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ABSTRACT 

Let L be a nonnegative self-adjoint operator on 2 ( )nL   with a heat kernel satisfying a 

Gaussian upper bound. In this work, we introduce Triebel-Lizorkin-Morrey spaces ,L
, ( )n

p qFM α
  

associated with the operator L for the entire range 0 , ,p q< ≤ ∞ α∈ . We then prove that our 
new spaces satisfy important features such as continuous characterizations in terms of square 
functions, or atomic decomposition.  

Keywords: atomic decompositions; continuous characterization; Gaussian upper bound; 
Triebel-Lizorkin-Morrey space 
 
1. Introduction 
 The classical Triebel-Lizorkin spaces on Euclidean spaces n

 , considered as 
generalizations of other classical spaces such as Lesbegue spaces, BMO spaces, Hardy 
spaces, and Sobolev spaces, are essential in approximation theory and partial differential 
equations. Recently, the theory of new Triebel-Lizorkin spaces associated with differential 
operators L has been developed by many mathematicians in various settings. We summarize 
here some remarkable literature related to this new research development: 

- Using the existence of the approximation of identity, Han and Sawyer (1994) 
developed a theory of Triebel-Lizorkin spaces ,

s
p qF  for a range 1 ,p q≤ ≤ ∞  and ( , )s∈ −θ θ  

for some (0,1)θ∈  on metric measure spaces with polynomial volume growths. 
- Petrushev and Xu (2008) introduced new Triebel-Lizorkin spaces associated with the 

Hermite operator with a full range of indices. They then proved the frame decompositions 
for these spaces by making use of estimates of eigenvectors of the Hermite operators. Similar 
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results were also proved for the Laguerre operator by Kerkyacharian et al.(2009). The theory 
of these function spaces was further developed by Bui and Duong (2017) in which the 
authors proved molecular and atomic decompositions theorems and square function 
characterizations for these spaces. 

- Under the assumption that L is a nonnegative self-adjoint operator satisfying Gaussian 
upper bounds, Holder continuity, and Markov semigroup properties, the frame 
decompositions of Triebel-Lizorkin spaces associated with L with a full range of indices 
were studied in Georgiadis et al. (2017). This theory has a wide range of applications from 
the setting of Lie groups to Riemannian manifolds. 

- Bui et al. (2020) established a theory of weighted Besov and Triebel-Lizorkin spaces 
associated with a nonnegative self-adjoint operator. In contrast to Georgiadis et al. (2017), 
the authors assumed the Gaussian upper bound, but did not assume Holder continuity on the 
heat kernels nor the Markov properties (the conservation property). This allows their theory 
to cover a wider range of applications including regularity estimates for certain singular 
integrals with rough kernels which are beyond the class of Calderon-Zygmund operators. 
 On the other hand, many authors have extended the theory of Triebel-Lizorkin spaces 
to the setting Triebel-Lizorkin-Morrey (TLM in abbreviation) by using Morrey spaces in 
place of ( )npL   in the definition of Triebel-Lizorkin spaces, as they realized that TLM 
spaces share key properties of Triebel-Lizorkin spaces, and represent local oscillations and 
singularities of functions better than Triebel-Lizorkin spaces do. We also list here some 
important results related to this research direction: 

- Tang and Xu (2005) introduced the inhomogeneous TLM spaces and studied lifting 
properties, Fourier multiplier theorem, and the discrete characterization of inhomogeneous 
TLM spaces. 

- Sawano (2008) characterized the inhomogeneous TLM spaces in terms of wavelet. 
- Wang (2009) established the decomposition of homogeneous TLM in terms of 

molecules. 
- Nguyen et al. (2020) investigated TLM spaces associated with Hermite operators by 

adapting the technique of maximal functions introduced by Fefferman-Stein and Peetre, 
whereas usual approaches for these types of function spaces are based on Littlewood-Paley 
decompositions. As a result of this distinct approach, it is possible to extend the theory of 
the inhomogeneous TLM spaces to the setting where p  and q  are below the endpoint 1. 

Let L be a nonnegative, self-adjoint operator on 2 ( )nL   which generates a semigroup 

( )
0

tL

t
e−

>
, and ( , )tp x y  be the kernel of this semigroup. Throughout the paper, we always 

assume that the kernel ( , )tp x y  holds a Gaussian upper bound (GUB), i.e., there exist two 

positive constants C  and c  such that for all , nx y∈  and 0t > , 
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2

/2

| || ( , ) | exp .( )t n

C x yp x y
t ct

−
≤ −  

Noting that such an operator L covers the classical Schrodinger operators associated 
with nonnegative potentials satisfying the reverse Holder inequality on n

 , our main aim in 
this paper is to develop the theory of new Triebel–Lizorkin-Morrey spaces associated with 
such a nonnegative, self-adjoint operator satisfying the Gaussian upper bound. It should be 
pointed out that in this work, we do not assume the additional conditions such as Holder 
continuity estimate and Markov semigroup property for the setting Lebesgue spaces. So as 
to be able to present the new TLM spaces, we use spectral decompositions of nonnegative 
self-adjoint operators. Moreover, the extension of relevant classical techniques and tools to 
the current setting is nontrivial, including new ideas concerning new space of distributions 
and several estimates related to maximal functions associated with functional calculus of L 
which were established recently. These are interests in their own right and should be useful 
in future research in the field.  

Our paper is organized as follows: Section 2 recalls preliminaries, class of 
distributions, and related estimates. Section 3 presents the definition of new TLM spaces and 
the proof of continuous characterizations of new TLM spaces in terms of square functions 
via heat kernels. Section 4 establishes atomic decompositions results of these new spaces.  

Throughout the paper, we use C  and c  to denote positive constants that are 
independent of the main parameters involved but whose values may differ from line to line. 
We write A B  if there is a universal positive constant C so that A CB≤  and ~A B  if 
A B  and .B A  Set {1;2;3;...}=  and {0}.+ = ∪   For 1 p≤ ≤ ∞ , denote by 'p  the 

conjugate exponent of p , i.e. 1 1  1.
'p p

+ =  In addition, given 0λ >  and a ball ( , )B BB B x r=

, we write Bλ  for the λ -dilated ball, which is the ball with the same center as B  and with 
the radius .B Br rλ = λ  For each ball nB ⊂  , we set 

1
0 2  ( ) 4 and ( ) 2 \ for 3j j

jS B B S B B B j−= = ≥ . Finally, for ,a b∈ , let min{ , }a b a b∧ =  

and max{ , }a b a b∨ = .  
2.  Preliminaries, class of distributions, and related estimates 
2.1.  Dyadic cubes  
 Firstly, let us recall the set of all dyadic cubes   in n

  

1 2
1

2 , ( 1)2 : , ,..., , .[ )
n

k k
j j n

j

m m m m m k
=

 
= + ∈ 
 
∏   
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For a dyadic cube 
1

: 2 , ( 1)2[ )
n

k k
j j

j

Q m m
=

= +∏ , we denote by ( )Q  and Qx  the length 

and the center of the dyadic cube Q  respectively. For v∈ , we set 

{ }: ( ) 2 .v
v Q Q= ∈ =   

2.2.  The Hardy-Littlewood maximal function 
Let 0 .< θ < ∞  The Hardy-Littlewood maximal function θ  be defined by 

1/
1( ) sup | ( ) | ,

| | Bx B
df x f y

B
y

θ
θ

θ
∈

 
 
 

= ∫  

where the supremum is taken over all balls B containing .x  The subscript θ  is dropped  
when 1.θ =  

The following elementary estimates will be used in the sequel (see, for example, Bui 
et al., 2018). 
Lemma 2.1. Let , 0s ε > and [1, ]p∈ ∞ . 

i. For all nx∈ , we have: 1/ /| .1 | /( [( ) ] )
n

n p p n px y dys s− −+ −∫


  

ii. For any ( )1 n
locf L∈  , nx∈ , we have: .1 1 | | / | ( ) | ( )( )

n n
nx y s f y dy f x

s
− −+ −∫



     

2.3.  Morrey space 
We recall here some important estimates involving Morrey spaces which are used in 

the following sections. 
Lemma 2.2. [Trong et al., 2020, Lemma 2.5]  

The following statements hold true: 
i. For 0 p r< ≤ < ∞ , we have: 1/ 1/

M ( )
~ sup | | .r p

p

r p
Q L Q

f Q f−
∈‖ ‖ ‖ ‖  

ii. For any 0 p r< ≤ < ∞ , 0θ > , we have: 
M M

.r r
p p

f f θ
θ

θ θ‖ ‖ ‖ ‖    

iii. (Minkowski's inequality) For any 0 q p r< ≤ ≤ < ∞ , we have:  
1/ 1/

M
M

| ( , ) | ( , ) .r
p

r
p

q q
b b qq

a a

dt dtF t F t
t t

   ⋅ ⋅   
   ∫ ∫  

The next lemma (the Fefferman-Stein vector-valued maximal inequality) plays a key 
role in this paper. 
Lemma 2.3. [Trong et al., 2020, Lemma 2.6] Let 0 p r< ≤ ≤ ∞ , 0 q< ≤ ∞  and 

0 .p q< θ < ∧  Then for any sequence of measurable functions { }v vf ∈ , we have 

1/ 1/
M M

| ( ) | | | .( ) ( )r r
p p

q q q qf fθ ν ν
ν∈ ν∈
∑ ∑
 

|| || || ||  (2.1) 



HCMUE Journal of Science Vol. 18, No. 12 (2021): 2111-2123 

 

2115 

Remark 2.4. As a consequence of Lemma 2.3, if 0 p r< ≤ ≤ ∞  and 0 1p< θ < ∧  then the 

Hardy-Littlewood maximal operator θ  is bounded on M .r
p  In addition, for 1,( ) qaν ∈ ∩   

0 ,p r< ≤ ≤ ∞  0 q< ≤ ∞  and 0 p q< θ < ∧ , one has  

1/ 1/
M M

| ( ) | | | .( ) ( )r r
p p

q q q q
j

j
a f f−ν θ ν ν

ν ν
∑ ∑ ∑‖ ‖ ‖ ‖  (2.2) 

2.4.  Kernel estimates 
 Denote by L ( )E λ  a spectral decomposition of L . Then by spectral theory, for any 

bounded Borel funtion :[0, )F ∞ → , we can define 

0
( ) ( ) ( )LF L F dE

∞
= λ λ∫  

as a bounded operator on 2 ( )nL  . It is well-known that

cos( )supp {( , ) :| | },L
n n

tK x y x y t⊂ ∈ × − ≤   where 
cos( )t LK  is the kernel of cos( )t L . 

We have the following useful lemma (see, for example, Hofmann et al., 2011). 
Lemma 2.5. Let ( )Sϕ∈   be an even function with supp ( 1,1)ϕ⊂ −  and 2ϕ = π∫ . Denote 

by Φ  the Fourier transform of ϕ . Then for every k∈ , the kernel 2( ) ( )kt L t L
K

Φ
 of 

2( ) ( )kt L t LΦ  satisfies 2( ) ( )
supp {( , ) :| | },k

n
L

n
t tL

K x y x y t
Φ

⊂ ∈ × − ≤   and  

2( ) ( )
| ( , ) | .kL L nt t

CK x y
tΦ

≤  

The next lemma provides some key kernel estimates which play an important role in 
establishing our main results. 
Lemma 2.6. [Bui et al., 2020, Lemma 2.6]  

i. Let ( )Sϕ∈   be an even function. Then for any 0N > , there exists 0C >  such that for 

all 0t > and ,, nx y∈  we have: 
( ) .| ( , ) | 1 | /( )n N
t LK x y Ct x y t− −

ϕ
≤ + −  

ii. Let 1 2, ( )Sϕ ϕ ∈   be even functions. Then for any 0N > , there exists 0C >  such that 

for all 2t s t≤ < and ,, nx y∈  we have: 
1 2( ) ( ) .| ( , ) | 1 | | /( )n N

t sL LK x y Ct x y t− −
ϕ ϕ

≤ + −  

iii. Let 1 2, ( )Sϕ ϕ ∈   be even functions with ( )
2 (0) 0νϕ =  for 0,1, , 2ν = …   for some 

+∈  . Then for any 0N > , there exists 0C >  such that for all 0t s≥ > and ,, nx y∈  we 

have: 
1 2

2
( ) ( )| .( , ) | / 1 | | /( ) ( )n N

s Lt LK x y C s t t x y t− −
ϕ ϕ

≤ + −  

Remark 2.7. Note that any function in ( )S   with compact support in (0, )∞  can be extended 
to an even function in ( )S  with derivatives of all orders vanishing at 0. Hence, the results 
in Lemma 2.6 hold for such functions. 
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2.5.  A new class of distributions 
 The class of test functions  associated with L  is defined as the set of all functions 

1 ( )m
m D L≥φ∈∩  such that , ( ) sup(1 | |) | ( ) | , 0, .

n

m
m

x
x L x m

∈
φ = + φ < ∞ ∀ > ∈





   

  is a complete locally convex space with topology generated by the family of semi-
norms ,{ : 0, }m m > ∈



   (see Keryacharian & Petrushev, 2015).  

As usual, we define the space of distributions ′  as the set of all continuous linear 
functionals on  with the inner product defined by , ( )f f〈 φ〉 = φ , for all f ′∈  and φ∈ . 

Define by ∞  the space of all functions φ∈  such that for each k∈  there exists 

kg ∈  so that k
kL gφ = . Note that such an kg , if exists, is unique (see Georgiadis et al., 

2017). The topology in ∞  is generated by the following family of semi-norms 
*
, , ,( ) ( ), 0, , ,m k m kg m kφ = > ∈
 

    where .k
kL gφ =  

We then denote by '
∞  the set of all continuous linear functionals on ∞ . In order to 

have an insightful understanding about the distributions in '
∞ , one sets 

{ : 0}, ,m
m g L g m′= ∈ = ∈   and set .m m∈= ∪



    
Based onProposition 3.7 in Georgiadis et al. (2017) we have the following identification: 
Proposition 2.8. '/ .∞′ =   

It was also proved in Georgiadis et al., 2017 that with L = −∆ , the Laplacian on ,n
  

the distributions in '/ ∞′ =  are identical with the classical tempered distributions modulo 
polynomial. 

From Lemma 2.6, we can see that if ( )Sϕ∈   with supp (0, )ϕ⊂ ∞ , then we have 

( ) ( , )t LK x ∞ϕ
⋅ ∈  and 

( ) ( , )t LK y ∞ϕ
⋅ ∈ . Therefore, we can define for all 'f ∞∈  

( )( ) ( ) , ( , ) .Ltt L f x f K x
ϕ

ϕ = 〈 ⋅ 〉   (2.3) 

Remark 2.9. The support condition supp (0, )ϕ⊂ ∞  is essential to be able to define 

( )t L fϕ  with 
' .f ∞∈  In general, if ( )Sϕ∈   then we have 

( ) ( , )t LK x
ϕ

⋅ ∈  and 
( ) ( , )t LK y

ϕ
⋅ ∈ .  

Lemma 2.10. [Bui et al., 2020, Lemma 2.9] 
Let 'f ∈  and ( )Sϕ∈   be an even function. Then there exist 0m >  and 0K >  such that  

1( )| ( ) ( ) | (1 | |) .
m

K
n

t tt L f x x
t

−∨
ϕ +  (2.4) 

The similar estimate holds true if 'f ∞∈ and ( )Sϕ∈   supported in [1/ 2,2] . 
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2.6.  Maximal function estimates 
 For 0, jλ > ∈  and ( )Sϕ∈  , the Peetre's type maximal function is defined by  

*
, ,

| L( ) ( ) |
( ) ( ) sup ,

(1 2 | |)n

j n
j j

y
L

f y
f x x

x yλ λ
∈

ϕ
ϕ = ∈

+ −


  

where ( ) (2 )j
j

−ϕ λ = ϕ λ  and 'f ∈ . Then it is clear that  
*

, ( ) ( ) | ( ) ( ) |,L L .n
j jf x f x xλϕ ≥ ϕ ∈  

In addition, for , 0,s λ >  we set 

* | ( ) ( ) |( ) ( ) sup , .
(1 | | / )ny

s f ys f x f
x y s

LLλ λ
∈

ϕ ′ϕ = ∈
+ −



  

Remark 2.11. Due to (2.4), * ( ) ( )s L f xλϕ < ∞  for all nx∈ , provided that λ  is sufficiently 
large. 

In what follows, by a “partition of unity”, we mean a function ( )Sψ∈   with 
supp [1/ 2,2]ψ ⊂  

( ) 0s ds
s

ψ
≠∫  and ( ) 1, (0, ),j

j∈
ψ λ = λ∈ ∞∑



 where ( ) (2 ), .j
j j−ψ λ = ψ λ ∈  

Proposition 2.12. [Bui et al., 2020, Proposition 2.16] 
Let ( )Sψ∈   with supp [1/ 2,2]ψ ⊂  and ( )Sϕ∈  be a partition of unity. Then for any 

0, jλ > ∈ , we have for all 'f ∞∈ and nx∈ : 

1

3
* *

,
[2 ,2 ] 2
sup ( ) ( ) ( ) ( ). 

j j

j

k
s k j

s L f x L f x
− − −

+

λ λ
∈ = −

ψ ϕ∑  (2.5) 

Proposition 2.13. [Bui et al., 2020, Proposition 2.17] 
Let ψ  be a partition of unity. Then for , , 0s rλ > , we have for all 'f ∞∈ and nx∈ : 

1/

* | |( ) ( ) | ( ) ( ) .| 1
n

rr
n r x zs L f x s s L f z d

s
z

−λ
−

λ

 − ψ ψ +  
   

∫


  (2.6) 

Proposition 2.14. [Bui et al., 2020, Proposition 2.18] 
Let ψ  be a partition of unity and ( )Sϕ∈   be an even function such that 0ϕ ≠  on [1/ 2,2]. 

Then for any , 0rλ >  and j∈  we have for all 'f ∈ :
2

2

2 * 1/

2
| ( ) ( ) | | ( ) ( ) |( )

j

j

r r
j

dsL f x s L f x
s

− +

− − λψ ϕ∫ . 

3.  Triebel-Lizorkin-Morrey spaces associated with L 
3.1. Definitions of TLM spaces associated with L 
Definition 3.1. Let ψ  be a partition of unity. For 0 ,p r< ≤ < ∞ 0 ,q< ≤ ∞ α∈ , the 

homogeneous TLM space , ,
, ,

L
p q rFM α ψ  is defined by  
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, ,
, ,

L F
, ,
, , M

: },{
p q r

L
p q rFM f f α ψ∞
α ψ ′= ∈ ∞< ‖ ‖  

where 

( )L, ,
, ,

 MFM
1/(2 | |) .L[ ] r

p q r p

j q q
j

j
f fα ψ

α

∈

= ψ∑


‖ ‖ ‖ ‖  

Note that ( ) 0Lj fψ =  for all j∈  if and only if f ∈  (see page 27 of Bui et 

al., 2020). Hence, each of the above spaces is a quasi-normed linear space, particularly a 
normed linear space when , 1.p q ≥  
In light of Proposition 2.12, one has: 
Proposition 3.2. Let ,ψ ϕ  be partitions of unity and assume supp ,supp [1/ 2,2]ψ ϕ⊂ , 
0 ,p r< ≤ < ∞ 0 ,q< ≤ ∞ α∈ and 0λ > . Then the following norm equivalence holds 

for all f S ′
∞∈ :   * 1/ * 1/

, ,M M
L .(2 | ( ) |) ~ (2 | ( ) |)[ ] [ ]r r

p p

j q q j q q
j j

j j
Lf fα α

λ λ
∈ ∈

ψ ϕ∑ ∑
 

‖ ‖ ‖ ‖  

We next prove the following result. 
Proposition 3.3. Let ψ  be a partition of unity. Then for 0 ,p r< ≤ < ∞ 0 ,q< ≤ ∞ α∈  

and max{ / , / }n p n qλ > , we have: 
,

 L, ,
,

* 1
F, M M

/ .(2 | ( ) |) ~[ ] r
p p q r

j q q
j

j
f fL α ψ

α
λ

∈

ψ∑


‖ ‖‖ ‖  

Proof. In view of Proposition 3.2, it suffices to prove that 
* 1/ 1/

, M M
(2 | ( ) |) (2 | ( ) |) .[ ] [ ]r r

p p

j q q j q q
j j

j j
f fL Lα α

λ
∈ ∈

ψ ψ∑ ∑
 

‖ ‖ ‖ ‖   (3.7) 

Indeed, taking min{ , }p qθ <  so that /nλ > θ , then applying (2.6) gives 
1/

*
, ( ) ( ) 2 | ( ) ( ) | (1 2 | |) (| ( ) |)( ),n

jn j
j j jL f x L f z x z L fz xd

θ
θ −λθ

λ θ
 ψ ψ + − ψ ∫


 

where we use Lemma 2.1 in the last inequality. The desired inequality (3.7) then follows by 
the Fefferman-Stein maximal inequality (2.1). 
 As a consequence of Proposition 3.2  and Proposition 3.3, we obtain the following 
theorem. 
Theorem 3.4. Let ψ and ϕ  be partitions of unity. Then the spaces , ,

, ,
L

p q rFM α ψ  and , ,
, ,

L
p q rFM α ϕ  

coincide with equivalent norms for all 0 ,p r< ≤ < ∞ 0 ,q< ≤ ∞ α∈ . For this reason, 

we define the spaces  ,
, ,

L
p q rFM α  to be any spaces , ,

, ,
L

p q rFM α ψ  with any partitions of unity ψ . 

Remark 3.5. It is standard to show that the space ,
, ,

L
p q rFM α  is complete and is continuously 

embedded into S ′
∞ . 

3.2.  Continuous characterizations by functions with compact supports 
 In this subsection, we will prove continuous characterizations for new TLM spaces 
including the ones using Lusin functions and the Littlewood-Paley functions. 
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Theorem 3.6. Let ψ  be a partition of unity. Then for 0 ,p r< ≤ < ∞ 0 ,q< ≤ ∞ α∈  and 

max{ / , / }n p n qλ > , we have for all f S ′
∞∈  : 

, ,
L,

*
M M0F 0M

1/ 1/ .~ | ( ) | ~ ( )( [ ] ) ( [ ] )r r
p q r p p

q q q qdt dtf t t L f
t

t t L f
tα

−α −α∞

λ

∞
ψ ψ∫ ∫‖ ‖ ‖ ‖ ‖ ‖  

Proof. The proof is divided into three steps. 
Step 1. We first claim that 

, ,
L,M0 FM

1/ .| ( ) |( [ ] ) r
p p q r

q qdtt t L f f
t α

∞ −α ψ∫ ‖ ‖‖ ‖  (3.8) 

Indeed, for 1[2 ,2 ]j jt − − −∈  with j∈ , it follows from (2.5) that  

1

3
*

,
[2 ,2 ] 2
sup | ( ) ( ) | ( ) ( ).

j j

j

k
t k j

t L f x L f x
− − −

+

λ
∈ = −

ψ ψ∑  

The estimate (3.8) then follows from the above inequality and Proposition 3.2. 
Step 2. We next prove that 

,
,
L

,

*
M0FM

1/ .( )( [ ] ) r
p q r p

q q
t
dtf t t L fα

−α
λ

∞
ψ∫‖ ‖ ‖ ‖  (3.9) 

Indeed, in view of Proposition 2.14, we derive 
2

2

2 * 1/

2
| ( ) ( ) | | ( ) ( ) | ,( )

j

j

q q
j L f x L ss f x d

s

− +

− − λψ ψ∫  

which implies (3.9). 
Step 3. We complete the proof of Theorem 3.6 by showing that  

*
M M0 0

1/ 1/ .( ) | ( ) |( [ ] ) ( [ ] )r r
p p

q q q qdt dtt t L f t f
t

t L
t

∞ − −α
λ

∞αψ ψ∫ ∫‖ ‖ ‖ ‖   (3.10) 

Taking min{ , }p qθ <  so that /nλ > θ , then applying (2.6) yields that for all 
[1,2]t∈ : 

*| (2 ) ( ) | 2 | (2 ) ( ) | (1 2 | |) .n

j jn j jt L f x t L f z x z dz− θ − θ −λθ
λψ ψ + −∫



  

Since qθ < , we use Minkowski's inequality to obtain 
2 2* / /

1 1
| (2 ) ( ) | 2 | (2 ) ( ) | (1 2 | |) .( ) ( )n

j q q jn j q q jdt d zt L f x t L f z xt d
t

z
t

− θ − θ −λθ
λψ ψ + −∫ ∫ ∫





By a change of variables, it is clear to see that 
1

1

/
2 *

2

/
2

2

( | ( ) ( ) |)

2 ( | ( ) ( ) |) (1 2 | |) .

j

j

j

n j

q
q

q
jn q j

dtt t L f x
t

dtt t L f z x z
t

dz

− +

−

− +

−

θ
−α

λ

θ
−α −λθ

 ψ  

 ψ + −  

∫

∫ ∫



 

At this stage, in light of Lemma 2.1, we deduce that if nλθ >  then 
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1 12 2* 1/ 1/

2 2
| ( ) ( ) | | ( ) | ( ),( ) ( )

j j

j j

q q q qt f x tdt dtL
t t

L f x
− + − +

− −λ θ
 ψ ψ  ∫ ∫  

which, combined with (2.1), gives the desired estimate (3.10). 
4.  Atomic decompositions for TLM spaces ,

, ,
L

p q rFM α  

 In this section, we prove the atomic decomposition characterization for TLM spaces. 
We first present the definition of atoms related to L. 
Definition 4.1. Let 0 r< ≤ ∞  and M +∈ . A function a  is said to be an ( , , )L M r  atom 

if there exists a dyadic cube Q∈  such that: 

i. Ma L b=  with ( )Mb D L∈ , where ( )MD L  is the domain of ML ; 

ii. supp 3 , 0, ,2kL b Q k M⊂ = … ; 

iii. 2( ) 1/| ( ) | ( ) | | , 0, ,2k M k rL b x Q Q k M− −≤ = … . 
Under the proof of [Bui et al., 2020, Theorem 4.2], we have the following lemma. 

Lemma 4.2. Let ψ  be a partition of unity, Φ  be a function as in Lemma 2.5,0 ,p r< ≤ < ∞

0 ,q< ≤ ∞ α∈ , and M +∈ . Set 2( ) ( )M
M

−ψ θ = θ ψ θ , then for any f S ′
∞∈ , we have 

the following statements: 

i. in ,Q Q
Q

f s a
νν∈ ∈

∞′= ∑ ∑
 

 where 
1

21/

2
| | sup | ( ) ( ) | ,r

Q M
y Q

dts Q t L f y
t

−ν

−ν−
∈

= ψ∫  M
Q Qa L b=  

are ( , , )L M r  atoms, and 
1

2 2

2

1 ( )[ ( ) .1 ] .M
Q M Q

Q

b t f dtLt
t

t L
s

−ν

−ν−
= Φ ψ∫               (4.11) 

ii. For any 0, / 2,mλ > > α  we have: 1/ 2 | | *
,| | | |1 2 ( ) .r m j

Q Q j
Q j

Q s L f
ν

− − ν−
λ

∈ ∈

ψ∑ ∑





 

Next, we prove the following atomic decomposition theorem for the spaces ,
, ,

L
p q rFM α . 

Theorem 4.3. Let 0 ,p r< ≤ < ∞ 0 ,q< ≤ ∞ α∈ , and M +∈ . If ,
, ,

L
p q rf FM α∈  then 

there exist a sequence of ( , , )L M r  atoms ,( )Q Qa
ν∈ ν∈  and a sequence of coefficients 

,( )Q Qs
ν∈ ν∈  so that: in .Q Q

Q
f s a

νν∈ ∈
∞′= ∑ ∑

 

  Moreover, one has 

,
, ,

1/ 1/
M

2 | | | |1 .[ ( ) ] r L
p p q r

q r q
FQ Q

Q
M

qQ s f α

ν

να −

ν∈ ∈
∑ ∑





‖ ‖‖ ‖  

Proof. Let ψ  be a partition of unity, Φ  be a function as in Lemma 2.5. Set 
2( ) ( )M

M
−ψ θ = θ ψ θ . In light of Lemma 4.2, for f S ′

∞∈ , we have: 
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in ,Q Q
Q

f s a
νν∈ ∈

∞′= ∑ ∑
 

 where 
1

21/

2
| | sup | ( ) ( ) | ,r

Q M
y Q

dts Q t L f y
t

−ν

−ν−
∈

= ψ∫  M
Q Qa L b=  are  

( , , )L M r  atoms, and 
1

2 2

2

1 ( )[ ( ) .1 ] .M
Q M Q

Q

b t f dtLt
t

t L
s

−ν

−ν−
= Φ ψ∫  

Moreover, for any 0, / 2,mλ > > α  we have
1/ 2 | | *

,| | | |1 2 ( ) .r m j
Q Q j

Q j
LQ s f

ν

− − ν−
λ

∈ ∈

ψ∑ ∑





 

Hence 
1/ 1/ 2 | | * 1/

,M M

2 | | ( ) * 1/
, M

2 | | | |1 2 2 ( )

2 2 ( ) .

[ ( ) ] [ ( ) ]

[ ( ) ]

r r
p p

r
p

q r q q q m j q q
Q Q j

Q j

m j j j q q
j

j

L

L

Q s f

f

ν

να − να − ν−
λ

ν∈ ∈ ν∈ ∈

− ν− +α ν− α
λ

ν∈ ∈

ψ

ψ

∑ ∑ ∑ ∑

∑ ∑
  

 







‖ ‖ ‖ ‖

‖ ‖

At this stage, we apply Young's inequality when 1q >  and the inequality 

( | |) | |q q
j j

j j
a a≤∑ ∑  when 0 1q< ≤  to deduce that 

,
, ,
L

1/ 1/ * 1/
,M M FM

2 | | | |1 2 ( ) ,[ ( ) ] [ ( ) ]r r
p p p q r

q r q q j q q
Q Q j

Q j
Q s L f f α

ν

να − α
λ

ν∈ ∈ ∈

ψ∑ ∑ ∑
 

 


‖ ‖‖ ‖ ‖ ‖  

where we use Proposition 3.3 in the last inequality. This completes our proof. 
For the converse direction, we obtain the following theorem. 

Theorem 4.4. Let 0 ,p r< ≤ < ∞ 0 ,q< ≤ ∞ α∈ , and M +∈ . If  

,inQ Q
Q

f s a
νν∈ ∈

∞′= ∑ ∑
 

  

where ,( )Q Qa
ν∈ ν∈  is a sequence of ( , , )L M r  atoms and ,( )Q Qs

ν∈ ν∈ is a sequence of 

coefficients satisfying 1/ 1/
M

2 | | | |1 ,[ ( ) ] r
p

q r q q
Q Q

Q
Q s

ν

να −

ν∈ ∈

< ∞∑ ∑
 

‖ ‖  then ,
, ,

L
p q rf FM α∈  and  

,
, ,
L

1/ 1/
MFM

2 | | | |1 ,[ ( ) ] r
p q r p

q r q q
Q Q

Q
f Q sα

ν

να −

ν∈ ∈
∑ ∑





‖ ‖ ‖ ‖  

provided that 1 max , .
2 2 1
n nM

r q
 

> + α −α ∧ ∧ 
 

Proof. Fix (1, )q∈ ∞  and min{1, , }.p qθ <  It follows from the proof of [Bui et al., 2020, 
Theorem 4.7] that 

( )(2 / ) 1/

:

(2 )( ) 1/

:

2 | ( ) | 2 2 | || | 1

2 2 | || | 1 .

( )

( )

j j M nq r
j Q Q

j Q

M j r
Q Q

j Q

L f s Q

s Q
ν

ν

α − ν− − θ−α να −
θ

ν ν≥ ∈

− −α −ν να −
θ

ν ν< ∈

ψ

+

∑ ∑

∑ ∑









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By using (2.2), we conclude that 

,
, ,

1/ 1/ 1/
M M

(2 | ( ) |) 2 | | | |1 ,[ ] [ ( ) ]L r r
p q r p pFM

j q q q r q q
j Q Q

j Q
Q sLf fα

ν

α να −

∈ ν∈ ∈

= ψ∑ ∑ ∑
 




‖ ‖ ‖ ‖ ‖ ‖

which completes the proof. 
Remark 4.5. By a careful examination of the proof of Theorem 4.3, it is apparent to see that 
each atom 2M

Q Qa L b= , defined by (4.11), belongs to the space of test functions S∞ . As a 

direct consequence of the atomic decomposition results mentioned above, the space S∞  of 

test functions is dense in ,
, ,

L
p q rFM α  for 0 ,p r< ≤ < ∞ 0 ,q< ≤ ∞ α∈ . 
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TÓM TẮT 
 Xét L là một toán tử liên hợp không âm trên 2 ( )nL   sao cho nhân nhiệt của L thỏa mãn điều 
kiện bị chặn trên Gaussian. Trong bài báo này, chúng tôi giới thiệu không gian Triebel-Lizorkin-

Morrey ,L
, ( )n

p qFM α
  liên kết với toán tử L , trong đó 0 , ,p q< ≤ ∞ α∈ . Chúng tôi chứng minh 

rằng các không gian mới này thỏa mãn các đặc trưng quan trọng như đặc trưng liên tục theo các 
hàm bình phương hoặc đặc trưng phân tích nguyên tử.   
 Từ khóa: phân tích nguyên tử; đặc trưng liên tục; điều kiện bị chặn trên Gaussian; không gian 
Triebel-Lizorkin-Morrey 
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