

UML Type Java Type Java Swing Object
EDate Java.util.Date JTextField

EByte, EShort, EInt Interger JTextField
ELong Long JTextField
EFloat Float JTextField

EDouble Double JTextField
EBoolean Boolean JRadioButton

String String JTextField
Object Reference Reference Type JCombobox

TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tập 14, Số 12 (2017): 66-79

74

In Table 2, we built a rule that allowed us to map relationships from UML to XMI,
and then to the GUI component in Java. Every UML object responds to class in Java and
object in Java Swing package.

Table 2. Mapping UML class diagram to Swing in Java for the associations
UMLObject Java Code Java Swing Object
Enumeration JEnum JCombobox

DataType Support class JCombobox

Class Support class Detail Panel
Association Multicipiliti 1..* Support class JTree[1]-DetailPanel[*]

5. Experiments

In this section, we report measurement we conducted for the application of our
framework to two different applications. The first application is the running example
described in Subsection III-A. Table III summarizes the UML class diagram for the
specification and Java code generated by our code generation techniques for the
implementation of the application. The sec- ond application is an application management.
The Figure 5 is the UML class diagram of this application. There are 5 classes and one
interface. This application supports the management of employees in a company.
Employees are classified into categories such as: Volunteers, executives and hourly. Each
employee has common attributes and unique attributes. In the UML class diagram, there
are some relationships between the classes, such as: Inheritance, generalization, realization.

Table 3. Measurements conducted on the application of the code generation in our
framework to 2 separate case-studies. As for the software abstraction, we report the
number of class, association and inheritance of UML class diagram. As for Java source
code generated, we report the number of Java classes, number of associations and
inheritances captured in Java code and of course the number of Java line of code for each
application.

UML
class

diagram

Short
description

Visualization #Classes #Relationships #JFrames
Java
LOC

Figure 1
The

Shopping
Application

Figure 4 13 14 9 1,605

Figure 5
The

Management
Application

Figure 6 6 5 4 595

TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tran Anh Thi et al.

75

Fig. 4. The GUI of shopping application

 is generated from our framework with UML class diagram

TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tập 14, Số 12 (2017): 66-79

76

Fig. 6. The GUI of management application is generated

from our framework with UML class diagram

6. Related work

6.1. MIDAS framework

MIDAS is a methodological framework for the agile devel- opment of WIS, which
proposes a Model Driven Architecture based on the MDA approach. MIDAS proposes to
model the WIS according to two orthogonal dimensions. On the one hand, taking into
account the platform dependence degree (based on the MDA approach), two group of
activities are considered: to specify the whole system by Computation Independent Models
(CIMs), Platform Independent Models (PIMs) and Platform Specific Models (PSMs); and
to specify the mapping rules between these models. On the other hand, MIDAS considers
the modeling of the WIS according to three basic aspects: hypertext, content and behavior.
Besides, MIDAS suggests using the Unified Model Language as unique notation to model
both PIMs and PSMs [14]

6.2. UML and OCL

The Unified Modeling Language is popular specification. It allows to design structure,
behavior, data structures and business processes model [8]. UML also uses diagrams to
describe the models. A UML diagram does not provide con- straints between objects in
models. However, every element has some constraints between of them. Those constraints
must be declared by another language. That is The Object Constraint Language (OCL).
The OCL is the constraint lan- guage of UML. It is a precise, declarative language that is
simple to understand for people who are not mathematicians or computer scientists. It does
not use mathematical operators, but maintains mathematical rigor in its definition [15]. The
graphical notation of UML has no equivalent in textual style. Therefore, only with OCL is
possible to specify additional constraints of the model in text. OCL can be used to specify

TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tran Anh Thi et al.

77

restrictions such as invariants, preconditions, post-conditions, among others. OCL is often
referred as a “side-effects-free” language since the state of the system does not change due
to an OCL expression.

6.3. Eclipse Modeling Framework

In the world of model-driven software development the Eclipse Modeling
Framework (EMF) [16] is becoming a key reference. It is a framework for describing class
models and generating Java code which supports to create, modify, store, and load
instances of the model. Moreover, it provides gener- ators to support the editing of EMF
models. EMF unifies three important technologies: Java, XML, and UML. Regardless of
which one is used to define a model, an EMF model can be considered as the common
representation that subsumes the others. For example, defining a transformation approach
for EMF, it will become also applicable to the other technologies.

However, EMF have limited usability for code generated due to the following
reasons: Limited capacities in construc- tion of visual representations of language
concepts; Complex integration of different meta-models (DSLs); Lack of flexibil- ity in
model transformations to an suitable target language; and Unsuitability for a specification
of a larger amount of model variations [17].

7. Conclusions and future work

Software abstraction is welcome in the early phases of software engineering where
model-based representations are to be shared by stakeholders whose interests differ
substantially. In this paper, investigate how to make software abstraction tak- ing the
viewpoints of requirements engineering and software design combined. We narrow down
the scope of our work to desktop application. We presented how UML can be used as a
domain modeling language. Our choice of UML class diagram as a model for software
abstraction was justified in its ability to: (i) conceptually and declaratively specify class
rules and application concepts and (ii) turn the formal representation of class rules into
computer-interpretable models, which opens the door for further automation in the later
phases of software development. In our paper, we have designed and implemented two
algorithms (Algorithm 1, Algorithm 2) to mapping UML class diagram to components in
Swing package of Java.

As for the future work, we consider the following research directions. First, we will
to expand the scope of desktop applications (e.g., generate database) for making software
abstraction. Second, we leverage the underlying engine of rule in generating source code
for the implementation of the desktop applications. Third, we will develop mechanisms for
monitoring the data structure of an application against its class rules.

TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tập 14, Số 12 (2017): 66-79

78

 Conflict of Interest: Authors have no conflict of interest to declare.

REFERENCES

[1] I. Sommerville, Software Engineering. 10th Ed. New York: Pearson, April 2015.

[2] M. Fowler, Domain-Specific Languages. Pearson Education, 2010.

[3] D. Kramer, T. Clark, and S. Oussena, “MobDSL: A Domain Specific Language for multiple
mobile platform deployment,” in Proceeding of the 2010 IEEE International Conference on
Networked Embedded Systems for Enterprise Applications. Suzhou, China, IEEE Computer
Society, November 2010, pp. 1–7.

[4] A. Nordmann, A. Tuleu, and S. Wrede, “A Domain-Specific Language and Simulation
Architecture for the Oncilla Robot,” in Proceedings of the ICRA 2013 Workshop on
Developments of Simulation Tools for Robotics & Biomechanic. Karlsruhe, Germany: IEEE
Computer Society, May 2013, pp. 25–26.  

[5] A. Charland And B. Leroux, “Mobile Application Development: Web vs. Native,”
Communications Of The ACM, Vol. 54, No. 5, pp. 49–53, 2011.

[6] W. B. A. Kleppe, J. Warmer, Mda Explained: The Model Driven  Architecture: Practice
And Promise. Boston, USA, Addsion Walley, 2003.

[7] A. Bruckerandj. Doser, “Metamodel-Based UML notations for Domain-Specific
Languages,” vol. 2, Zurich, Switzerland, 2007, pp. 25–26.

[8] D. Jackson, “A comparison of Object Modelling Notations: Alloy, UML and Z,” MIT, Tech.
Rep., August 1999.

[9] E. Visser, “WebDSL: A case study in domain-specific language engineering,” Springer
Berlin Heidelberg, vol. 2, 2008.

[10] J. Kovse and T. Harder, “Generic XMI-based UML model transformations,” Object-
Oriented Information Systems, pp. 183–190, 2002.  

[11] F. Keienburg and A. Rausch, “Using XML/XMI for tool supported evolution of UML
models,” in Proceedings of the 34th Annual Hawaii International Conference on System
Sciences. Hawaii, IEEE Computer Society, pp. 10–pp, 2001.  

[12] C. Atkinson and T. Khne., “Concepts for comparing modeling tool  architectures,” Springer
Berlin Heidelberg, 2005.  

[13] R. Gronback, “Eclipse modeling project: a Domain-Specific Language (DSL) toolkit,”
Addsion Walley, vol. 20, 2009.  

TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM Tran Anh Thi et al.

79

[14] J. Vara, V. DeCastro and E.Marcos,“WSDL automatic generation from UML models in a
MDA framework,” in Proceedings of the International Conference on Next Generation Web
Services Practices, 2005, Seoul, South Korea, IEEE Computer Society, 2005, pp. 6–pp.

[15] D. Jackson, “Software Abstractions: logic, language, and analysis,” MIT press, vol. 2, 2012.

[16] E. Biermann, K. Ehrig, C. Ko ̈hler, G. Kuhns, G.Taentzer and E. Weiss, “Graphical
definition of in-place transformations in the Eclipse modeling framework,” in Proceedings of
the 9th IEEE/ACM International Conference on Model, vol. 4199 of Lecture Notes in
Computer Science. Springer, 2006, pp. 425–439.

[17] V. Djukic ́, I. Lukovic ́, A. Popovic ́, and V. Dimitrieski, “Domain- Specific Modeling Tools
as Client Applications Providing the Production of Documents,” in Proceedings of the
Industrial Track of Software Language Engineering workshop. Dresden, Germany: Springer,
2012, pp. 6–pp

