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ABSTRACT

Double-phase problems were modeled by minimizing the problems of a class of integral
energy functionals with non-standard growth conditions. They have many applications in physics,
such as nonlinear elasticity, fluid dynamics, and homogenization. The present paper provides a
global gradient estimate for distribution solutions to double-phase problems in Lorentz spaces
associated with a Muckenhoupt weight. In particular, this work is a weighted version of the main
result found by Tran and Nguyen (2021). Our method is based on a construction of the weighted
distribution inequality on fractional maximal operators, which have close relations to
Riesz potential.

Keywords: distribution inequality; Double-phase problems; gradient estimates; weighted
Lorentz spaces

1. Introduction

The calculus of variations is concerned with the minima and maxima of functionals.
The search for a minimizer of a functional leads to solving the associated Euler-Lagrange
equation. In recent years, researchers have been attracted by issues of the calculus of
variations such as the existence of local minimizers, regularity properties of minimizers of
energies, etc. This is because it has many applications for the large field of science. This
paper considers the regularity properties of minimizers of a class of integral energy
functionals. Specifically, we studied double-phase problems modeled by minimizing
problems of a class of integral energy functionals with non-standard growth conditions. They
have many applications in physics, such as nonlinear elasticity, fluid dynamics, and
homogenization.
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Our intention is to build a global weighted Lorentz estimate for a non-uniformly elliptic
equation which is a form of double-phase problems. The equation is given by

div(|Vu|p72 vu+a(x)|vu|"’ Vu) = div(|F|p72 F+a(x)|F["”* F) inQ, (1.1)

where Q <R". is a bounded open domain with n>2 and F :QQ — R" is a vector field. The
coefficient function a:Q —[0,00) and numbers p and q satisfy the following assumption

0<a()eC®, Be(0,1]; and 1< p<qs(1+§j p. (1.2)

The equation in (1.1) is regarded as the Euler-Lagrange equation of the functional

v F(v.2)- [([F* F+a0[F[" Fvv)dx

0o

where ]—“(V,Q)::j(%|Vv|p+%|Vv|qjdx is called double phase functional. The
0

functional F was first studied by Zhikov (Zhikov, 1986, 1995, 1997) to describe the change
of ellipticity according to the positivity of the function a. The energy functional F has

p—growth in the gradient on the set {a(x)=0}and q—growth on the set{a(x)>0}.

Recently, there have been many studies on the regularity of double-phase problems
associated with the Calderon—Zygmund theory, see (Baroni, & Colombo, & Mingione, 2015,
2016, 2018) va (Colombo, & Mingione, 2015a, 2015b, 2016). Colombo and Mingione
(Colombo & Mingione, 2016) established the local Calderon—-Zygmund estimates for
equation (1.1) under sufficient conditions a, p,g. The main result is given by the following

(|F|p+a(x)|F|q)e L

loc

= (Ivuf +a(x)|vu*)e L

loc ?

(1.3)

holds for » >1, under assumption g<1+£. With the case g>1+£, Esposito, Leonetti,
p n p n

and Mingione (2004 ) showed that (1.3) fails to hold. Later, there have been studies that
continue developing the result in (1.3). Byun and Oh (2017) extended (1.3) up to the

boundary which has the condition of 6Q is the C*# domain, A" €[0,1]. De Filippis and

Mingione (2020) proved that the result (1.3) still holds in the delicate limiting case

ﬂ:1+£. Furthermore, Tran and Nguyen (2021) provided the global estimates in the
p n
Lorentz spaces for the problem (1.1) according to the bounded property of fractional

maximal operators.
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We apply a technique called fractional maximal distribution functions (FMDs) to
establish estimates for solutions to the problem (1.1). We will provide the level-set
inequalities by using the property of fractional maximal operators, comparison estimate, and
Vitali’s covering lemma via FMDs. This method was applied to many different problems by
Tran and Nguyen (2021a, 2021b, 2022a, 2022b) and Tran, Nguyen, and Nguyen; (2022).
The technique FMDs was proposed based on the good-A technique (see Tran & Nguyen,
2019a, 2019b, 2020 and Nguyen & Tran, 2020). However, it brings out a new sight as an
application in regularity and Calderon-Zygmund type estimates.

In the present article, we study a class of more general equations than the equation of

(1.1). The equations are given by
div(A(x,Vu)) =div(B(x,F)) in Q,
u = 0 on 0Q,

(1.4)

where Q < R" is a bounded open domain with n>2 and F :Q — R" is a vector field. The
coefficient function a:Q —[0,00) and numbers p and q satisfy conditions (1.2). The

nonlinear operator 4 :QxR" —R" is measurable with xeQ, C*—regular in £ eR" and

meets the following conditions with fixed constants O <v <L <o

A+, A O|Ig1< L (I +a00l¢]™);

V(1517 +a00le]™ )2l < (0, A ) 5 (15)
[A(4.¢) - A )| < Laa)-ale ) gl

forall x,x,x, €Q and £, y € R"\{0}.We remark that the condition (1.5), implies

‘7[(|§1|2+|4/2|2)2+a(x)(|§1|2+|§2|2)2]|§1_§2|2 S<A(X,§l)—A(X,§2),§1—§2>, (1'6)
where v =v(n, p,q,v) is a positive constant. If 2< p <q, we can write
P(l5- &l +amlg -Gl ) < (A(x6) - A(x &) 6= 4). (L.7)

On the right-hand side, the Carathéodory vector field B: QxR" — R" satisfies the following
growth conditions

B, <L (" +amlg]), (L.8)
In the rest of the paper, we use the notation
H(x.$) =|¢]" +aM)|sT, (1.9)
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forevery xeQ,{ e R".
Throughout this paper, we always consider ueW*" (Q) a distributional solution to

(1.4) under assumptions (1.2) and (1.5), and F € L (), where W*"(Q) and L (Q) will
be introduced in Section 2. Now we present the main results of the paper in the followings.
Theorem 1.1. Let # €[0,n), w e A, and a> 0. Assume that u e W™" (Q) is a distributional

solution to (1.4) under assumptions (1.2), (1.5), (1.8), and F e L™ (Q) one can find two

positive constants b =b(data) and &, = ¢, (data) such that the following inequality

L (67°2)<Cadyy (upemmn (D) + 050 ery (6°4), (1.10)
holds for 0 <& <¢, and 4 >0.
Theorem 1.2. Let 2 €[0,n), we A, 0<s<oo and 0<t<oo. Assume that u e W™ (Q) is
a distributional solution to (1.4) under assumptions (1.2), (1.5), and (1.8) and F e L™ (Q)
Then there exists C =C(s,t,data) >0 such that

M, (H(x,Vu)) (1.11)

<C|M, (H(x.F))

Q) SN

2. Notation and preliminaries

In this section, we will introduce some notations, definitions, and properties used
throughout the paper. In what follows, C stands for a general positive constant that depends
on some parameters such as n, pand q,. The accurate value of C varies in different lines.

With n > 2, the domain Q < R" is an open bounded set and diameter of Q will be denoted
by diam (). We will denote Q, (%,)=QN B (X,), where B, (x,):={&eR":|£ - x| <R}
is an open ball in R" with center x, and radius R>0. We write £'(A) for Lebesgue
measure of a set AcR". With the coefficient function a, we write

[a] = sup |a(x2)—a(x1)|

| |ﬂ ,for any S < Q. For simplicity of notation, we let data
X1 X0 €S, % #Xy X2 — Xl

stand for the set of parameters that will affect the constant dependence in our statements
below. In the sequel, we use

data = data(n,q, P, B,v, L,[a]m Ja

oy OV [ diam(Q),go).

Let us take the definition of Musielak-Orlicz and Musielak-Orlicz-Sobolev spaces according
to the operator H in (1.9).
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Definition 2.1. (Musielak-Orlicz spaces) Let k: QQ —R" is a measurable function, we say

k belongs to the Musielak-Orlicz class K™ (Q) if it satisfies IH(x,k(x))dx < 400,
Q

The Musielak-Orlicz spaces L™ () is the is the smallest vectorial space containing K™ (Q)

and norm |. ||LH(Q) is given by

. o[ kG
K = inf {y>o. iH(x,%}dx Sl}

Definition 2.2. (Musielak-Orlicz-Sobolev spaces) The Musielak-Orlicz-Sobolev space
W' (Q) is the set of all measurable functions k € L™ (Q) such that Vk e L (€2). The norm

of the space W' (Q) is given by

”k”wlﬁ(g) - ”k”LH(Q) + ||Vk||LH(Q) :
Furthermore, the space W,""* (Q) is defined as the closure of C;*(Q) in W™ (Q).

Definition 2.3. (Distributional solution) A function u e W*" (Q) is a distributional solution
to (1.4) under assumptions (1.2), (1.5) if

j<A(x,Vu),V¢>dx:I<B(X,F),V¢>dx, (2.1)

Q Q
for every ¢ € C;(Q).
We will use an important result of the distributional solution, and its proof can be found in
Proposition 3.5 (Byun & Oh, 2017).
Lemma 2.4. Let ueW"" (Q) be a distributional solution to (1.4) under conditions (1.2),

(1.5), and F e L"(€). Then the following variational formula
[{A(xVu),Ve)x = [(B(xF),Vex (2.2)
Q Q

holds for every test function ¢ e W,"™(Q).

Next, we will introduce the doubling property of weight that is used throughout the article
as below.

Definition 2.5. (Muckenhoupt weights) Let a weight w: R" — R" be a locally integrable
function, we say that w € A if there exist constants c,s > 0 satisfying

£(R)Y
a)(A)sc[En(B)J o(B), (2.3)
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for every ball B < R" and all measurable subsets A< B, where @(A) = Iw(x)dx. We will
A

set [w], =(c,9).

Definition 2.6. (Distribution functions) Let w € A_, K = R" and a measurable function f
on Q, and the distribution function

d{ (K.,.) is given by
d7(K.2)= [ o(x)dxwith 2>0.

K{ xeQ]f (x)]>2}
We remark that if w=1 we write df(K,i)zﬁ”({XeKmQ:|f(x)|>l}).
Moreover, if @ < K we write df' (1),d, (1) instead of d{ (K, 1),d, (K, ) for short.

Definition 2.7. (Weighted Lorentz spaces) Let se(0,), te(0,»] and weA_, the

weighted Lorentz space L' (Q) is the set of all Lebesgue measurable f on Q such that

|f sioy < Ho0, Where
1
T tda |
|f i = {sj}ﬁa)({x eQ:|f(x)|> 1})s - } ' (2.4)
0
if t<oo and
1
L. iuoplw({x e Q:|f(X)|> A3).

Definition 2.8. (Fractional maximal function) Let 0<«a <n, the maximal operator M

of f isgiven by

o 1 n
M f (5)—8;1?/? —L”(Bp(cf)) B!(g)“ (y)|dy, &eR", (2.5)

where f e Lj,.(R").

Lemma 2.9. (Tran & Nguyen, 2021, Lemma 2.8) Let s>1 and 0<« < There exists a
s

constant C =C(a,n)>0 such that for all >0 there holds

R"

L ({XE R":M_ f(x) >/1})SC£%J‘|f(y)|sdy)nas , (2.6)
where f e LS(R”).
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3. Comparison results
In this section, we assume that x, € Q and R > 0. For simplicity of notation, we will

use Q,=Q, (XO). Let us recall the following comparison estimates, which have been proved
in Tran and Nguyen (2021) and Byun and Oh (2017).
Theorem 3.1. (Tran & Nguyen, 2021, Lemma 3.5) Let ue W™ (Q) be a distributional

solution to (1.4) under conditions (1.2), (15), and Fel™(Q). Assume that

Ve u+W,"(Qg)is the unique distribution to the following problem

di ,Vv))= 0 i Q..
{ iv(A(x, V) in Q -
V. = Uu on 0Q;.
Then there exists a constant C= C(data) > 0 satisfying
1 £ Ce™
- H(x,Vu-Vv)dx <— H(x,Vu)dx+— H(x,F)dx, (3.2)
Flag) | 10TV g MOl g [ )

for every & € (0;1) small enough; where 7 = max{ ;2— [1)}
p_

Corollary 3.2. Let ue W"" (Q) be a distributional solution to (1.4) under conditions (1.2),

(1.5), and F € L™ (). Then there exists a constant C=C (data)> 0 satisfying

[H(x,vu)dx<C[H(x,F)dx (3.3)

Proof. Applying Theorem 3.1to QQ c B, (xo), we may conclude that v=0. It leads to (3.3)
from (3.2).
Theorem 3.3. (Byun & Oh, 2017) Let ueW""(Q) and v e u+W,"" (€ )is the unique
distribution to (3.1), then for every y» >1 there exists a constant C:C(y/,data)>0
satisfying

1

mgj [H(X,Vv)]y dxjy < ¢ IH(X,Vv)dx. (3.4)
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4.  Gradient estimates in weighted Lorentz space
4.1. Distribution inequalities

To prove the main results, we will construct some distribution inequalities on level
sets as below. From Lemmas 4.1 — 4.3, we always assume that x, € Q,0 <R <diam(Q),

weA,, ueW"(Q) isadistributional solution to (1.4) under assumptions (1.2),(1.5) and
Fel” (Q)
Lemma 4.1. Given 0<a <nand a>0, one can find b=b(data) >0 and ¢ =¢(data) >0
such that if x, € Q satisfy M, (H(x, F))(xl) <&°2 forany £€(0,¢,), 4>0 then

4°

M, (H(x,Vu))

(£7°2) <0 (B (0)). (4.1)

Proof. Thanks to Lemma 2.9 with s=1, f =7(x,Vu) € L'(Q) and Corollary 3.2, we have

n-a

R 1 1
Ay (e (€ l)gc[miH(x,Vu)de sc[miH(x,F)dx] . (42

for every A>0. Set D,=diam(Q2) then QcB;(x), combining with

M., (H(x,Vu))(x) < £°4, it follows from (4.2) that

n

L' (BDO (Xl)) 1 J‘ H(x, F)dX\JM

d v (€7°2)<C - :
M, (H(x,Vu) (g ) (8 aﬂ) £n (BDO (X1)) B ()
<c| M, (Hx F))(xl)J @3)

(a+b)n D N (a+b)n
<Ce " Dy SC(FOJ g "« L' (B(0)).
By the definition of w e A_, (4.3) leads to

" (a+b)ns

® -a dMaHx,Vu g_aﬂ“ ' D0 a
dM,,(H(x,Vu)(E /1)3(:0[ Z”((BR)((O)) )] w(BR(O))SCO[Fj £ a)(BR(O)). (4.4)

6 |(at+b)ns
Let us choose b >%(1—gj—a in (4.4) and &, !CL(DEJ ] ""*  to obtain (4.1) for all
n

0 0

£ €(0,&,). This proof is complete.
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Lemma 4.2. Given 0<a <n, a>0,0ne can find b=b(data) and x, e Q.(x,) satisfy
M, (H(x, F))(xz) <& forany 4> 0. Then the following inequality

d:’Jla( QR (XO)’ g_aﬂ) < d:/)I )H(X,Vu) (QR (XO)’ g_al)’ (45)

H(x,Vu)) ( a(lBZR(XO)

n+1
holds for any ¢ e [0,3_6}.

Proof. Let £ € Q. (X,), based on the definition of fractional maximal operator, we claim that

M, (H(x,Vu))(&) = max{ME (H(x, Vu)) (£); TF (H(x, Vu)) (&)}, (4.6)

where

R Csupri— Lt .
M (HO VW) (@) = 300 1 s B,L)H(X’V“)dx’

R _ a 1
T2 (VW) () =supr NG BrL)H(x,Vu)olx.

Of course B, (&) < B,z(%,) with 0<r <R, it leads to
M (H(X, VU)) (&) <M, ( 25,00 HOC V) ) (©) (4.7)

Furthermore, B, (£) < B,, (x,) with r > R and using an assumption Ma(H(x,Vu))(x2) <A,
it follows that

TX (H(x,Vu)) (&) <3“sup(3r)” m I H(x,Vu)dx @8
r=R 3rAT27) By (%) .

<3'M, (H(x, Vu))(xz) <3"A
Combining (4.6), (4.7), and (4.8), we can assert that
{g e Q. (%)M, (H(x, VU))(f)‘ > g*az} < {5 e Q. (%,): ‘Ma (26, () H( Vu))(f)‘ > g*%}

n+1

forall <3 2. Using the definition of the weighted distribution function, we deduce (4.5).

Lemma 4.3. Given 0<a<n and a>0, one can find b=b(a «,data)>0 and
e=¢(a,b,a,data) >0 such that if x,,x, € Q;(x,) satisfy

M, (H VW)) <4 M, (H(X F))(x,) <A
then the following inequality

d” (Qr (%) &72) < 00(B, (x,)) (4.9)

M, Zepg (%) H(X,VU))
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holds forall 1>0,0<e<g,.
Proof. The main idea of this proof is to apply comparison results and the bounded property
of fractional maximal functions to estimate the left-hand side (4.9). Let us fix x, € Q and
consider v the unique solution to the following problem:
div(A(X,Vv)) = 0 in Q,(X,),

{ V.=Uu on 0Q;(X)
Thanks to estimate (3.2) in Theorem 3.1 and estimate (3.4) in Theorem 3.3, for every y >1,
we can state that

1 [ ’ 1
— Hx, W) dx | <C ——=——— [ H(xWW)dx, (4.10)
[5 (QZR(XO))QZRJ.(XO) j L (Q4R(X0))Q4R(x0>
1 1
— HXVU-W)dX < ———— H(x, Vu)dx
L (Q4R (XO))QARJ‘(XO) £ (Q4R (XO))B“RJ;XO) (4 11)
. .
+CO —————— H(x, F)dx.
E (Q4R (XO))Q4F{‘[(XO)
2-p
where 0<(0,1) and n= max{ ﬁ} Let us denote

i o
M,I(ZBZR(XO)H(x,Vu))(QR(XO)’g 2). Itis easily seen that

K<C (dMa(ZBzR (Xo)H(x,Vu—Vv)) (QR (XO)’ 87al) + dMa(ZBZR (Xo)H(x,Vv)) (QR (XO)’ gaﬂ,)). (412)

On the right-hand side of (4.12), we apply Lemma 2.9 with s=1 and s =y >1 which will
be chosen at the end of the proof, we obtain

n

n

n-a 1 n-ay
IQZR(XO)H(X1VU —VV)de +C (g_aﬂ,)y QZRJ.(XO)|:'/‘((X,VV)]y dXJ

1
A

KSC(

(4R)" = 1 e
SC[ j {E”(Q I H(x,Vu—Vv)dx} (4.13)

g_aﬂ, 4R(Xo))QAR(X0)

+C (2R)’
(=)

n n

n-ay 1 . n-ay
[ R [ Heow) dx] .

r (%)
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Collecting the estimates (4.10) and (4.11) on the right-hand side of (4.13), one gets that

co” e
— H(x, F)dx
L (Q4R(XO)) QARJ.(XO)

(2R)" o ﬁ
+C - H(x,W)dx | .
[(3%) ] [QARJ.(X{J) ]

We  remark  that B.r (%) < Bsr (X)) M Bgr (X,) and  under  assumptions
M, (H(x, Vu))(x) <2, M, (H(x,F))(x,) < "4, it follows

1 1
- - H(x,Vu)dx £ ——
c (Q4R (Xo)) Q4RJ.(X0) (X U) * c (Q5R (Xl)) erz[xl)

<(BR)“M,, (H(x, Vu))(x) <CR“4,

1 1
T~ H(X, F)dX < i~ W
'C (Q4R (XO)) QAF:[(X()) £ (QSR (Xz)) QSR’J.(XZ)

<(BR)“M, (H(x,F))(x,) SCR “£"A.

(4R)n n-a

n-a 0
i n H(x, Vu)dx +
€ /lj {ﬁ (Q4R(X0))Q4r:[xo)

x|
(4.14)

H(x,Vu)dx

H(x, F)dx

According to the above estimates, we have
1

— H(x,Vv)d
£” (Q4R(XO)) Q”:[XO) (X V) "
1 1
<C [mgAixo)H(x, Vu —VV)dX +m94ixo) H(X,VU)dXJ
1 o
< c[—ﬁn Cut). j( XO)H(X,VU)dX+—£n (Qm(xo))g“:[XO)H(X, F)dx]

<CR“A+CR™®07"&"A,
which leads to
£eQ,re(0, R], if o(MNB.(£))>en(B,(£)) then Q (&) N.
b
Taking @ =& and having 1+ 6 "¢ < 2, then

n

K< C{g[am”j”“ +g”an;J£n (Bg(%o)). (4.15)

Since w e A_, it implies from (4.15) that
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” . K Y
S (SR Y ﬂ)gco(mJ (B (%))
(4.16)

[a+ijﬁ anys
<Cle "M 4™ 1 w(Bg(X,))-

In (4.16), we may choose b and » such that

b:an(1+77)( r-1 j>0 and ﬂ>;/>max{

71
n—ay a naso +« }

to obtain the following estimate
anys

de (Qn (%), £7°2) < Ce™ (B (x,)). (4.17)

M, (78,5 (X)) H(X,VU)

1
anys
Let us choose ¢, = (%jn_iﬁ in (4.17) to get (4.9), which completes the proof.

4.2. Proofs of main Theorems

Next, we will introduce a version of covering lemma Calderén-Zygmund (Vitali) ( See
Caffarelli and Peral (1998)) for the proof of this lemma.

Lemma 4.4. (Caffarelli & Peral) (Covering Lemma) Let Q < R" be a bounded domain,
we A, and two measurable sets M c N < Q. Assume that there exist some constants

¢ (0,1)and R e(0,diam(€)) satisfying two following hypotheses
i) (M) < 20(B, (0));
ii)Forany £eQ,re(0,R], if o(MNB.(&))>ew(B,(£)) then Q (&) c V.
Then there exists a constant C = C(n,[], ) > 0 such that (M) < Csa(N).
Proof of Theorem 1.1. Firstly, we will prove the inequality
a)({g e Q:M, (H(X,VU)) (&) > &2, M, (H(XF))(&) < gu}) 1)
<Ceo({£eQ:M, (H(x,VU))(&) > })

forany 4>0 and €€ (0,¢,).
Let us introduce two following sets R
M., ={EeQ:M, (H(x,VU))(&) > &4, M, (H(x, F)) (&) <"},

N, ={£eQ:M, (H(x,VU)) (&) > A}.
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We will prove that M, , and A/, satisfy conditions i, ii of Lemma 4.4, which means

o(M,,)<e0(B,(0))for any >0, R<diam(Q) and for all £eQ, re(0,R],if
o(M, , "B, (&) > ew(B,(£)) then Q. (&)= N,.

It is easy to check that M, , =@ then it satisfies the two conditions above. If
M, , #D then there exists x, e M, , such that M (H(x, F))(x) < &°4. Thanks to Lemma
4.1 with ¢ small enough, we conclude that

a)(/\/lgyi) <dy o) (g*aﬂ,) < ew(Bg(0)),
forall A>0 and R>0.

On the other hand, all ¢ and re(0,R], let us suppose Q, (&) z N,. We will
prove (A1, "B, (£))<a(B,(£)). Since Q (E)NNY =D, there exists X, €Q, (&)
satisfying I\/Ia(H(x,Vu))(xz)é/l. Moreover, since M, , "B (£) =<, there exists x,
satisfying M, (H(x, F))(x;) <&°4. Applying Lemma 4.2 and Lemma 4.3 for & small

enough one has

w(Mﬁ M Br (5)) < d:n)a(H(x,Vu)) (Qr (é:)v g_aj’)

(4.19)
<3 o ey (@0 (8).67°2) < 20(8,(9),

then thanks to Lemma 4.4, we obtain (4.18).

Finally, we observe that

{5 e M, (H(x,Vu))(&) > g-az} c M., U{g eQ:M, (H(x F))(&) > g%},
which implies (1.10). The proof is complete.
Proof of Theorem 1.2. Application of Definition 2.7 (Weighted Lorentz space) gives

. Caa
M, (KO VW) g = s_([ A4 vy (1)) d% . (4.20)

Forevery 0<s<o and O<t<oo letusfix O<a< 1 . Thanks to Theorem 1.1, there
s

exist b>0 and ¢ >0 such that (1.8) holds for any 4>0 and &< (0,¢,). By changing a
variable in the integral of (4.20) combining estimate (1.8), we get that
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-

t

af o “aq))s d4
HMa (H(X,Vu)) Q) 3¢ t.([/lt (dMa(H(xvvu))(g l)) 2

o0 o0

: : :
<Cse ™ Ugs;‘t (95, resen (1)) d%*f A (A e (£°2)) d%} (4.21)

0 0

—Z:IH—t

<Ceg *

M, (H(x,Vu))

t e
ey T M, (M)

t
Q)

t
Since 0<a<l and 0<t<oo , one may choose ¢ e(0,1) satisfying Ce s s% to
s

obtain (1.11), which completes the proof. It is similar to the case t = .
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Ngay nhdgn bai: 25-3-2022; ngay nhdn bai sira: 23-6-2022; ngay duyét dang: 24-6-2022

TOM TAT

Bai todn pha kép droc mo hinh tir bai todn cuc tiéu mét I6p cdc ham ndng lhrong tich phan
Véi diéu kién tang trweng khong chudn. Bai toan nay cé nhiéu izng dung trong Vat Ii, nkuwr trong bai
todn dan hoi phi tuyén, dong luc hoc chat long va cdc bai todn dong nhat. Bai bdo nay dwa ra mét
ddanh gid gradient toan cuc cho nghiém phan phai ciia bai toan pha kép trong khdng gian Lorentz c6
lien két véi mgt ham trong Muckenhoup. Cu thé, két qud nay 1a mét dang ddnh gid c6 trong so Véi
két qua chinh trong bai bao (Tran & Nguyen, 2021). Phuwong phdp nghién ciru cia ching toi dira
trén viéc xay dung bat dang thizc ham phan phdi c6 trong trén cac toan tir cure dai cdp phan sé, toan
ti ndy co lién hé mdt thiét vai thé v Riesz.

Tir khoa: bat dang thic ham phéan phdi; bai toan pha kép; danh gia gradient; khong gian
Lorentz c6 trong
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