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ABSTRACT

The aim of this paper is twofold. Firstly, we give a global estimate of the Calderén-Zygmund
type for solutions to double-phase problems in Orlicz spaces via maximal fractional functions. In
this study, we employ the approach based on a generalized good- A technique developed by Tran
and Nguyen (2019), where regularity results are preserved under the fractional maximal operator.
This operator is notable for its role in evaluating the oscillation of functions, and there is a close
relation between this operator and the Riesz potential. Secondly, we present a pointwise estimate of
the Riesz potential as a consequence of the first result.

Keywords: Double-phase problems; Orlicz spaces; gradient estimates; Riesz potential;
fractional maximal functions

1.  Introduction
In this article, we focus our study on the quasilinear elliptic equations with a zero
Dirichlet boundary condition as described below
div(A(x,Vu)) =div(B(xF)) in Q,
{ u = 0 on 0Q,

(P)

in which Q is an open bounded subset of R" (n > 2) and the datum F:Q — R" is a vector

field. The operators A,B:Q — R" are given such that A is measurable concerning the first

variable and is differentiable with respect to any non-zero second variable while Bis a
Carathéodory function. Moreover, they satisfy the following conditions:
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A0 )+ [o, 406 ] 1Y+ B0 v < L (v + a0y )
7/(|y|p_2 + a(x)|y|q_2)|z|2 <(0A(X,Y)z,2) ; (A1)

[

LA (X, y) = A (%, y) < Lla(x)—a(x,)|y

with a fixed constant 0 < y < L <o for all non-zero y,Z€ R" and X, X, X, € Q . The function
a:Q —[0,o) and parameters p, q in (Al) satisfy the following assumptions:

0<a()eC™, xe(0,1]; (A2)
1<g£(1+£j; p>1 (A3)
p n

Problem (P) described above is also known as a double-phase problem, and it is solved
together with the main conditions (A1)-(A3). It is a more general form of the following

(p,q)-Laplace problem

—div(|Vu|'O_2 vu+a(x)|vul? Vu) = —div(|F|'°_2 F+a(x)|F["? F), (1.2)
which is the Euler-Lagrange equation resulting from the energy functional

Vi F(v,2)- j<||:|p *F+a()|F"*F,vv)ox |

where F(v,0): _[(|Vv|p +a(x)|Vv|q)dx is called double-phase functional.
Q

One of the main concerns when studying problem (P) is the regularity of the weak
solutions, which has attracted the interest of several researchers in recent years. Some
interesting regularity results will be briefly discussed related to solutions of equation (1.2)
or some look-alike non-uniformly elliptic equations. In particular, we are interested in the
global or local gradient estimates of the Calderon-Zygmund type of the solutions in different
functional spaces. The first results were given by Colombo and Mingione (2016), who
investigated the local estimate of the distributional solutions to (1.2). Specifically, they prove
that the relation

IF|” +a(x)|F|" € L () = |Vu|]” +a(x)|Vu[" € L, (Q) (1.3)
is satisfied by any 76[1,00) when $<1+5 1n addition, they provided results when
p n

g < p+xand extended those results to the vectorial case. Byun and Oh (2017) improved

those results to include the boundary in the case 0Q is a C™*" subset for some x* e [K,l].

They presented the global estimates in Lebesgue space L”. An additional contribution to the
study of problem (1.2) was brought into play by Filippis and Mingione (2019), who handled
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the tricky borderline case a ~1+% and confirmed the validity of the strong relation (1.3)
p n

in this case. Following those results, Tran and Nguyen (2021) carried on the regularity study

in Lorentz spaces and stated the global gradient estimates for weak solutions to (1.2) via

fractional maximal operators in the form

|||v|ﬂ (H(x,Vu)) s S c|||v|ﬂ (H(x.F)) sy’ (1.4)
where 7 is defined as below
HXY) =y|" +ax)|y|*, xeQ, yeR". (1.5)

The good- A4 technique has been employed in their proof to obtain interesting
regularity results in the domain, including the boundary.

The important and appealing results described above have inspired us to extend the
study to wider functional spaces. Here, our approach is based on a generalized good- A
technique developed by Tran and Nguyen (2019), where regularity results are preserved
under a fractional maximal function M ;. We shall investigate two main results in this paper.

Firstly, we establish the global Calderon-Zygmund-type inequality for the gradient of weak
solutions to quasilinear elliptic equations (P) in Orlicz spaces in terms of fractional maximal
functions. The second one is a pointwise estimate for the Riesz potential. The structure of
the remaining of this article is as follows. Section 2 presents the notations used in this article
and gives some preliminary results concerning our proof. Finally, the main results are
presented and proved in section 3.
2. Notation and preliminaries

In this section, we briefly introduce some notations, definitions, properties and useful
results that will be used throughout the article.
In what follows, we shall assume that the domain Q < R" with n>2is open and bounded.

The notation By (x) stands for an open ball centered at x with the radius R >0; that is, the
set of all the points {y eR" :|y— x| < R} . We write |A| , when there is no misunderstanding,

for Lebesgue measure of a measurable set A< R". For the sake of simplicity, we denote by
data the set of parameters arising from assumptions (Al)-(A3) that controls problem (P)
under consideration. More specifically, data consists of
n, p.a,x,7, L)l .[a] .| H(, Vu)

which may be different from line to line. The dependencies of C on specific parameters will
be emphasized in parentheses.

The main result of our article is obtained in Orlicz space. This functional space is
defined and has basic properties as stated below.

- .- Finally, we utilize C to denote a universal constant,
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Definition 2.1. (Young function)
A Young function @: [0, oo) - [0, oo) is a convex and increasing function that satisfies two
following limit relations

lim M=O, lim M:oo. (2.1)
u0" poo 1
Lemma 2.2. (Hasto, 2019, Lemma 2.2.7)
Let @ be a Young function; then the following two statements are equivalent:
a) There exists 7, > 2 such that ®(2u) <7,®(u) forall £>0. (2.2)
b) There exist two positive constants K, and p, such that ®(au) < K,a™®(x) for any
a>land 4>0. (2.3)
Definition 2.3. (Orlicz space)
Let ® be a Young function satisfying (2.2). The Orlicz class O®(Q) is specified to
be the set of all real-valued, measurable functions f defined on Q meeting the condition

[o(|f () dx <.

The smallest linear space containing O® (), equipped with the norm

. f(x)
||f||L¢(Q) =inf {r>0:£®[¥]dxsl},

is called the Orlicz space and is denoted as L” ().

We next state the definition of a solution to problem (P) in the distributional sense.
Definition 2.4. (Distributional solution)

A function u eW;" (Q) satisfying the following condition for every ¢ € C;(Q)
J<A(x,Vu),V¢)>dx:'[<B(x,F),V¢>dx, (2.4)

Q Q
is called a distributional solution to (P) under conditions (Al), (A2), and (A3).
Lemma 2.5. (Byun and Oh, 2017, Proposition 3.5)

Suppose U eWO“(Q) is a distributional solution of (P) under conditions (Al), (A2),
and (A3) satisfying H(x,Vu),H(x,F)e L'(Q). Then the following variational formula
holds for every test function @ €W,"(Q) such that H(x,Vp)el'(Q)

RA(X’V“)’V@O‘X:RB(X’F)’V@W- (2.5)

Q Q
Next, we introduce the doubling property of weights used throughout the article.
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Definition 2.6. (Muckenhoupt weights) Let a weight @: R" — [O,oo) be a locally integrable

function, we say that @ € A, if one has

p-1
1 1 _1
[whp=s&5£mer{x>”(”"y}{msﬁ o “"y] e

l<p<w

1
By (X) |Br (x)| 8() yeBy (x) @

and there exist constants C,,v >0 satisfying

[a)]p& sup '[ w(y)dy} sup (Ly)mo, when p=1

w(A)<C U |

for every ball B < R" and all measurable subsets A< B, where w(A) ::ja)(x)dx. In this

J o(B), when p = oo, (2.6)

case, we denote [@], =(Cq,v).

Definition 2.7. (Weighted Lorentz spaces) Let te(0,0), se(0,] and weA,, the

weighted Lorentz space L7 () is the set of all Lebesgue measurable functions f defined

on Q whose norm satisfying ||f||Lt,S(Q) <+, Where
@

» |-

” ”L‘S(Q) tj.ls {XEQ |f(x)|>ﬂ,})t— , ifs<on, 2.7)

and

|f

supm({XEQ | £ (%) >/1}) if s = 0. (2.8)

o)
We now also look at the definition of the fractional maximal function.
Definition 2.8. (Fractional maximal operator) Let £ be a real number in [0,n], the fractional

maximal operator |V|ﬁ of f isgiven by

M, f(&)=supp”™ [ |f(y)dy, £eR", 2.9)
p>0 Bp(?)
where f e L}OC( "). When =0, the Hardy-Littlewood maximal function M is defined as
Mf (&) =supp™" j | (y)|dy, £eR". (2.10)
P20 By(9)
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Lemma 2.9. (Tran and Nguyen, (2021), Theorem 4.3) Suppose that Q is an open bounded

domain in R" such that 6Q belongs to C**" class for some x* € [x,1]. Let u e W (Q) be
a distributional solution to (P) under conditions (Al), (A2), and (A3) satisfying

H(x,Vu),H(x,F)eL'(Q). Then for any Se[0,n) and ae(o,l—éj, there exist

& =¢6(nB,a)e(0,1), b=b(B,a)>1, and a constant C =C(data,Q, 4,a)>0 such that
the estimate
HXGQ:Mﬂ(H(x,Vu))>g’%;Mﬁ(H(x,F))sgbl}‘SCg‘{XGQ:Mﬂ(H(x,Vu))>2}‘ (2.11)

holds for any 2>0 and ¢€(0,¢,).

Remark: Results obtained in Tran and Nguyen (2021) were described in the presence
of MM ; operator. However, Nguyen and Tran (2020) showed that the good- A type bound
has been improved with M ;. Therefore, in (2.11), we state the good- A result using M,

(See Nguyen & Tran (2020) for further details).
Definition 2.10. (Riesz potential) If 0 <a <n, then the Riesz potential 1, f of a locally

integrable function f on R" is a function defined by
f
(1,6)(2)= [ Y _qy. (2.12)
R" |Z N y|
3. Main results

Now we state and prove the global gradient estimate in Orlicz spaces via fractional
maximal function.

Theorem 3.1. (Global estimate in Orlicz spaces) Let S e [0, n) and let (P) be a problem as

defined in section 1 under conditions (Al), (A2), and (A3) on an open bounded domain Q.
Assume that 6Q belongs to C™*" class for some x* e [K,l] . Suppose that u eWOM(Q) isa
distributional solution to (P) with a given data satisfying H(x,Vu), H(x,F)e L' (Q).

Let we A, and denote (Cy,v)=[w], . Then for te(0,:0) and 0<s<oo, there exists a
constant C" =C” (data,Q,t, s, B,[0],, ) >0 such that

<C”

LS (@)

||Mﬂ(H(x,Vu)) (3.1)

M, (H(xF))

L@
Moreover, if K:R" —R" is a Young function and K(2z) <cK(z) for all z>0 with a
constant ¢ >0, then

jK(Mﬂ(H(x,vU)))w(x)dxsc“j K (M, (H(x.F)))o(x)dx, (3.2)

Q Q
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where the constant C™ = C**(data,Q,ﬂ,c,[a)]% ) :
Proof. First of all, we prove (3.1) for the case 0 <s <.

For every te(0,o) and se(0,), let us fix 0<a< min{l—ﬁ,%}. By virtue of
n

Lemma 2.9, one can find ¢, =¢&,(n,B,a)e(0,1), b=b(p,a)>1, and a positive constant
C =C(data,Q, $,a) such that the estimate
‘{XEQZ Mﬂ(H(x,Vu))>g‘aﬂ;Mﬁ(H(x,F))Sgb/l}‘ng‘{XEQ: Mﬁ(’H(x,Vu))>/1}‘ (H)

holds forany >0 and ¢ €(0,¢,).

LetA={xeQ:M,(H(x,Vu))>& 4}, B={xeQ:M,(H(xF))>4},
D :{XGQ: Mﬂ(H(x,Vu)) >/1} then Ac D for ¢ small enough, and the condition (H)
says that
|AnB°|<cCe|D]. (3.3)
We have
A=ANQ=AN(BUB®)=(AnB)U(ANB®)
(3.4)
cBU(ANB®).
From the definition of @, w(E) = ja)(x)dx, it implies from (3.4) that
E
w(A) gw[B U(ANB® )J:a)(B)+a)(Am BC). (3.5)
Since w e A, , we have
) [AnBe|]
a)(Am B )sc0 D w(D), (3.6)
where (Co,v)=[w],_.
Using (3.3) and (3.6) in (3.5), we deduce that
o(A) < w(B)+Cy(Ce)” w(D). (3.7)

Applying the inequality (a+b)" <2 (ar +br) with a,b,r e R", it follows from (3.7) that

oA <2 w(B)" +27 CJ (Ce)"" (D). (3.8)
We may rewrite the definition of the norm in weighted Lorentz space and change variables

from 1 to %1 to get
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sit dﬂ

||Mﬁ( xVu)) —tTﬂSa)({XEQ:Mﬂ(H(X vu)) >;t})

Lt )
3.9
sit dA ( )
asps ({(xeQ:M, (H(x,vu))> 72} —
Combining estimates (3.8) and (3.9), it follows that

||Mﬂ( x Vu)) 25’t5astzisa)({XeQ:Mﬁ(H(x,F))>gb,1})S/td_’1

LS ()

A

+28tcst (Ce) " g‘ast]g/lsa)({x eQ: M (H(x,Vu))> /1})5“ dA
0

which means

“Mﬂ(H(X,Vu)) izs(g)gzs/tg—as—bs I\/Iﬂ(H(X,F)) SL‘(;(Q) gsitositevsit ysit-as Mﬂ(H(x,Vu)) Sts

sy’ (3.10)

Forte (o,vafl) , we may conclude (3.1) by taking ¢ € (0,&,) in (3.10) such that

zs/tCs/ths/tgvs/t—as < 1
0 =9
When s=o, we may rephrase the definition of the norm in weighted Lorentz space and
change variables from A to £7®1 to get
n
||Mﬂ (H(X’VU))||L5;0(Q) =Sup ., /Ia)({x eQ: |I\/Iﬁ (H(X,Vu))| > l})

. (31D
=sup ., ﬂg_aa)({x eQ: |Mﬁ (H(X,Vu))| > /lg_a}) :

Using the inequality (a+b)" <2' (ar + br) with a,b,r e R", it follows from (3.7) that

(A <2 wB) +2" C¥ (Ce)" (D). (3.12)
Combining estimates (3.11) and (3.12), it follows that

”Mﬂ(H(X’VU))”ng(Q) < ot -2 bSupbo e a)({x eQ: ||V| X F))| S ﬂ,gb})m

vit

Lot Cé/t (Cé‘) &2 SUP .0 }Lw({x eQ: |Mﬁ (H(X, VU))| > ﬂ})l/t |

which means

HMﬂ ( X VU)) Lt OO( < 21/1 8—a—b _l_ 21/I Cé/tCV/tEV/t_a (3 13)

M, (H(xF))

M (H(XVU))] 1

Ltoo

For te(O,va ) we may conclude (3.1) by taking ¢ €(0,&,) in (3.13) such that

a1
letcél)./tcv/tgv/t a <=
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Next, we prove (3.2). Since K(2z) <cK(z) forall z>0, it follows from Lemma 2.2 that
when ¢ is small enough, there exist constants 1, >0 and p, >1 such that for any z >0, there
holds

K (g—a—bz) <Le MK (2); K(67%2) < e ™K (2). (3.14)
Since p, only depends on function K in (3.14), we can choose a such that
O<a<m|n{1—£ L} (3.15)
np

Forall 1>0,by we A, and controlled condition (H), it is easily seen that
a)({XGQ:Mﬁ(H(x,Vu))>g‘a/1})£a)({XGQ: Mﬂ(H(x,F))>gb/1}) 16
+Co(Ce) o({x e Q: M, (H(x Vu)) > 2}).
Forall z>0, letus apply (3.16) by 2 =¢*K™(z), one gets
w({XeQZMﬁ(H<X,VU))>K_l(Z)})Sa)({XEQZ Mﬂ(H(x,F))>ga+bK‘l(z)})
+C0(C8)Va)({XeQ:Mﬂ(H(X,Vu))>8aK_1(Z)}),
which guarantees that
w({x cQ:K (Mﬂ (H(X,Vu))) > z}) < a)({x eQ: K (a‘a‘bMﬁ (H(x, F))) > z})
+CO(C$)V0)({XEQZ K(g’aMﬁ(H(x,Vu)))ﬂ}),
since K is a strictly increasing function. Thanks to (3.14), we can deduce from (3.17) that
w({x eQ: K(Mﬁ(H(x,Vu))) > z})s a)({XEQZ aK (M[,(H(X,F))) > z})

+Co(Ce)' o[ xeQ:aK (M, (H(x Vu)))>2}).

(3.17)

(3.18)

where a; = L,e™ ™™ and @, = I,
Integrating two sides of (3.18) over the range [O,oo) and then changing the variable on the

right hand side, we have

Iw({XEQ:K(Mﬂ(H(X Vu ) }) w({XEQ K( <H(X'F)))>Z})dz

(3.19)

),

“f
Ia)({XEQ K (M, H(x,Vu)))>z})dz,

One notes that
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IK(Mﬂ(H(X,VU)))a)(X)dX=ICO({X€QZ K(Mﬂ(H(x,Vu))) > z})dz :

Q
_ 1 .
so we may choose ¢ e (0,,) in (3.19) such that Cy(Ce)"ar, =C,C" ;" SE to obtain

(3.2).
Theorem 3.2 (Pointwise estimate for the Riesz potential) Let S e [O, n) and let (P) be
a problem as defined in Section 1 under conditions (Al)-(A3) on an open bounded domain

Q. Assume 0Q belongs to C™" class for some x* e [K,l]. Suppose that u eWol'l(Q) isa
distributional solution to (P) with a given data satisfying H(x,Vu), H(x,F)e L' (Q).
For any 0< a < n, there exists a positive constant C” such that

L, [M,(H(xVu))|<C1,[M,(H(xF))], (3.20)

holds for almost everywhere x e R".
Proof. Applying Theorem 3.1 with K(x)=x and we A_, there exists a constant C"only

depending on data,Q,ﬁ,[a)],Abo such that
j M, (H(x,Vu))o(x)dx<C j M, (H(x,F))@(x)dx. (3.21)

holds for any zeR" and & >0 small enough. We may choose h = Xs,(z) € Lioc

(s
and let w=1_h. We will verify that o € A, by showing we A, since A c A, .
Indeed, it is not difficult to prove that for @, (x)= |x|1_n there exists a constant L >0 such
that

M (@, )(X) < Lay (X), (3.22)
forall x e R". Using Fubini’s theorem, it implies that I _h satisfies the following inequalities

forall he L}

loc

M(I,h)(x) < LI h(x), (3.23)
which demonstrates that 1_h belongsto A .

(R”;R*) and xcR"

Now, we may use the chosen function =1, [ng(z)} in (3.21), which gives:

IMﬁ(H(x,Vu))J' o) =8 " dydx <C” _[M H(x F))J'%L)f_yzdydx.

R”|y X| R”|y_x|
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Note that now C”only depends on data, 2, . Thanks to Fubini’s theorem again, it leads to
the following estimate

M, (H(x,Vu . M., (H(x,F
[ 25,000 ] ﬁ|(—f<|”“ ))dxdysc J-ZBS(Z)(Y)J.WdXdy,
RrR" R" R" RD

which can be rewritten as
[ 1My (H(vu))|(y)dy<C™ [ 1,[My(H(.F))](y)dy. (3.24)
B,(2) B, (2)
Letting ¢ tend to 0 in (3.24) and applying Lebesgue differentiable theorem, we obtain that
(3.20) holds almost everywhere for z € R". The proof is complete.

% Conflict of Interest: Author have no conflict of interest to declare.
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TOM TAT

Bai bao nay c6 hai muc dich. Thir nhdt, ching t6i dwa ra mét wée lhrong toan cuc dang
Calderdn-Zygmund cho nghiém cua bai todn pha kép trong khong gian Orlicz s dung todn tir cuc
dai cdp phdn s6. Phurong phdp chiing t6i sir dung trong nghién ciru nay dwoc dira trén ki thudt good-
A tong qudat dwoc phét trién boi Tran, va Nguyen, 2019, trong dé cdc két qud vé tinh chinh quy
nghiém diroc bao toan qua toan tir cuc dai cdp phan sé. Toan tir nay duwoc biét dén réng réi qua vai
trd cua né trong viée wdc hirong sw dao ddng cia cac ham sé, va cd mét moi lién hé gan giii giira nd
va thé vi Riesz. Trong két qud thi: hai, chiing t6i trinh bay wée lirong tirng diém cho thé vi Riesz nhur
la mot hé qud ciia két qua thir nhdt.
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