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ABSTRACT
Let L be a nonnegative self-adjoint operator on L*(R") with a heat kernel satisfying a

Gaussian upper bound. In this work, we introduce Triebel-Lizorkin-Morrey spaces FM qu (R")

associated with the operator L for the entire range 0 < p,q < o, € R . We then prove that our

new spaces satisfy important features such as continuous characterizations in terms of square
functions, or atomic decomposition.

Keywords: atomic decompositions; continuous characterization; Gaussian upper bound;
Triebel-Lizorkin-Morrey space

1. Introduction

The classical Triebel-Lizorkin spaces on Euclidean spaces R", considered as
generalizations of other classical spaces such as Lesbegue spaces, BMO spaces, Hardy
spaces, and Sobolev spaces, are essential in approximation theory and partial differential
equations. Recently, the theory of new Triebel-Lizorkin spaces associated with differential
operators L has been developed by many mathematicians in various settings. We summarize
here some remarkable literature related to this new research development:

- Using the existence of the approximation of identity, Han and Sawyer (1994)

developed a theory of Triebel-Lizorkin spaces F;, forarange 1< p,q<oo and s e (-6,0)

for some 0 € (0,1) on metric measure spaces with polynomial volume growths.

- Petrushev and Xu (2008) introduced new Triebel-Lizorkin spaces associated with the
Hermite operator with a full range of indices. They then proved the frame decompositions
for these spaces by making use of estimates of eigenvectors of the Hermite operators. Similar

Cite this article as: Tran Tri Dung, Nguyen Ngoc Trong, & Nguyen Hoang Truc (2021). Triebel-lizorkin-
morrey spaces associated with nonnegative self-adjoint operator. Ho Chi Minh City University of Education
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results were also proved for the Laguerre operator by Kerkyacharian et al.(2009). The theory
of these function spaces was further developed by Bui and Duong (2017) in which the
authors proved molecular and atomic decompositions theorems and square function
characterizations for these spaces.

- Under the assumption that L is a nonnegative self-adjoint operator satisfying Gaussian
upper bounds, Holder continuity, and Markov semigroup properties, the frame
decompositions of Triebel-Lizorkin spaces associated with L with a full range of indices
were studied in Georgiadis et al. (2017). This theory has a wide range of applications from
the setting of Lie groups to Riemannian manifolds.

- Bui et al. (2020) established a theory of weighted Besov and Triebel-Lizorkin spaces
associated with a nonnegative self-adjoint operator. In contrast to Georgiadis et al. (2017),
the authors assumed the Gaussian upper bound, but did not assume Holder continuity on the
heat kernels nor the Markov properties (the conservation property). This allows their theory
to cover a wider range of applications including regularity estimates for certain singular
integrals with rough kernels which are beyond the class of Calderon-Zygmund operators.

On the other hand, many authors have extended the theory of Triebel-Lizorkin spaces
to the setting Triebel-Lizorkin-Morrey (TLM in abbreviation) by using Morrey spaces in
place of L°(R") in the definition of Triebel-Lizorkin spaces, as they realized that TLM
spaces share key properties of Triebel-Lizorkin spaces, and represent local oscillations and
singularities of functions better than Triebel-Lizorkin spaces do. We also list here some
important results related to this research direction:

- Tang and Xu (2005) introduced the inhomogeneous TLM spaces and studied lifting
properties, Fourier multiplier theorem, and the discrete characterization of inhomogeneous
TLM spaces.

- Sawano (2008) characterized the inhomogeneous TLM spaces in terms of wavelet.

- Wang (2009) established the decomposition of homogeneous TLM in terms of
molecules.

- Nguyen et al. (2020) investigated TLM spaces associated with Hermite operators by
adapting the technique of maximal functions introduced by Fefferman-Stein and Peetre,
whereas usual approaches for these types of function spaces are based on Littlewood-Paley
decompositions. As a result of this distinct approach, it is possible to extend the theory of
the inhomogeneous TLM spaces to the setting where p and q are below the endpoint 1.

Let L be a nonnegative, self-adjoint operator on L*(R") which generates a semigroup
(e*tL )t . and p,(x,y) be the kernel of this semigroup. Throughout the paper, we always
assume that the kernel p,(x,y) holds a Gaussian upper bound (GUB), i.e., there exist two

positive constants C and c such that for all x,y e R" and t >0,
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C [x-y[
[ px ) ks gz exp (-2 EL).

Noting that such an operator L covers the classical Schrodinger operators associated
with nonnegative potentials satisfying the reverse Holder inequality on R", our main aim in
this paper is to develop the theory of new Triebel-Lizorkin-Morrey spaces associated with
such a nonnegative, self-adjoint operator satisfying the Gaussian upper bound. It should be
pointed out that in this work, we do not assume the additional conditions such as Holder
continuity estimate and Markov semigroup property for the setting Lebesgue spaces. So as
to be able to present the new TLM spaces, we use spectral decompositions of nonnegative
self-adjoint operators. Moreover, the extension of relevant classical techniques and tools to
the current setting is nontrivial, including new ideas concerning new space of distributions
and several estimates related to maximal functions associated with functional calculus of L
which were established recently. These are interests in their own right and should be useful
in future research in the field.

Our paper is organized as follows: Section 2 recalls preliminaries, class of
distributions, and related estimates. Section 3 presents the definition of new TLM spaces and
the proof of continuous characterizations of new TLM spaces in terms of square functions
via heat kernels. Section 4 establishes atomic decompositions results of these new spaces.

Throughout the paper, we use C and c to denote positive constants that are
independent of the main parameters involved but whose values may differ from line to line.
We write A < B if there is a universal positive constant Cso that A<CB and A~B if

A<B and B<S A Set N={1,2;3;..} and N, = NuU{0}. For 1< p <o, denote by p' the

conjugate exponent of p, i.e. £+i' = 1. In addition, given A >0 and a ball B =B(xg,I;)
p

, we write AB for the A-dilated ball, which is the ball with the same center as B and with
the radius g =AlG. For each ball BcR", we set
S,(B)=4Band S;(B)=2'B\2'"B for j>3. Finally, for a,beR, let anb=min{a,b}
and avb=max{a,b}.

2. Preliminaries, class of distributions, and related estimates
2.1. Dyadic cubes

Firstly, let us recall the set of all dyadic cubes D in R"

D:{f[[mjzk,(mj +1)2¢) :m,m,,...m, k eZ}.
j=1
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For a dyadic cube Q = H[mj 2, (m, +1)2k), we denote by ¢(Q) and x, the length
j=1

and the center of the dyadic cube Q respectively. For veZ, we set
D,={QeD:/(Q)=2"}.
2.2. The Hardy-Littlewood maximal function

Let 0 <0 <. The Hardy-Littlewood maximal function M, be defined by

Amuh?ﬂéﬁmwmﬂ,

where the supremum is taken over all balls B containing x. The subscript 6 is dropped
when 0=1.

The following elementary estimates will be used in the sequel (see, for example, Bui
etal., 2018).
Lemma 2.1. Let s,e >0and p e[1,00].

i. ForallxeR", we have: (J'Rn[(1+|x—y|/s)*”*€]"dy)1’p <P

ii. Forany f eLl, (R"), xeR", wehave: [ nin(l+|x—y|/s)’”"| f(y)|dy < MF(x).
R' g

2.3. Morrey space

We recall here some important estimates involving Morrey spaces which are used in
the following sections.
Lemma 2.2. [Trong et al., 2020, Lemma 2.5]

The following statements hold true:

I.For 0< p<r<oo,wehave: [If ||, ~supo, QI IT I|, -

ii. Forany 0< p<r<o,0>0,wehave: [[f° || <IIf Ifn,%.

iii. (Minkowski's inequality) For any 0<q< p <r <oo, we have:

b dt 1/q b . dt 1/q
FGHF— S| IFCO —1 -
[L|(tn tj M,”LL”(t)Mptj

The next lemma (the Fefferman-Stein vector-valued maximal inequality) plays a key
role in this paper.
Lemma 2.3. [Trong et al., 2020, Lemma 2.6] Let O<p<r<w, 0<q<ow and

0<0< pAag. Then for any sequence of measurable functions {f },_, , we have

|yl <l meel,, (2.)

veZ veZ
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Remark 2.4. As a consequence of Lemma 2.3, if 0< p<r<o and 0<0< p Al then the
Hardy-Littlewood maximal operator M, is bounded on M. In addition, for (a,) € ¢ YAl

O<p<r<ow, 0<g<o and 0<O< pA(Q,one has

(e M) |, < I ey ], 2.2)
2.4. Kernel estimates

Denote by E, (L) a spectral decomposition of L. Then by spectral theory, for any

bounded Borel funtion F :[0,00) — C, we can define
F(L)=[ FO)E (1)
as a bounded operator on L*(R"). It is  well-known that

supp K./t c{(x,y) e R"xR":| x—y|<t}, where K is the kernel of cos(tv/L).

cos(t+/L)
We have the following useful lemma (see, for example, Hofmann et al., 2011).

Lemma 2.5. Let ¢ € S(R) be an even function with suppe < (-1,1) and J.(p =2n. Denote

by @ the Fourier transform of ¢. Then for every ke N, the kernel K of

(PL)* o (/L)

(t2L) Dd(t/L) satisfies suppK {(x,y)eR"xR":| x—y[<t}, and

(EL)* o (L)

C
| K(tzL)kw(t«/E)(X' Y= n

The next lemma provides some key kernel estimates which play an important role in
establishing our main results.
Lemma 2.6. [Bui et al., 2020, Lemma 2.6]
i. Let @ € S(R) be an even function. Then for any N > 0, there exists C >0 such that for

all t>0and x,y €R", we have: [K_ o (x,y)|<Ct"(1+x-y[/t)™.

ii. Let @, ¢, € S(R) be even functions. Then for any N >0, there exists C >0 such that
forall t<s<2tand x,y eR", we have: | K(Pl(tm%(sm(x, y) £ Ct*“(1+ | X—Vy]| /t)’”.

iii. Let ¢, ¢, € S(R) be even functions with ¢!’ (0)=0 for v=0,1,...,2¢ for some
¢ eZ".Thenforany N >0, there exists C >0 such that forall t>s>0and x,y e R", we
have: |K_ oy i (6 V)€ c(srt)> (i x—y| i)™,

Remark 2.7. Note that any function in S(R) with compact supportin (0,) can be extended

to an even function in S(R)with derivatives of all orders vanishing at 0. Hence, the results
in Lemma 2.6 hold for such functions.
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2.5. A new class of distributions
The class of test functions S associated with L is defined as the set of all functions

D(L™) such that B, ,(¢) =sup(l+|x )" | L'dp(X) |< o0, Ym >0,/ eN.

xeR"

den

m>1

S isacomplete locally convex space with topology generated by the family of semi-
norms {R,,:m> 0,/ e N} (see Keryacharian & Petrushev, 2015).

As usual, we define the space of distributions S’ as the set of all continuous linear
functionals on S with the inner product defined by (f,¢)=f(¢), forall f e S’ and ¢ S.

Define by S, the space of all functions ¢ € S such that for each k € N there exists
g, €S sothat ¢=L"g,. Note that such an g, , if exists, is unique (see Georgiadis et al.,
2017). The topology in S, is generated by the following family of semi-norms
P (@) =7P,,(9), m>0,0,k eN, where ¢=Lg,.

We then denote by S_ the set of all continuous linear functionals on S, . In order to
have an insightful understanding about the distributions in S, , one sets
P ={geS":L"g=0},meN, andset P=u,__,P

meN~-m*

Based onProposition 3.7 in Georgiadis et al. (2017) we have the following identification:
Proposition 2.8. S'/P=S. .
It was also proved in Georgiadis et al., 2017 that with L =-A, the Laplacian on R",

the distributionsin S'/IP =S, are identical with the classical tempered distributions modulo

polynomial.
From Lemma 2.6, we can see that if ¢ € S(R) with supp¢ < (0,%), then we have
Koo (%) €S, and K oy YV ES, Therefore, we can define forall f €S,

OVL) F ) =(F. K p (). (23)
Remark 2.9. The support condition supp¢ < (0,00) is essential to be able to define
o(tv/L)f with

f €S_ . Ingeneral, if o e S(R) then we have K

Lemma 2.10. [Bui et al., 2020, Lemma 2.9]
Let f €S and ¢ e S(R) be an even function. Then there exist m >0 and K >0 such that

(p(tﬁ)(x") e S and Kw\/t)(-, y)eS.

|@aJ3fwn<“V‘) @+ x])~. (2.4)

The similar estimate holds true if f €S, and ¢ € S(R) supported in [1/2,2].
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2.6. Maximal function estimates
For A >0, jeZ and ¢ € S(R), the Peetre's type maximal function is defined by

* o, L) f (y)]
(VL) f(x)=su L :
(Pj,k(\/_) ( ) yERe(l_l_lex_yl)k
where ¢;(A) =¢(2"'A) and f S . Then it s clear that
;. L) F () 2o, VL) F ()], xeR".
In addition, for s,A >0, we set
* | o(svL) F(y)]
NI = Wi yissy
Remark 2.11. Due to (2.4), (p;(S\/E) f(x) <o forall xeR", provided that A is sufficiently

large.
In what follows, by a “partition of unity”, we mean a function y e S(R) with

eR",

eS.

suppy c[1/2,2]
J‘@ds #0 and >y, (L) =12 e(0,), where y;(1) =y(27'1), j € Z.
jez
Proposition 2.12. [Bui et al., 2020, Proposition 2.16]
Let w e S(R) with suppy <[1/2,2] and ¢ S(R) be a partition of unity. Then for any

L>0,jeZ,wehaveforall feS and xeR":
j+3
sup (VL) F(X) S Y o, (VL) F(X). (2.5)
se[2711 271 k=j-2

Proposition 2.13. [Bui et al., 2020, Proposition 2.17]
Let y be a partition of unity. Then for 4,s,r>0, we have for all f €S, and xeR":

1r

VD05 [ ueD @ (12 rdz} . 26)

Proposition 2.14. [Bui et al., 2020, Proposition 2.18]
Let y be a partition of unity and ¢ € S(R) be an even function such that ¢ =0 on [1/2,2].

Then for any A,r>0 and jeZ we have for all feS:
2—j+2 N rds ;
SOOI (SRCYBIGTES i

3. Triebel-Lizorkin-Morrey spaces associated with L
3.1. Definitions of TLM spaces associated with L
Definition 3.1. Let y be a partition of unity. For 0< p<r<ow, 0<q<o, a e R, the

homogeneous TLM space FM “¥:" is defined by

p.q.r
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p.q.r

FMert ={feS : If I, <o},

where

1y = L2 @ 1wy (VE) £ 7] ],

jeZ

Note that \yj(\/f)f =0 forall jeZ ifandonly if f P (see page 27 of Bui et

al., 2020). Hence, each of the above spaces is a quasi-normed linear space, particularly a
normed linear space when p,q>1.
In light of Proposition 2.12, one has:
Proposition 3.2. Let y,¢ be partitions of unity and assume suppwv,suppo c[1/2,2],
0<p<r<ow,0<qg<o,aeRand A>0. Then the following norm equivalence holds

forall fes,: [[X @ v, O T ||, ~ I[Z @ 1o, Oyt D] ],

jeZ jezZ
We next prove the following result.
Proposition 3.3. Let y be a partition of unity. Thenfor 0< p<r<ow,0<q<owo, e R

and 1. > max{n/ p, n/q}, we have: [ (2" |y, (VL) f ° ] IL ~ UL,

jez
Proof. In view of Proposition 3.2, it suffices to prove that
e tv, Ol I, < e v,doiyl |, 6
jez jez

Indeed, taking 6 < min{p,q} sothat A >n/0, then applying (2.6) gives
. " ) B 1/6
v, DT S[[L2" v, DT @ P @+ 2" [x-2)"dz | SM(lw, VL) D),

where we use Lemma 2.1 in the last inequality. The desired inequality (3.7) then follows by
the Fefferman-Stein maximal inequality (2.1).

As a consequence of Proposition 3.2 and Proposition 3.3, we obtain the following
theorem.

Theorem 3.4. Let yand ¢ be partitions of unity. Then the spaces FM “*:* and FM **"

p.q.r p.q.r
coincide with equivalent norms for all 0 < p<r <o, 0<q <00, o € R. For this reason,

we define the spaces FM qu to be any spaces FM 7 ;’rL with any partitions of unity .

Remark 3.5. It is standard to show that the space FM ;“qu is complete and is continuously

embedded into S’

3.2. Continuous characterizations by functions with compact supports
In this subsection, we will prove continuous characterizations for new TLM spaces
including the ones using Lusin functions and the Littlewood-Paley functions.
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Theorem 3.6. Let y be a partition of unity. Thenfor 0< p<r <o, 0<q<o, e R and

A >max{n/ p, n/q}, we have for allf eS|

I e = IO VD 1 IS 1] = IR v /D 1S9 ],

Proof. The proof is divided into three steps.
Step 1. We first claim that

I T wedD I, <, 38)
Indeed, for t e[27',27'] with j € Z, it follows from (2.5) that

sup |w(tf)f(x>|< Zw“(f)f(x)

te[27 112 k=j-2
The estimate (3.8) then follows from the above inequality and Proposition 3.2.
Step 2. We next prove that

R (N RAGY NI %)1’ - (3.9)
Indeed, in view of Proposition 2.14, we derive

v, D RIS () WD f o )”“

which implies (3.9).
Step 3. We complete the proof of Theorem 3.6 by showing that

I, v DD < I T veD 1 1PHY ), - @0

Taking 6 <min{p,q} so that A >n/6, then applying (2.6) yields that for all
tell2]:

| \V; (ijt\/t) f(x)'< .[R" 27 | \V(ijt\/t) f(2)P (1+27 |x—z[)™dz.

Since 6 < g, we use Minkowski's inequality to obtain

(v @D feor D) s [L2" (M@ WD @ F S a+ 2 [x-2) ez

By a change of variables, it is clear to see that

{I (t v, (VD) F () ﬂ

- i+ 0/q -
sk D (" L) f(2) I)“%} L+2' [x—z])*dz.
At this stage, in light of Lemma 2.1, we deduce that if A0 > n then
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(RO dt)“‘%M{(L, WD) [ dt)“ﬂ(x),

which, combined with (2.1), gives the desired estimate (3.10).
4.  Atomic decompositions for TLM spaces FM ;‘qu

In this section, we prove the atomic decomposition characterization for TLM spaces.
We first present the definition of atoms related to L.

Definition 4.1. Let 0<r <o and M € N . A function a is said to be an (L,M,r) atom
if there exists a dyadic cube Q € D such that:

i. a=L"b with be D(L"), where D(L") is the domain of L ;

ii. suppL‘b = 3Q, k=0,...,2M

iii. | LD(x) |< £(Q)*™™|Q [,k =0,...,2M .

Under the proof of [Bui et al., 2020, Theorem 4.2], we have the following lemma.
Lemma 4.2. Let y be a partition of unity, @ be a function as in Lemma2.5,0< p<r <,

0<q<w,aecR,and M eN . Set y,, (0) =0"y(0), thenforany f €S _, we have
the following statements:

i. = s,a, inS, where s, _|Q|1”supj,1|\., (tf)f(y)l— a, = L"b,

veZ QeD,

are (L,M,r) atoms, and b, :Si [ oDy, (V) 1 .1Q]Tt. (4.11)
Q

ii. Forany . >0,m> o /2, wehave: > Q["]s, 11, S ZZfzm'“’j'w}k(\/E) f.

QeD, jeZ

Next, we prove the following atomic decomposition theorem for the spaces FM qur .

Theorem 4.3. Let 0< p<r<ow,0<q<w,acR,and M eN_. If f eFM%" then

p.q.r
there exist a sequence of (L,M,r) atoms (a,),.p ., @nd a sequence of coefficients

- — H !/
(So)oen, vez SO that: —ZZ:QZD S,8, in S.. Moreover, one has

2 (R s 1) T Il <,

VEZ

Proof. Let y be a partition of unity, ® be a function as in Lemma 2.5. Set
v, (0)=0""y(@). In light of Lemma 4.2, for feS_, we have:

[e’e]
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f=>3 s,a, inS., where s, _|Q|“fsupj |\|;M(tf)f(y)|— a, = ", are

veZ QeD,

(L,M,r) atoms, and b, :S—Lz:ltZMCD(t\/E)[\VM (tx/t)f.lQ]Tt
Q

Moreover, for any A>0m>al?2, we have
> RIMsg 11, S Y27y, (VL) f.
QeD, JeZ
Hence

2 (X RMs 1)1 I, s X 2= (X2 i, o)l |,

veZ QeD, veZ jez
[Z(ZZ =2mlv—jl+a(v- j)zqujx(\/_) f) ]llq |L|
veZ jeZ

At this stage, we apply Young's inequality when q>1 and the inequality
(Z|aj )9 < Zlaj |* when 0 < q <1 to deduce that

||[22V“Q(Z|Q|‘”'|s )1 I, < ||[Z(2’“\ij(\/_)f) Pl s e,

VEZ
where we use Proposmon 3.3 in the last inequality. This completes our proof.
For the converse direction, we obtain the following theorem.
Theorem4.4.Let 0< p<r<w,0<q<oo,aeR,and M e N _. If
f=>> 5,3, inS,
veZ QeD,

where (a,)op, vz, 1S @ sequence of (L,M,r) atoms and (s is a sequence of

Q )QED \VEZ

coefficients satisfying ||[22V°‘q(z RI™s, 11, )] Hﬂ <oo, then f e FM ¢ and

veZ QeD,
TN ||[ZZ;2V““(QZDD|‘1"IS )T |,

provided that M >ﬂ+1max o, —Olp.
2 2 IATrAQ

Proof. Fix e (L, ) and 6 <min{l, p,q}. It follows from the proof of [Bui et al., 2020,
Theorem 4.7] that

2]a|w (\/—)f |< 22 (v=j)(2M —ng/6— u)/\/le(z 2va|s ”Ql—l/r lQ)

viv>j

+ 3 2 (Y 2% |5, 1 QI 1Q).

viv<j QeD,
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By using (2.2), we conclude that

|| f |LMg;;r: ||[Z:(21OL |\Vj(\/t)f |)q]1/q HA;S ||[22wq (QZ,; QY S |1Q)q]1/q HA;,

jeZ veZ

which completes the proof.
Remark 4.5. By a careful examination of the proof of Theorem 4.3, it is apparent to see that

each atom a, = LZMbq, defined by (4.11), belongs to the space of test functions S_. As a
direct consequence of the atomic decomposition results mentioned above, the space S_ of

test functions is dense in FM ;"’qfr for 0O< p<r<o,0<q<ow,aeckR.
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KHONG GIAN TRIEBEL-LIZORKIN-MORREY
LIEN KET VOI TOAN TU LIEN HQP KHONG AM
Tran Tri Diing"", Nguyén Ngoc Treng!, Nguyén Hoang Truc?
Trwong Pai hoc Si pham Thanh phd Ho Chi Minh, Viét Nam
2Trirong Pai hoc Kinh té Tai chinh Thanh phé Hé Chi Minh, Viét Nam
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Ngay nhgn bai: 09-10-2021; ngay nhan bai sia: 15-10-2021; ngay chap nhén dang: 22-10-2021

TOM TAT

Xét L 1a mgt toan ti lién hop khdng am trén L*(IR") sao cho nhan nhiét cia L théa man diéu
kién bi chan trén Gaussian. Trong bai bdo nay, ching téi gigi thiéu khdong gian Triebel-Lizorkin-
Morrey FM qu (R") liénkét véi toan ti L, trong dé 0 < p,q < oo, o € R.. Ching t6i chizng minh
rang cac khong gian méi nay théa méan cdc ddc trung quan trong nhu déc trung lién tuc theo céc
ham binh phwong hodc dac trung phan tich nguyén tir.

Tir khoa: phan tich nguyén tir; dic trung lién tuc; diéu kién bi chan trén Gaussian; khdng gian
Triebel-Lizorkin-Morrey
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