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ABSTRACT

In this paper, the computational scheme and calculation results of scattering functions for
metastable states of a diatomic beryllium molecule in laser spectroscopy are presented. The solution
to the problem is performed using the authors' software package with the high-accuracy finite element
method. The procedure of matching tabulated potential functions with van der Waals asymptotic
potential using Hermite interpolation polynomials which provides continuity of both the function itself
and its derivative is presented. The efficiency of the proposed approach is demonstrated by the
spectrum of rotational-vibrational metastable states with complex-valued energy eigenvalues in the
diatomic beryllium molecule. For selected metastable states, the corresponding scattering states with
real-values resonance energies are calculated and shown in graphs.

Keywords: diatomic beryllium molecule; finite element method; KANTBP 4M program;
metastable states; scattering problem

1.  Introduction

The vibration-rotational spectrum of diatomic beryllium molecule was studied earlier
(Gusev et al., 2019). During the last decade, the theoretical investigations (Lesiuk et al.,
2019; Meshkov et al., 2014; Mitin, 2011, 2017; Patkowski et al., 2009) have shown 12
vibrational bound states in a diatomic beryllium molecule, whereas 11 states were extracted
from the experimental data of laser pump-probe spectroscopy (Merritt et al., 2009). The
boundary value problem (BVP) for the second-order ordinary differential equation
(SOODE) with potential function numerically tabulated on a non-uniform grid in a finite
interval of the independent variable values was solved (Mitin, 2017). To formulate the BVP
on a semiaxis, it is suggested to further explore its potential function beyond the finite
interval using the additional information about the interaction of atoms comprising the
diatomic molecule at large interatomic distances. The leading term of the potential function
at large distances is given by the van der Waals interaction, inversely proportional to the
sixth power of the independent variable with the constant, determined from theory (Porsev
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& Derevianko, 2006; Sheng et al., 2013). Proceeding in this way we faced a problem of how
to match the asymptotic expansion of the potential function with its tabulated numerical
values (within the accuracy of their calculation) at a suitable sufficiently large distance.

In the present work, we continue studying these problems and expand our calculating
results in previous works by Derbov (2020, 2021) and Gusev (2019, 2021). Firstly, we
formulate the quantum scattering problem of diatomic beryllium molecule in which the
matching tabulated potential functions with van der Waals asymptotic potential using HIPs
which provides continuity of both the function itself and its derivative is presented. Next, we
presentthe algorithm for calculating the scattering wave of metastable states in KANTBP
4M program (Gusev et al., 2015). This program solves BVPs of mathematical models
reduced from low-dimensional complex quantum models based on the finite element method
(FEM) with Hermite interpolation polynomials (HIPs). Finally, by using KANTBP 4M
program, the calculation results are presented in graph and table. In the conclusion, we
discuss further applications of the elaborated method and results.

2. Problem statement
2.1. Quantum scattering problem of diatomic beryllium molecule

In quantum chemical calculations, effective potentials of interatomic interaction are
presented in the form of numerical tables calculated with limited accuracy and defined on a
nonuniform mesh of nodes in a finite range of interatomic distances.

The Schrddinger equation for a diatomic molecule in the adiabatic approximation (in
which the diagonal nonadiabatic correction is not taken into account), commonly referred to
as Born—-Oppenheimer (BO) approximation, has the form

n* 1d 5 _
[_W(FEr E)+VL(r)—E} @, (r) =0, (1)
n* L(L+1)

V, (r)=V(r)+
L=V 2mDaA?  r?

where L is the total angular momentum quantum number, r is the distance between the atoms
in angstroms (A), and m =M /2 = 4,506 is the reduced mass of beryllium molecule.
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Fig.1. Potential V(r)(A?) of the beryllium dimer as a function of r(A) obtained by
interpolating the tabulated values (points in the subintervals, the boundaries of which are
shown by larger size circles) by fifth-order LIPs
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Da =9,10938356.10*"kg = 931,494061MeV is the Dalton (atomic mass unit)
(NIST), E is the energy in cm™ and V(r) is potential energy curves at L = 0, the potential
2 2
2mD;51A 2mDaA jE in A2
h h2
i.e. V(r)=s,U(r)em? and E=s,&cm™, where s, =1/0,2672973729 is the conversion

factor from A2 to cm™.
In Eq. (1) the potential V(r) (in cm™) (see Fig. 1) is given by the BO potential function

energy curve U (r) =( jv (r) in A, the desired energy & =[

marked as the modified expanded Morse oscillator (MEMO) tabular values {VM (ri)}zin

the interval re[r, =15, =48]A (Mitin, 2017). These tabular values were chosen to

provide a better approximation of the potential V(r) by the fifth-order Lagrange interpolation
polynomials (LIPs) of the variable r in subintervals. Indeed, Fig. 2 displays smooth
approximation till r, =12 where the approximate potential curve coincides with and
crosses the asymptotic potential V. (r) given analytically by the expansions (Porsev &
Derevianko, 2006)

V. (r)=sV_(r), V.(r)=—(214(3)Z°+10230(60)Z ®+504300Z*°), (2)
where s, =58664,99239 is the conversion factor from aue to A2, Z =r/s, and s, =0,52917

is Bohr radius in A.
This allows considering the interval re[r, ., >12,0) as possible for using the

match —

asymptotic potential V(r) at large r and executing conventional calculations based on
tabular values of V (r) in the finite interval r [r,,r =12] (Lesiuk et al., 2019). However, the

above MEMO tabular values have been calculated in the unusually larger interval
r e[r,,r =48]using special composite basis functions in different subintervals, taking into

account both polarization and relativistic corrections DK-MRCI in the subinterval
re[r=12,r = 48] (Mitin, 2011).

It is noted that the MEMO tabular values r € {r,, =6.5,...,r,, =11} are smaller than the
asymptotic ones by 5.5-6%, for r=r,, =14exceeding the asymptotic ones by 8%, and
beyond the interval r [r,, =6.0,...,,, =15] the difference is more than 10%. Based on this,
we consider the case in which the potential V(r) in the subintervals r e[r, _,. &, ], k=1,...,9

was approximated by the fifth-order interpolation Lagrange polynomials (LIPs) of the
variable r in the interval r [r, r,; =14]. In the subinterval, r e[r, =1, =9.0, 1, 14]

match —
we consider the approximation of the potential V (r) by the fourth-order HIPs using the
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values of the potential V(r) at the pointsr e {r, =r,; =9.0, r,, =10, r,, =11} and the values
of the asymptotic potential V(r) and its derivative dV,(r)/dr at the point r=r_,, =14.

Inthe r e[ =14,oo) the potential V (r) is approximated by the asymptotic expansion (2)

r-ma'rch
(Porsev & Derevianko, 2006). This approximation has been accepted in our paper
(Gusev et al., 2019).
2.2. Algorithm for calculating scattering wave function of metastable states in KANTBP
4M program

To solve Eq. (1) for metastable states, we consider the boundary value problem (BVP)
for the system of ordinary differential equations (ODE) of the second-order with respect to

the unknown functions ®(z)=(®,(z)...,®,(z))' of the independent variable
ze(z™", 2™ (Streng & Fics, 1977):

L I(jfA(z)éf4.\/(2)_+fA(Z)(g(Z)CI_+ 1 df,(2)Q(2)
z

fy(z) dz fy(2) dz  f,(2) dz

—El |®(z) =0 3)

Here f,(z)>0 and f;(z) >0 are continuous or piecewise continuous positive
functions, I is the unit matrix, V/(z) is a symmetric matrix (V; (z) =V;(z)), and Q(z) isan
antisymmetric matrix (Q; = —Q;; ). These matrices have dimension N x N and their elements
are continuous or piecewise continuous real or complex-valued coefficients from the
Sobolev space ;™ (Q2), providing the existence of nontrivial solutions subjected to
homogeneous boundary conditions: Dirichlet (I kind) and/or Neumann (11 kind) and/or third

kind (111 kind or the Robin condition) at the boundary points of the interval z e (z™",2™)

at given values of the elements of the real or complex-valued matrix R(z') of dimension
N x N.
(1):  ®(z') =0, t=min and/or max (4)

(ID: lim fA(z)(Id—Q(z)j(l)(z):o,t:min and/or max (5)
-7 dz

= R(zt)(l)(zt) , t=min and/or max (6)
z=1'
Eigenfunctions @ _(z) obey the normalization and orthogonality conditions

(1: (I d_ Q(z)j(l)(z)
dz

Z o ;
((I)m |(I)m) = Z.[ fB ((Dm(z)) (I)m.(Z)dZ = 5mm" (7)

min
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2.2.1. For the multichannel scattering problem
On the axis z e(—oo,+oo) at fixed energy E =RE, the desired matrix solutions

o(z)={0" @)}, oV(2)= (@ (2),...,0{) (2)) of the boundary problem (3) (the subscript
v means the initial direction of the incident wave from left to right — or from right to left
<) inthe interval z e (z™",2™). These matrices solutions are subjected to homogeneous
third kind boundary conditions (6) at the boundary points of the interval z e (z™",z™)
with the asymptotes of the “incident wave + outgoing waves” type in open channels
i=1...,N, (Gusevetal., 2016):

D, (2> to0) = {Xm (2)+ X (R + X (RS, 25 =,

X%(Z)B + Xgﬁgx(z)Ti7 Z — +0, @
®, (2> +0) = X ()T + X (DT 2 =
X (2)+ X (2R + X (R, 2> 420,

Here ®_, (z), ®, (z) are matrix solutions with dimensions NxN_, Nx N7, where

NOL, NoR are the numbers of open channels, Xﬁn_i’n)(z), Xﬁn‘;])(z) are open channel asymptotic

solutions at z — —o0, dimension N x NOL, an_;z(z), Xfﬁ;ﬁ(z)are open channel asymptotic

solutions at z — +oo, dimension NxNF, Xf]‘ji)n(z), X(,ngx(z) are closed channel solutions,

dimension Nx(N-N!), Nx(N-NJ), R_,,R, are the reflection amplitude square

matrices of dimension N, xN;, N¥*xNJS, T, T, are the transmission amplitude

rectangular matrices of dimension NS x Ny, No x N5, RS, TS, T, R are auxiliary
matrices. For real-valued potentials V/(z) and Q(z) the transmission T and reflection R
amplitudes satisfy the relations:

TST,+RLR, =1, T.T +RIR. =1,

TR, +R"T_=0, RLT +T 'R =0, 9)
T.=T_, RL=R,, RL =R_
ensuring unitarity and symmetry of S-scattering matrix:
R T,

s:(T* R“j, S*s=SS" =1. (10)

- «—

Here symbols * and T denote conjugate transpose and transpose of a matrix, respectively.
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2.2.2. For metastable states
With complex eigenvalues, E =%RE +i3E, JE <0: RE, <RE, <... the Robin BC

follows from outgoing wave fundamental asymptotic solutions that correspond to Siegert
outgoing wave BCs (Gusev et al., 2015).

For the set ODEs (1) with f,(z)=f;(z)=1Q;(z)=0 and constant effective
potentials
Vij(z):VU_L'R in the asymptotic region, asymptotic solutions Xi()(Z—>ioo) are

expressed by the following formulas:

Xi(:ﬁ)(zéoo)aexp(n E—iiL'R|z|jy/it’R, AN <RE, g =1, NG,

(11)
X (z - ) - exp(— /1_L'R—E|z|]y/iL’R, AER = 9E, iy = NSR 41N,
C |C C C
[unctional structure of KANTBP 5M code
keypot=0  keypot=1 keypot=2 keypot=3 keypot=4 Eurictional k(—!}r']'mt 0 approximation Of
Scheme of ' - e - o -

\ el h.uu;:'tlon given in t}nt)(tl.e:-,. I}yf a
[.soiproco..] IHPsEIHPparSIEIHPdc.fSHi Code continuous one 11 1 101111 O a

procedure.

6 | IHPGauss [ =) IHPPiccewise = IHPMatrices || IHPPIot | keypot—1  solution of the
eigenvalue problem,

keypot—2  solution of the

[Gmatrices | [testmarrintip | multichannel scattering problem,

keypot—3 solution of the

eigenvalue problem by Newton

method,

keypot—4 (supplementary)

calculations of errors estimation

of IHP and stiffness and

mass matrices elements of the

algebraic problem.

DirL, DirR; boundary condition key in the left and right points of interval:

1 Dirichlet boundary condition,

2 Neumann boundary condition,

3 Robin boundary condition,

0 Robin boundary condition that determined from the asymptotic solution,

4 Robin boundary condition that determined from the asymptotic solution for the

user supplied procedure.
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solplot® |
*=1,23

*=1,2,2

Fig.2. Functional structure of KANTBP 4M code for different types of quantum problems
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Fig. 2 shows the functional structure of the KANTBP 4M code for different types of
boundary quantum problems. It can be seen that for different values of keypot, there are
different boundary problem types. For example, at keypot = 2, we have a solution of the
multichannel scattering problem and at keypot = 3, we have a solution of the eigenvalue
problem by the Newton method for calculating metastable states. Dirl and DirR are the
boundary condition keys in the left and right points of the interval.

3. Calculation of scattering functions of metastable states
3.1. Calculation of resonance energies of metastable states

Firstly, we calculate resonance energies of metastable states at different values of the
total angular momentum L. Using the KANTBP 4M program at keypot = 1 and keypot = 3,
the mesh has been choosen as

Q- [1.90, 2.00, 2.15, 2.30, 2.42, 2.50, 2.62, 2.80, seq(3+0.25i, i=0,11),
seq<6+0.5.i, i=0,_7), seq(10+2.5.i, i=m)]

with 11 kind boundary condition (Neumann condition) (5) at the left boundary point r, =1.90

(DirL = 2) and 111 kind boundary condition (Robin condition) (6).
The numerical calculating results are presented in Tables 1 and 2. In these tables, the

potential well minimum Vimin and maximum Vimax, the resonance energies E,, with real

S

RE, and imaginary JE,, parts for metastable states at different values of the total angular

momentum L are calculated. It can be seen that all the imaginary J3E . parts are negative of

res

the order (10 =0). For each value of L < 23, there is only one metastable state. On the
other hand, for each value L > 23, there can be more than one metastable state. For example,
at L =24 or L = 28, there are two metastable states, and at L = 30 the number of metastable
states is 3. At L > 38, there is only one metastable state for each value L and at L > 47, there
are no energy levels in the well. Moreover, in these tables, the calculating results of
resonance energies in other works are also presented in Slater-type orbitals (STO) (Koput,
2011; Lesiuk et al., 2019).

Table 1. Resonance energies E,,. =RE_ +iJE,, (in cm™) of metastable states at different

res

values of the total angular momentum L

LV TImin  Imax Vimin Vimax RE, e SE, “Ew
(STO) (STO)

2 242 225 -920.72 0.04 0.079 -9.635.10°°

3 11 242 200 -916.89 0.10 0.095 -9.635.10°°

4 242 175 -911.78 0.21 0.504 -5.147.10™

5 242 150 -905.39 0.39 0.504 -5.147.10™
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6 2.42
7 10 242
8 10 242
9 10 242
10 2.42
11 9 242
12 9 242
13 9 250
14 8 250
15 9 250
16 8 250
17 8 250
18 7 250
19 7 250
20 6 250
21 6 250
22 6 250
23 5 250
24 5 250
24 6 250
25 4 250

125
12.5
12.5
10.0
10.0
95
9.0
9.0
8.5
8.5
8.5
8.0
7.5
7.5
7.5
7.0
7.0
7.0
7.0

7.0
6.5

-897.72
-888.78
-878.56
-867.06
-854.28
-841.83
-827.46
-811.89
-795.14
-777.18
-758.02
-737.67
-716.12
-693.37
-669.43
-644.29
-617.95
-590.42
-561.68

-561.68
-531.76

0.70
1.03
1.42
2.24
2.99
3.90
5.02
6.22
7.72
9.27
11.25
13.23
15.66
18.18
20.84
24.15
27.51
31.02
34.69

34.69
39.58

0.504
0.504
1.574
1.592
1.592
1.592
4.053
0.084
0.084
4.623
9.096
4.789
4.789
11.527
18.166
6.403
15.499
24.465
11.484

33.184
22.999

0.972
2.315
3.781

0.783
0.352
6.371

3.141
7.705
12.09
2.917
9.637
16.21
4.200
13.26
22.220
8.853

30.74
20.32

-5.147.10™
-5.147.10°*
-1.321.10"
-1.442.10°°
-1.442.10°°
-1.442.10°°
-2.950.10°2
-5,022.107%
-5,022.107%
-1.655.10°°
-1.887.107°
-4,207.107%°
-4,207.107"°
-1.491.10™
-3.764.1072
-5.186.107"
-2.981.10°°
-3.392.10°°

-1,290.107*
-0.158

-1.101.10°°

-5.6.10°°
-0.149

-0.499

-1.10°

-1.10°3
-0.543

-1.107°
-5.10™*
-0.032
-1.10°°
-1.10°°
-2.2.107°
-1.10°
-1.10°°
-2.5.10™

-1.10°
-0.037

-1.10°

Fig. 3 shows the eigenfunctions @ (r) of metastable states with complex energy

values for a fixed value of the orbital momentum L. As can be seen from Fig. 1, these
eigenfunctions have an increasing number of nodes localized inside the potential well
(0 <r <10) and outside the potential well , these eigenfunctions decrease to zero at r — +oo,
i.e. metastable states of beryllium dimer exist only inside the potential well. It can be
explained that with the growth of L the potential well minimum Vimin will increase and at
L> 39. This minimum will exceed the dissociation threshold energy and then there will be
no metastable state outside the potential well.
3.2. Calculation of scattering wave functions of metastable states

For calculating scattering wave functions of metastable states, we use the KANTBP

4M program at the keypot = 2 and the mesh has been choosen as

Q= [1.90, 2.00, 2.15, 2.30, 2.42, 2.50, 2.62, 2.80, seq(3+o.25.i, izm),

seq(6+0.5.i, i=ﬁ), seq(10+2.5.i, i=m)}
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Table 2. Resonance energies E(res) = RE(res) +iSE(res) (in cm™) of metastable states at
different values of the total angular momentum L. Continuation of Table 1

L Vv fem fmx Vi Vie  RE.  Ew 3E,. “Ee
(STO) (STO)
26 4 250 65 50063 4418 7996 4773 1257102  110°
26 5 250 65 -50063 4418 34366 3167  125810°  -13.10°
27 4 250 65 -468.31 4896 22032 18779  1765.10%°  -1.10°
27 5 250 65 -468.31 48.96 45202 42567 9101102  0.034
28 3 250 65 -43478 5392 6963 3009 6232102  -1.10°
28 4 250 65 -43478 5392 35992 32731  .530910°  -1.10°
20 3 250 60 -40007 6055 23517 19452  29910%°  -1.10°
20 4 250 60 -40007 6055 49.688 46445  43010°  -52.10°
30 2 250 6.0 -364.15 66.79 11.354 7.180 0 -1.10°°
30 3 250 60 -36415 6679 40058 35968  .7639.10°  -1.10°
30 4 250 60 -36415 6679 62792 59548  105410°  -0.001
31 2 250 6.0 -327.04 7323 32621 28549  435710%°  -1.10°
31 3 250 60 -327.04 7323 56542 52550  .197810°  -1.10°
32 2 250 575 -288.73 80.67 52660 48671  .g935.10°  -1.10°
32 3 250 575 -28873 8067 72751 68982 .373310°  -0.013
33 1 250 5.75 -249.22 88.14 15.028 8.238 0 -1.10°°
33 2 250 575 -249.22 8814 71134 9398.10°°
33 3 250 575 -249.22 8814  88.035 8.887. 102
34 1 250 575 -20852 9583 47784 40779 140110  -1.10°
35 1 250 350 -166.62 10146 80.663 73432 893410  -1.10°
3 1 250 350 -12352 12344 113474 105338 995910 -71.10°
37 0 250 350 -79.23 14604 11780 9538 324710  -1.10°
37 1 250 350 -7923 14604 45893 135737 110910  -3.656
38 0 250 350 -3373 16925 53502 51.2338 1891102  -1.10°
39 0 250 325 1295 19920 96174 936727 _6656.10%°  -1.10°
40 0 250 325 6083 227.53 139477 136795 _9g95.10%  -1.10°
41 0 262 325 10256 25658 183.435 180.520 150110 -1210°
42 0 262 325 14834 28633 227.964 224726 674810  -0.030
43 0 262 325 19521 31679 272946 269267 954910  -0.173
44 0 262 325 24317 34796 318196 314016 .ggi110Y  -0.621
45 0 262 325 29222 379.84 364926 358.964 143710  -1.622
4 0 262 30 34236 41921 411060 403449 150310  -5.838
47 0 262 30 39359 45828 457.224 445144 193.10°  -6.238
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D..(r)

0.04

0.021

-0.04

-0.06

D,.()
0.10+ L=27
v=35
0.05
= - N7 N I
. 1 20
z
00544
-0.10

Fig. 3. Plots of real (solid curve) and imaginary (dashed curve) parts of eigenfunctions

@, (r) of selected metastable states having eigenvalues from the table marked

by L =8, 11, 27 with corresponding v =10, 9, 5
with 1l kind boundary condition (Neumann condition) (5) at the left boundary point r, =1.90
(DirL = 2) and 111 kind boundary condition (Robin condition) (6) at the right boundary point
I =90 (DirL = 3) using the asymptotic formula (8) of the “incident wave + outgoing

waves” type.
D, ()
. L=4
0004, - @)
0.0031 0.004
0.002
0.001 i : . 0.002
| ME//4 20 z 30— - 40 ¢ 0
-0.0014Z50 : -
-0.0021 P A -0.002
-0.003:
PN i -0.004
-0.0051 0,006
@, () ()
E o L=15 0.008
0.00107 0.006
0.0005 2= e 0.004
0.002
4]
0
—00005'_ -0.002
—00010055F -0.004
-0.006
-0.0015 -0.008
Fig.4.

Plots of the real (solid curves) and imaginary (dashed curves) parts of scattering
wave functions @ (r) for some selected metastable states in the vicinity of resonance energies

RE,..~ 0.504,; 1.574; 4.623; 11.527 (in cm™Y) at corresponding values of the total angular
momentum L= 4; §; 15; 19
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001015

—0015]i0 %

LAl
0.002

0.0014

=0.0014

Fig.5. Plots of the real (solid curves) and imaginary (dashed curves) parts of scattering
wave functions @ (r) for some selected metastable states in the vicinity of resonance energies
RE,,~ 15.499; 24.465; 22.032; 35.992 (in cm™!) at corresponding values of the total
angular momentum L=22; 23; 27; 28

The scattering S-matrix for some selected typical metastable states is calculated by
using KANTBP 4M with formula (10) and is shown in Table 3. It can be seen that these
matrices have complex elements with dimension 1x1.

Table 3. Scattering S-matrix for some selected typical metastable states at corresponding
resonance energies RE_ (in cm™) and with corresponding values of the total angular

momentum L

L RE, S-scattering matrix
4 0.504 [0.912+0.408.i]
8 1574 [0.134+0.990.i]
15 4.623 [-0.761+0.647.i]
19 11.527 [0.971-0.236.]
22 15.499 [-0.985-0.167.i]
23 24.465 [-0.872-0.489.i]
27 22.032 [0.349-0.936.i]
28 35.992 [-0.657+0.753.i]

Fig. 4 and 5 show the real (solid curves) and imaginary (dashed curves) parts of
scattering wave functions ®.(r) for metastable states at energies close to a very narrow
resonance at different values of the total angular momentum L. As can be seen from Fig. 1,
for the resonance energy, the scattering wave functions are seen to be localized within the
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potential well (0 < r <10). With the growth of L the nodes of scattering wave functions ®(r)
will decrease. It can be explained that inside the potential well (below the dissociation
threshold) the number of metastable states decreases with an increase of L. On one hand,
outside the potential well (r >10) i.e. above the dissociation threshold with large of L, the
metastable states disappear and the scattering wave functions will decrease exponentially.
This means that the scattering of the diatomic beryllium molecule only occurs strongly in
the potential well below the threshold energy i.e. in the interaction region between two
atoms. To calculate scattering wave functions, we can calculate the transmission T and
reflection R amplitudes. From that, we can also formulate BVP for calculating scattering
wave functions for metastable states of beryllium trimer (triatomic molecule).

4.  Conclusion

This paper presented a computational scheme and calculation results of scattering
functions for metastable states of a diatomic beryllium molecule in laser spectroscopy. The
efficacy of the applied approach and program is demonstrated by the approximation of the
tabulated potential function in a finite interval and its extension beyond this interval using
asymptotic expansions and its matching via interpolation Hermite polynomials and modeling
calculations of the rotational vibrational spectrum of narrow-band metastable states with
complex-valued energy eigenvalues. For selected metastable states the corresponding
scattering states with real-values resonance energies are calculated and shown in graphs.

These results have significant importance for further experiments in laser spectroscopy
of the beryllium dimer. It is also important for modeling a near-surface diffusion of the
beryllium dimers in connection with the well-known multifunctional use of beryllium alloys
in modern technologies of the electronic, space, and nuclear industries.

In the future based on these results and the presented FEM program, we can develop
this implementation for the calculation of scattering wave functions for metastable states of
beryllium trimer (triatomic molecule) and waveguide problems by solving the eigenvalue
and scattering problems in the closed coupled channel method for high-precision laser
spectroscopy.
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TINH TOAN HAM SONG TAN XA UNG VOI CAC TRANG THAI SIEU BEN
CUA PHAN TU LUONG NGUYEN TU BERYLI

Luwong Lé Hai*', Nguyén Minh Nhut', Luu Kim Lién®, Gusev Alexander Alexandrovich?
YTruong Dai hoc Sw pham Thanh ph(f Ho6 Chi Minh, Viet Nam
2Vién Lién hiép Nghién cieu Hat nhan Dubna, Thanh phé Dubna, Lién bang Nga
*Tac gia lién hé: Luong Lé Hai — Email: haill@hcmue.edu.vn
Ngay nhgn bai: 23-9-2021; ngay nhdn bai sira: 09-11-2021; ngay chdp nhdn dang: 08-12-2021

TOM TAT

Trong bai bdo ndy chiing t6i trinh bay so' do thugt toan va két qud tinh toan ham séng tan xa
doi véi cac trang thai siéu bén cua phan tir luwéng nguyén ti Beryli trong quang phé laser. Nghiém
ciia bai todn bién dwoc tinh todn bang chwong trinh phan mém dwoc bién sogn béi tac gid bai bao
cling cac cong su khoa hoc ¢ Vién Lién hiép Nghién cizu Hat nhan Dubna, Thanh phd Dubna, Lién
bang Nga. Cac thugt toan ciia chwong trinh tinh todn ndy dwa trén phwong phdp phan tir hitu han
véi do chinh xac cao. Ham thé ndng duwoc cho ¢ dang bang gia tri diroc néi véi ham thé nang tiém
cdn Waals bang céch sir dung da thirc ngi suy Hermite va dam bdo tinh lién tuc cia nghiém ham
cuing dao ham cia no. Sw hiéu qud Ciia chwong trinh tinh todn ndy dwoc thé hién bang viéc tinh toan
cac gia tri nang lwong cong huong ¢ dang phirc ciia cac trang thai siéu bén trong phé xung dong
quay cua phan tir lwéng nguyén tiz Beryli. Véi cac trang thai siéu bén nay, cac ham séng tan xa furong
Ung Véi nang lirong cong hwéng mang gia tri thuee diroc tinh todn va biéu dién durdi dang do thi.

Tir khoa: bai toan tan xa; chuong trinh KANTBP 4M; phan tir ludng nguyén t beryli; phuong
phap phan tir hitu han; trang thai siéu bén
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