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ABSTRACT 
Double-phase problems were modeled by minimizing the problems of a class of integral 

energy functionals with non-standard growth conditions. They have many applications in physics, 
such as nonlinear elasticity, fluid dynamics, and homogenization. The present paper provides a 
global gradient estimate for distribution solutions to double-phase problems in Lorentz spaces 
associated with a Muckenhoupt weight. In particular, this work is a weighted version of the main 
result found by Tran and Nguyen (2021). Our method is based on a construction of the weighted 
distribution inequality on fractional maximal operators, which have close relations to  
Riesz potential.   

Keywords: distribution inequality; Double-phase problems; gradient estimates; weighted 
Lorentz spaces 

 
1. Introduction 

The calculus of variations is concerned with the minima and maxima of functionals. 
The search for a minimizer of a functional leads to solving the associated Euler–Lagrange 
equation. In recent years, researchers have been attracted by issues of the calculus of 
variations such as the existence of local minimizers, regularity properties of minimizers of 
energies, etc. This is because it has many applications for the large field of science. This 
paper considers the regularity properties of minimizers of a class of integral energy 
functionals. Specifically, we studied double-phase problems modeled by minimizing 
problems of a class of integral energy functionals with non-standard growth conditions. They 
have many applications in physics, such as nonlinear elasticity, fluid dynamics, and 
homogenization.  
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Our intention is to build a global weighted Lorentz estimate for a non-uniformly elliptic 
equation which is a form of double-phase problems. The equation is given by 

( ) ( )2 2 2 2 ,d (iv div( ) ) inp q p qu u u ua x F F a x F F− − − −+ =∇ ∇ ∇ ∇ + Ω  (1.1) 

where .nRΩ ⊂  is a bounded open domain with 2n ≥  and : nF RΩ→  is a vector field. The 
coefficient function : [0, )a Ω→ ∞  and numbers p and q satisfy the following assumption 

( ]0,0 ( ) , 0,1 ; and 1 1 .a C p q p
n

β β β ≤ ⋅ ∈ ∈ < < ≤ + 
 

 (1.2) 

The equation in (1.1) is regarded as the Euler-Lagrange equation of the functional 

( ) 2 2, ( ) , ,p qv v F F a x F F v dx
Ω

Ω − −− + ∇∫   

where ( ) 1 ( ), : p qa xv v v dx
p qΩ

Ω
 

= ∇ + ∇ 
 
∫  is called double phase functional. The 

functional   was first studied by Zhikov (Zhikov, 1986, 1995, 1997) to describe the change 
of ellipticity according to the positivity of the function a . The energy functional   has 

growthp −  in the gradient on the set ( ){ }0a x = and growthq −  on the set ( ){ }0a x > .  

Recently, there have been many studies on the regularity of double-phase problems 
associated with the Calderón–Zygmund theory, see (Baroni, & Colombo, & Mingione, 2015, 
2016, 2018) và (Colombo, & Mingione, 2015a, 2015b, 2016). Colombo and Mingione 
(Colombo & Mingione, 2016) established the local Calderón–Zygmund estimates for 
equation (1.1) under sufficient conditions , , .a p q  The main result is given by the following 

( )( ) ( )( ) ,p q p q
loc locF a x F L u a x u Lγ γ+ ∈ ⇒ ∇ + ∇ ∈  (1.3) 

holds for 1,γ > under assumption  1 .q
p n

β
< +  With the case 1q

p n
β

> + , Esposito, Leonetti, 

and Mingione (2004 ) showed that (1.3) fails to hold.  Later, there have been studies that 
continue developing the result in (1.3). Byun and Oh (2017) extended  (1.3) up to the 

boundary which has the condition of ∂Ω  is the 0,C β +

domain, [ ]0,1 .β + ∈  De Filippis and 

Mingione (2020) proved that the result (1.3) still holds in the delicate limiting case 

1 .q
p n

β
= +  Furthermore, Tran and Nguyen (2021) provided the global estimates in the 

Lorentz spaces for the problem (1.1) according to the bounded property of fractional 
maximal operators. 
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 We apply a technique called fractional maximal distribution functions (FMDs) to 
establish estimates for solutions to the problem (1.1). We will provide the level-set 
inequalities by using the property of fractional maximal operators, comparison estimate, and 
Vitali’s covering lemma via FMDs. This method was applied to many different problems by 
Tran and Nguyen (2021a, 2021b, 2022a, 2022b) and Tran, Nguyen, and Nguyen, (2022). 
The technique FMDs was proposed based on the good-λ technique (see Tran & Nguyen, 
2019a, 2019b, 2020 and Nguyen & Tran, 2020). However, it brings out a new sight as an 
application in regularity and Calderón-Zygmund type estimates. 
 In the present article, we study a class of more general equations than the equation of 
(1.1). The equations are given by 

( )( ) ( )( )  
div , div , in  ,

0  on ,

x u x F

u

 ∇ = Ω


= ∂Ω

 
 (1.4) 

where nRΩ ⊂  is a bounded open domain with 2n ≥  and : nF RΩ→  is a vector field. The 
coefficient function : [0, )a Ω→ ∞  and numbers p and q satisfy conditions (1.2). The 

nonlinear operator : n nR RΩ× →  is measurable with x∈Ω , 1C − regular in nRζ ∈  and 
meets the following conditions with fixed constants 0 Lν< < < ∞   

( )
( )
( ) ( ) ( ) ( )

1 1

2 2 2

1
1 2 1 2

( , ) ( , ) ( ) ;

( ) ( , ) , ;

, , . ,

p q

p q

q

x x L a x

a x x

x x L a x a x

ς

ζ

ζ ζ ζ ζ ζ

ν ζ ζ χ ζ χ χ

ζ ζ ζ

− −

− −

−

 + ∂ ≤ +

 + ≤ ∂

 − ≤ −


 



 

 (1.5) 

for all 1 2, ,x x x ∈Ω  and { }, \ 0 .nRζ χ ∈ We remark that the condition ( )2
1.5  implies  

( ) ( ) ( ) ( )
2 2

2 2 2 2
1

22 2
1 2 21 2 2 1 1 2( ) , , , ,

p q

a x x xν ζ ζ ζζ ζ ζ ζ ζζ ζ
− − 

+ + + − ≤ − − 
  
    (1.6) 

where ( , , , )n p qν ν ν=   is a positive constant. If 2 p q≤ < , we can write 

( ) ( ) ( )1 2 1 2 1 2 1 2( ) , , , .p qa x x xν ζ ζ ζ ζ ζζ ζ ζ− + − ≤ − −    (1.7) 

On the right-hand side, the Carathéodory vector field : n nR RΩ× →  satisfies the following 
growth conditions 

( )1 1( , ) ( ) ,p qx L a xζζ ζ− −≤ +   (1.8) 

In the rest of the paper, we use the notation 

( , ) ( ) ,p qx a xζ ζ ζ= +   (1.9) 
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for every , .nx Rζ∈Ω ∈   

Throughout this paper, we always consider ( )1,u W∈ Ω  a distributional solution to 

(1.4) under assumptions (1.2) and (1.5), and ( ) ,F L∈ Ω  where ( )1,W Ω  and ( )L Ω  will 

be introduced in Section 2. Now we present the main results of the paper in the followings. 

Theorem 1.1. Let [ )0, ,n Aα ω ∞∈ ∈  and 0.a >  Assume that ( )1,u W∈ Ω  is a distributional 

solution to (1.4) under assumptions (1.2), (1.5), (1.8), and ( ) ,F L∈ Ω  one can find two 

positive constants ( )b ab dat=  and ( )0 0 dataε ε=  such that the following inequality 

( ) ( ) ( ) ( ) ( ) ( )( , ) ( , ) ( , ) ,a
x u F

b
x u xd C d d

α α α

ω ω ω λε λ εε λ−
∇ ∇≤ +M M M    (1.10) 

holds for 00 ε ε< <  and 0.λ >  

Theorem 1.2.  Let [ )0, , ,n Aα ω ∞∈ ∈  0 s< < ∞  and 0 .t< ≤ ∞  Assume that ( )1,u W∈ Ω  is 

a distributional solution to (1.4) under assumptions (1.2), (1.5), and (1.8) and ( ).∈ ΩF L  

Then there exists ( ), , 0C C s t data= >  such that 

( ) ( ), ,( ) ( )
( .( , ) , )s t s tL L

x u C x F
ω ω

α αΩ Ω
∇ ≤M M   (1.11) 

2. Notation and preliminaries 
In this section, we will introduce some notations, definitions, and properties used 

throughout the paper. In what follows, C  stands for a general positive constant that depends 
on some parameters such as ,n p and ,q . The accurate value of C  varies in different lines. 

With 2,n ≥ the domain nRΩ⊂  is an open bounded set and diameter of Ωwill be denoted 

by ( )diam .Ω  We will denote ( ) ( )0 0 ,R Rx B xΩ = Ω∩  where ( ) { }0 0: :n
RB x R x Rξ ξ= ∈ − <  

is an open ball in nR  with center 0x  and radius 0R > . We write ( )n A  for Lebesgue 

measure of a set .nA R⊂  With the coefficient function a , we write 

[ ] ( ) ( )
1 2 1 2

2 1
;

, ; 2 1

sup ,
S

x x S x x

a x a x
a

x x ββ
∈ ≠

−
=

−
for any Ω.S ⊂  For simplicity of notation, we let data  

stand for the set of parameters that will affect the constant dependence in our statements 
below. In the sequel, we use  

[ ] ( )( )1 0;
, , , , , , , , ( , ) ,[ ] , ( ), .

L L
data data n q p L a a x u diam

β
β ν ω ε∞

∞ΩΩ
≡ ∇ Ω  

Let us take the definition of Musielak-Orlicz and Musielak-Orlicz-Sobolev spaces according 
to the operator   in (1.9). 
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Definition 2.1. (Musielak-Orlicz spaces) Let : nk RΩ → is a measurable function, we say 

k  belongs to the Musielak-Orlicz class ( )K Ω  if it satisfies ( , ( )) .x k x dx
Ω

< +∞∫  

The Musielak-Orlicz spaces ( )L Ω  is the is the smallest vectorial space containing ( )K Ω  

and norm ( ).
L Ω  is given by 

( )
( )

inf 0: , 1 .
L

k x
k x dxµ

µΩ
Ω

   = > ≤  
   

∫   

Definition 2.2. (Musielak-Orlicz-Sobolev spaces) The Musielak-Orlicz-Sobolev space 
( )1,W Ω  is the set of all measurable functions ( )k L∈ Ω  such that ( ).k L∇ ∈ Ω  The norm 

of the space  ( )1,W Ω  is given by   

( ) ( ) ( )1, .
W L L

k k k
Ω Ω Ω
= + ∇    

Furthermore, the space ( )1,
0W Ω is defined as the closure of ( )0C∞ Ω  in ( )1,W Ω . 

Definition 2.3. (Distributional solution) A function ( )1,u W∈ Ω  is a distributional solution 

to (1.4) under assumptions (1.2), (1.5) if 

( ) ( ), , , , ,x u dx x F dxϕ ϕ
Ω Ω

∇ ∇ = ∇∫ ∫     (2.1) 

for every 0 ( ).Cϕ ∞∈ Ω  

We will use an important result of the distributional solution, and its proof can be found in 
Proposition 3.5 (Byun & Oh, 2017).  

Lemma 2.4. Let ( )1,u W∈ Ω  be a distributional solution to (1.4) under conditions (1.2), 

(1.5), and ( ).F L∈ Ω  Then the following variational formula 

( ) ( ), , , , ,x u dx x F dxϕ ϕ
Ω Ω

∇ ∇ = ∇∫ ∫    (2.2) 

holds for every test function 1,
0 ( )Wϕ∈ Ω . 

Next, we will introduce the doubling property of weight that is used throughout the article 
as below. 

Definition 2.5. (Muckenhoupt weights) Let a weight : nR Rω +→  be a locally integrable 
function, we say that Aω ∞∈  if there exist constants , 0c δ >  satisfying 

( )
( )

( ) ( ),
n

nA c B
A
B

δ

ω ω
 
  
 

≤



  (2.3) 



HCMUE Journal of Science Dang Thi Thanh Truc et al. 
 

886 

for every ball nB R⊂  and all measurable subsets A B⊂ , where ( ) : ( ) .
A

A x dxω ω= ∫  We will 

set [ ] ( , ).A cω δ
∞
=  

Definition 2.6. (Distribution functions) Let ,Aω ∞∈ nK R⊂  and a measurable function f  
on Ω , and the distribution function  

( ),.fd Kω  is given by 

( ) ( )
{ }: ( )

,
f x

f
xK

d K x dxω

λ

λ ω
∩ ∈Ω >

= ∫  with λ ≥ 0 . 

We remark that if 1,ω ≡  we write ( ) { }( )(, .: )n
f x Kd K f xλ λ= ∈ ∩Ω >  

Moreover, if KΩ⊂  we write ( )fdω λ , ( )fd λ  instead of ( ),fd Kω λ , ( ),fd K λ  for short. 

Definition 2.7. (Weighted Lorentz spaces) Let ( )0,s∈ ∞ , ( ]0,t∈ ∞  and ,Aω ∞∈  the 

weighted Lorentz space ( ),s tLω Ω  is the set of all Lebesgue measurable f on Ω  such that 

, ( )s tL
f

ω Ω
< +∞ , where 

( ),

1

( )
0

: { : ( ) } ,s t

t t
st

L

df s x f x
ω

λλ ω λ
λ

∞

Ω

 
= ∈Ω > 
 
∫  (2.4) 

if t < ∞  and 

( ),

1

( )
0

: sup { .: ( ) }s
t

L
f x f x

ω λ
λω λ∞ Ω

>
= ∈Ω >  

Definition 2.8. (Fractional maximal function) Let 0 nα≤ ≤ ,  the maximal operator αM  

of f  is given by 

( )
( )( ) ( )

( )0

1sup ,    ,n
n

B

f f y dy R
B

ρ

α
α

ρ ξρ

ξ ρ ξ
ξ>

= ∈∫M


 (2.5) 

where ( )1 .n
locf L R∈  

Lemma 2.9. (Tran & Nguyen, 2021, Lemma 2.8) Let 1s ≥  and 0 n
s

α≤ < . There exists a 

constant ( ), 0C C nα= >  such that  for all 0λ >  there holds 

{ }( ) 1: ( ) ( ) ,
n

n
n s

sn n
s

R

x R f x C f y dy
α

α λ
λ

− 
∈ > ≤   

 
∫M  (2.6) 

where ( ).s nf L R∈    
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3. Comparison results   
In this section, we assume that 0 Ωx ∈  and 0R > . For simplicity of notation, we will 

use ( )R R 0Ω = Ω .x  Let us recall the following comparison estimates, which have been proved 

in Tran and Nguyen (2021) and Byun and Oh (2017). 

Theorem 3.1. (Tran & Nguyen, 2021, Lemma 3.5) Let ( )1,Wu∈ Ω  be a distributional 

solution to (1.4) under conditions (1.2), (1.5), and ( )F L∈ Ω . Assume that 

( )1,
0 Rv u W∈ + Ω is the unique distribution to the following problem  

( )( ), 0 Ω ,

Ω .
R

R

div x v in

v u on

 ∇ =


= ∂


 (3.1) 

Then there exists a constant ( ) 0C C data= >  satisfying 

( ) ( ) ( ) ( ) ( ) ( )1 , , , ,
R R R

n n n
R R R

Cx u v dx x u dx x F dx
η

Ω Ω Ω

ε ε
Ω Ω Ω

−

∇ −∇ ≤ ∇ +∫ ∫ ∫  
  

 (3.2) 

for every ( )0;1ε ∈  small enough; where 
2max 0;

1
p

p
η

 −
=  − 

. 

Corollary 3.2. Let ( )1,Wu∈ Ω  be a distributional solution to (1.4) under conditions (1.2), 

(1.5), and ( )F L∈ Ω . Then there exists a constant ( ) 0C C data= >  satisfying 

( ) ( ), , .x u dx C x F dx
Ω Ω

∇ ≤∫ ∫    (3.3) 

Proof.  Applying Theorem 3.1 to ( )0RB xΩ⊂ , we may conclude that 0v = . It leads to (3.3) 

from (3.2). 

Theorem 3.3. (Byun & Oh, 2017) Let  ( )1, Ωu W∈   and ( )1,
0 Rv u W∈ + Ω is the unique 

distribution to (3.1), then for every 1γ >  there exists a constant ( ), 0C C dataγ= >  

satisfying 

( ) ( ) ( ) ( )
/2

1

/2

1 , , .
R R

n n
R R

Cx v dx x v dx
γ

γ

Ω Ω

 
∇ ≤ ∇    Ω Ω 

∫ ∫ 
 

 (3.4) 
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4. Gradient estimates in weighted Lorentz space 
4.1. Distribution inequalities 

To prove the main results, we will construct some distribution inequalities on level 
sets as below. From Lemmas 4.1 – 4.3, we always assume that ( )0 Ω,0 R < diam Ωx ∈ < ,

,Aω ∞∈ ( )1,u W∈ Ω  is a distributional solution to ( )1.4  under assumptions ( ) ( )1.2 , 1.5  and 

( ).F L∈ Ω  

Lemma 4.1. Given 0 nα≤ < and 0,a >  one can find ( ) 0b b data= >  and ( ) 0dataε ε= >  

such that if 1x ∈Ω  satisfy 1( , ) ( )( ) bx F xα ε λ≤M   for any ( )00, ,ε ε∈  0λ >  then  

( ) ( ) ( )( , ) (0) .a
Rx ud B

α

ω ε λ εω−
∇ ≤M    (4.1) 

Proof. Thanks to Lemma 2.9 with 1s = , 1( , ) ( )f x u L= ∇ ∈ Ω  and Corollary 3.2, we have  

( ) ( )( , ) ( ,1 1, ) ( , )

n n
n n

a
x u a ad C x u dx C x F dx

α

α α

ε λ
ε λ ε λ

− −
−

∇ − −
Ω Ω

   
∇   

  
≤ ≤


∫ ∫M     (4.2) 

for every 0.λ >  Set 0 diam( )D = Ω  then 
0 1( ),DB xΩ⊂  combining with 

1( , ) ( ) ,( ) bx u xα ε λ∇ ≤M   it follows from (4.2) that 

( ) ( )
( ) ( ) ( )

( )

0

0 0 1

1
( ( , )

1

0

0

1

( ) ( )

0 .

( ) 1. ( , )
( )

( , ) ( )

(0)

( )

D

n
n

Da
x u a

BD

n
n n

a

a b n a b n
nn n

R

n

n
x

n
n

B x
d C x F dx

B x

D

R

C x F

D

x

C D BC

α

α

α α

α

α α

ε λ
ε λ

ε λ

ε ε

−
−

∇ −

− −

−

+ +
− −

 
 
 
 

 
≤  



≤

 ≤ ≤  






∫M

M











  (4.3) 

By the definition of ,Aω ∞∈  (4.3) leads to 

( ) ( )
( ) ( ) ( )

( )
( ( , ) 0

( ( , ) 0 0(0) (0) .
(0)

na a b n
x ua n

x u R Rn
R

d Dd C B C B
B R

δ

α

α

δ
δ

ω α
ε λ

ε λ ω ε ω
− +

∇− −
∇

 ≤ ≤ 

 
 


 


M

M


 
 (4.4) 

Let us choose 1 1b a
n
α

δ
 > − − 
 

 in (4.4) and 

1
( ) 1

0
0 0

1 a b n
nR

C D

δ δ
αε

+
−

− 
 





 
=

  
 to obtain (4.1) for all 

0(0, ).ε ε∈ This proof is complete. 
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Lemma 4.2. Given 0 ,nα≤ <  0,a > one can find ( )b b data=  and ( )2 0Rx x∈Ω  satisfy 

2( , ) ( )( ) bx F xα ε λ≤M   for any 0λ > . Then the following inequality  

( ) ( ) ( ) ( )
02

0 0( , ) ( ) ( , )
( ), ( ), ,

B R

a a
R Rx u x x u

d x d x
α α

ω ω
χ

ε λ ε λ− −
∇ ∇

Ω ≤ ΩM M 
 (4.5) 

holds for any 
1

0,3 .
n
aε
+

− 
∈ 
 

 

Proof. Let 0( )R xξ ∈Ω , based on the definition of fractional maximal operator, we claim that 

( ) ( ) ( ){ }( , ) ( ) max ( , ) ( ); ( , ) ( ) ,R Rx u x u x uα α αξ ξ ξ∇ = ∇ ∇M M T    (4.6) 

where  

( ) ( )

( ) ( )

0 ( )

( )

1 ;

1 .

M ( , ) ( ) sup ( , )
( )

T ( , ) ( ) sup ( , )
( )

r

r

R
n

r R r B

R
n

r R r B

x u r x u dx
B

x u r x u dx
B

α
α

ξ

α
α

ξ

ξ
ξ

ξ
ξ

< <

≥

∇ = ∇

∇ = ∇

∫

∫

 


 


 

Of course 2 0( ) ( )r RB B xξ ⊂  with 0 r R< < , it leads to  

( ) ( )2 0( )( , ) ( ) ( , ) ( )
R

R
B xx u x uα αξ χ ξ∇ ≤ ∇M M   (4.7) 

Furthermore, 3 2( ) ( )r rB B xξ ⊂ with r R≥  and using an assumption 2( , ) ( ) ,( )x u xα λ∇ ≤M   
it follows that 

( ) ( ) ( )
3 23 2 ( )

2

1( , ) ( ) 3 sup 3 ( , )
( )

3 ( , ) ( ) 3 .( )
r

R n
n

r R r B x

n n

x u r x u dx
B x

x u x

αα
α

α

ξ

λ

−

≥
∇ ≤ ∇

≤ ∇ ≤

∫T

M

 




 (4.8) 

Combining (4.6), (4.7), and (4.8), we can assert that  

{ } { }20 0 0( ) : ( , ) ( ) ( ) : ( ) ( , ) ( )( ) ( )
R

a a
R R Bx x u x x x uα αξ ξ ε λ ξ χ ξ ε λ− −∈Ω ∇ > ≤ ∈Ω ∇ >M M 

for all 
1

3 .
n
aε
+

−
<  Using the definition of the weighted distribution function, we deduce (4.5). 

Lemma 4.3. Given 0 nα≤ <  and 0,a >  one can find ( ), , 0b b a dataα= >  and 

( ), , , 0a b dataε ε α= >  such that if ( )1 2 0, Rx x x∈Ω  satisfy 

1 2( , ) ( ) ; ( , ) ( ) .( ) ( ) bx u x x F xα αλ ε λ∇ ≤ ≤M M   

then the following inequality  

( ) ( )
02

0 0( ) ( , )
( ), ( )( )

B R

a
R Rx x u

d x B x
α

ω
χ

ε λ εω−
∇

Ω ≤
M 

 (4.9) 
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holds for all 0,λ > 00 ε ε< < . 

Proof. The main idea of this proof is to apply comparison results and the bounded property 
of fractional maximal functions to estimate the left-hand side (4.9). Let us fix 0x ∈Ω  and 

consider v  the unique solution to the following  problem: 

( ) 4 0

4 0

div ( , ) 0  in     ( ),
 on    ( ).

R

R

x v x
v u x

∇ = Ω


= ∂Ω


 

Thanks to estimate (3.2) in Theorem 3.1 and estimate (3.4) in Theorem 3.3, for every 1,γ >  
we can state that 

( ) ( )
2 0 4 0

1

2 0 4 0( ) ( )

1 1( , ) x ( , ) , 
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[ ]
R R

n n
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∫ ∫ 
 

 (4.10) 
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 (4.11) 

where ( )0,1θ ∈  and 
2max 0; .

1
p

p
η

 −
=  − 

 Let us denote 

( ) ( )
02
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B R

a
Rx x u

K d x
α χ

ε λ−
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 It is easily seen that  
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 (4.12) 

On the right-hand side of (4.12), we apply Lemma 2.9 with 1s =  and 1s γ= >  which will 
be chosen at the end of the proof, we obtain  
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 (4.13) 
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Collecting the estimates (4.10) and (4.11) on the right-hand side of (4.13), one gets that 
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          (4.14) 

We remark that 4 0 5 1 5 2( ) ( ) ( )R R RB x B x B x⊂ ∩  and under assumptions 

1( , ) ( ) ,( )x u xα λ∇ ≤M  2( , ) ( )( ) bx F xα ε λ≤M  , it follows 
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According to the above estimates, we have 
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which leads to 
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Since Aω ∞∈ , it implies from (4.15) that 
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In (4.16), we may choose b and γ  such that 

1(1 ) 0b an
n
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 −
= + > − 

 and max ; 1n n
na

γ
α δ α
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to obtain the following estimate 

( ) ( )
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B R
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x x u R Rd x C B x
α

γδ
ω αγ

χ ε λ ε ω− −
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Let us choose 
1

1
0

1 an
n

C
γδ
αγε −
−

 =  
 

 in (4.17) to get (4.9), which completes the proof. 

4.2. Proofs of main Theorems 
Next, we will introduce a version of covering lemma Calderón-Zygmund (Vitali) ( See 

Caffarelli and Peral (1998)) for the proof of this lemma.  

Lemma 4.4. (Caffarelli & Peral) (Covering Lemma) Let nRΩ⊂  be a bounded domain, 
Aω ∞∈  and two measurable sets .⊂ ⊂ Ω   Assume that there exist some constants 

(0,1)ε ∈ and ( )( )0,R diam∈ Ω  satisfying two following hypotheses 

i) ( ) ( )(0) ;RBω εω≤  

ii)For any ( ] ( ), 0, , if ( ) ( ( )) then  ( ) .r r rr R B Bξ ω ξ εω ξ ξ∈Ω ∈ ∩ > Ω ⊂   

Then there exists a constant ( ,[ ] ) 0C C n ω
∞

= >A  such that ( ) ( ).Cω εω≤   

Proof of Theorem 1.1. Firstly, we will prove the inequality 
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a bx u x F
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for any 0λ >  and 0(0, ).ε ε∈  

Let us introduce two following sets  R 

( ) ( ){ }, : ( , ) ( ) , ( , ) ( ) ,a bx u x Fε λ α αξ ξ ε λ ξ ε λ−= ∈Ω ∇ > ≤M M    

( ){ }: ( , ) ( ) .x uλ αξ ξ λ= ∈Ω ∇ >M   
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We will prove that ,ε λ  and λ  satisfy conditions i, ii of Lemma 4.4, which means 

( ) ( ), (0)RBε λω εω≤ for any ( )0, R diamλ > < Ω  and for all ,ξ ∈Ω ( ]0, ,r R∈ if 

( ),( ( )) ( )r rB Bε λω ξ εω ξ∩ >  then ( ) .r λξΩ ⊂   

It is easy to check that ,ε λ ∅=  then it satisfies the two conditions above.  If 

,ε λ ∅≠  then there exists 1 ,x ε λ∈  such that ( ) 1( , ) ( ) .bx F xα ε λ≤M   Thanks to Lemma 

4.1 with ε  small enough, we conclude that 

( ) ( ) ( ) ( ), ( , ) (0) ,a
Rx ud B

α

ω
ε λω ε λ εω−

∇≤ ≤M   

for all 0λ >  and 0.R >  

On the other hand, all ξ ∈Ω  and ( ]0,r R∈ , let us suppose ( )r λξΩ ⊄  . We will 

prove ( ) ( ), ( ) ( ) .r rB Bε λω ξ ω ξ∩ ≤  Since ( ) C
r λξΩ ∩ ≠ ∅ , there exists 2 ( )rx ξ∈Ω  

satisfying ( ) 2( , ) ( ) .x u xα λ∇ ≤M   Moreover, since , ( )rBε λ ξ∩ ≠ ∅ , there exists 3x  

satisfying ( ) 3( , ) ( ) .bx F x ε λ≤αM   Applying Lemma 4.2 and Lemma 4.3 for ε  small 

enough one has 
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( ) ( ),
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∇
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M
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


 (4.19) 

then thanks to Lemma 4.4, we obtain (4.18). 

Finally, we observe that 

( ){ } ( ){ },: ( , ) ( ) : ( , ) ( ) ,a bx u x Fα ε λ αξ ξ ε λ ξ ξ ε λ−∈Ω ∇ > ⊂ ∈Ω >M M   
which implies (1.10). The proof is complete. 

Proof of Theorem 1.2. Application of Definition 2.7 (Weighted Lorentz space) gives 

( ) ( ) ( )( ),

1

( , )( )
0

( , ) .s t

t t
t s

x uL

dx u s d
αω

ω
α

λλ λ
λ

∞

∇Ω

 
∇ =  

  
∫ MM   (4.20) 

For every 0 s< < ∞  and 0 t< < ∞  let us fix 10 a
s

< < . Thanks to Theorem 1.1, there 

exist 0b >  and 0ε >  such that (1.8) holds for any 0λ >  and 0(0, ).ε ε∈  By changing a 
variable in the integral of (4.20) combining estimate (1.8), we get that 
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 (4.21) 

Since 10 a
s

< <  and 0 t< < ∞ , one may choose ( )0,1ε ∈  satisfying 1
2

tat
sCε

− +
≤  to 

obtain (1.11), which completes the proof.  It is similar to the case .t = ∞  
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TÓM TẮT 

Bài toán pha kép được mô hình từ bài toán cực tiểu một lớp các hàm năng lượng tích phân 
với điều kiện tăng trưởng không chuẩn. Bài toán này có nhiều ứng dụng trong Vật lí, như trong bài 
toán đàn hồi phi tuyến, động lực học chất lỏng và các bài toán đồng nhất. Bài báo này đưa ra một 
đánh giá gradient toàn cục cho nghiệm phân phối của bài toán pha kép trong không gian Lorentz có 
liên kết với một hàm trọng Muckenhoup. Cụ thể, kết quả này là một dạng đánh giá có trọng so với 
kết quả chính trong bài báo (Tran & Nguyen, 2021). Phương pháp nghiên cứu của chúng tôi dựa 
trên việc xây dựng bất đẳng thức hàm phân phối có trọng trên các toán tử cực đại cấp phân số, toán 
tử này có liên hệ mật thiết với thế vị Riesz.  

Từ khóa: bất đẳng thức hàm phân phối; bài toán pha kép; đánh giá gradient; không gian 
Lorentz có trọng 
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