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ABSTRACT

This paper presents the computational scheme and calculation results of metastable states in
scattering and eigenvalue problems for complex potential barriers. For the scattering problem, the
wave functions with S-scattering matrix are calculated at fixed real-valued energy of an incident
wave, and the eigenvalue problem with corresponding eigenvalues are calculated as well. Then, we
consider the wave functions of metastable states in the vicinity of these resonance energies for two
of these problems. The solution to the problems is performed using the authors' software package
with the high-accuracy finite element method. The calculation results are shown in table and
graph form.

Keywords: complex potential barrier; eigenvalue problem; KANTBP 4M program; metastable
states; scattering problem

1.  Introduction

In recent years, several complex potential models (symmetric versions of the harmonic
oscillator, one-dimensional Coulomb-like, Scarf) have been investigated to show analysis of
bound or scattering states (Znojil, 1999; Bagchi & Quesne, 2000). There are also a number
of scientific works investigating and studying metastable states for these complex potential
energy barriers and presenting interesting research results. Metastable states of a quantum
system sometimes exist in real and complex potential energy barriers or wells (Ahmed, 2001;
Jia, Lin, & Sun, 2002; Bagchi & Quesne, 2002). However, the number of such works is not
much. It has been known that metastable state, in physics and chemistry, particular excited
state of an atom, nucleus, or other system that has a longer lifetime than the ordinary excited
states and that generally has a shorter lifetime than the lowest, often stable, energy state,

Cite this article as: Luong Le Hai, Luu Kim Lien, Nguyen Minh Nhut, & Gusev Alexander Alexandrovich
(2022). Calculation of metastable states in scattering and eigenvalue problems for complex potential barrier.
Ho Chi Minh City University of Education Journal of Science, 19(10), 1599-1610.

1599


https://journal.hcmue.edu.vn/
https://doi.org/10.54607/hcmue.js.19.10.3474(2022)
https://www.britannica.com/science/physics-science
https://www.britannica.com/science/energy-state

HCMUE Journal of Science Luong Le Hai et al.

called the ground state. The metastable state of a quantum system is an important model in
guantum physics and atomic nuclear physics.

In our last work (Gusev et al., 2015), we presented a numerical scheme and algorithm
to calculate resonance metastable states in scattering and eigenvalue problems containing
complex potential barriers like complex rectangular and Scarf potentials. As a result, we
have shown that for these complex potential barriers not only bound states but also
metastable states exist. In the present work, we continue studying these problems for another
complex potential barrier, the Poschl-Teller potential barrier. This barrier type plays an
important role in mathematical models, describing wave propagation in smoothly irregular
waveguides, tunneling and channelling of compound quantum systems through
multidimensional potential barriers, photoionization, photoabsorption (Muga & Rodriguez,
2004; Cervero et al., 2004; Sevastyanov et al., 2014), and transport in atomic, molecular,
and quantum-dimensional semiconductor systems (Chuluunbaatar et al., 2007; Vinitsky et
al., 2013; Vinitsky et al., 2014).

AV(z) V)

A N T T
(d) z
Figure 1. The system of two complex Poschl-Teller potential barriers at different values of

V,,V, andd . The solid line shows the real part and the dotted line shows the imaginary part
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The paper is organized as follows. In Section 2, the formulation of the boundary-value
problems with the boundary conditions of the first, second, and third kind is presented.
Section 3 presents the algorithm for calculating the metastable states in scattering and
eigenvalue problems for complex Poschl-Teller potential barriers in KANTBP 4M program
(Gusev et al., 2015). This program solves BVPs of mathematical models reduced from low-
dimensional complex quantum models based on the finite element method (FEM) with
Hermite interpolation polynomials (HIPs). Finally, in Section 4 by using KANTBP 4M
program, the calculation results are presented in graphs and tables. In the conclusion section,
we discuss further applications of the elaborated method and results.

2. Problem statement and method of research
2.1. Problem statement
The one dimensional Schrodinger equation has the form:

(V@ -E, |0, -0 &
z
A complex double Poschl-Teller potential barrier is given by:

V()= VY, V, VA @

cosh(z—d)’ " cosh(z—d)’  cosh(z+d)? ' cosh(z +d)’

Here d is the distance between two separated barriers. V,, V,, and d are considered as
parameters of potential barriers (2). Obviously, at V, <0, V, <0 we have potential well, and
at V;>0,V, >0 we have a potential barrier. Figurel shows the system of two complex
Poschl-Teller potential barriers at different values of V,, V,, and d . One can be seen that the
complex Poschl-Teller potential barrier is symmetric. Indeed, at d =0,V, >0,V, =0 there
is one barrier only (Figure 1a),at d >0, V, >0, V, =0 there are two symmetric barriers with
separated distance d (Figure 1b) and at d >0, V, >0, V, >0 we have two symmetric

barriers with real and imaginary parts (Figure 1c and Figure 1d). We must consider possible
metastable states existing in these barriers depending on different values of V,,V, and d.

2.2. Method of research: Algorithm for calculating metastable states in scattering and
eigenvalue problems
To solve Eq. (1) for metastable states, we consider the boundary value problem (BVP)

for the system of ordinary differential equations (ODE) of the second-order with respect to
the unknown functions ®(z)=(®,(z)...,®,(z)) of the independent variable

ze(z™ 2™) (Streng & Fics, 1977):

1 d d f,(2) d 1 df,(2)Q(2)
f3(2) ! dz () dz Vi) fB(z)Q(Z) dz ’ fy(2) dz

—El |®(2) =0 (3)
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Here f,(z)>0 and f;(z) >0 are continuous or piecewise continuous positive
functions, 1 is the unit matrix, V(z) is a symmetric matrix (V;(z) =V;(z)), and Q(z) isan
antisymmetric matrix (Q; =-Q;). These matrices have dimensionNxN, and their
elements are continuous or piecewise continuous real or complex-valued coefficients from
the Sobolev space 7#,;*'(Q), providing the existence of nontrivial solutions subjected to
homogeneous boundary conditions: Dirichlet (I kind) and/or Neumann (11 kind) and/or third
kind (111 kind or the Robin condition) at the boundary points of the interval z  (z™", 2™
at given values of the elements of the real or complex-valued matrix R(z') of dimension
N x N.

(1):  ®(z') =0, t=minand/or max 4)

(I: lim fA(z)(Id—Q(z)j(l)(z):o,t:min and/or max (5)
YA dz

=R(z")®(z"), t = min and/or max (6)
z=7'

d
(1): (I —Q(z)j(l)(z)

dz
Eigenfunctions @ _(z) obey the normalization and orthogonality conditions

(@, |®,)= J fo (®,(2)) ®,.(2)dz=3,,. (7)

mln

2.2.1. For the multichannel scattering problem

On the axisz e(—oo,+oo) at fixed energy E =‘RE, the desired matrix solutions

o(z) = {0 ()3, V) (2) = (@) (2),...,0{) (2))" of the boundary problem (3) (the subscript
v means the initial direction of the incident wave from left to right — or from right to left

mln max

<) inthe interval z e (z ). These matrices solutions are subjected to homogeneous

third kind boundary conditions (6) at the boundary points of the interval z e (z™", z™)
with the asymptotes of the “incident wave + outgoing waves” type in open channels
i=1...,N, (Gusev etal., 2016):

X )+ XD @R, +XO @RS, 75—,

@ (z>tw)={ ™ “2'”) -
X\ ()T, + X (DT, 7> 400,

max
X (2 T + X9 )T , 1= —0,
(I)(_(Z—)iOO): ( ) (ml)n( ) (m;n( ) :

maX

(8)
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Here ®_ (z), ® _(z)are matrix solutions with dimensions N x NOL, N x NOR,Where

N, N¥are the numbers of open channels, X{)(z), X' (z) are open channel asymptotic

solutions at z — —oo, dimensions N x NOL, Xﬁgz(z), Xﬁn‘gz(z) are open channel asymptotic

solutions at z — +oo, dimensions N x N, X© (z), X(©) (z) are closed channel solutions,
dimension  Nx(N-N;), Nx(N-NJ), R_,,R_are the reflection amplitude square
matrices of dimension N;xNI, NYxNJF, T, T, are the transmission amplitude

rectangular matrices of dimension Ny xNg, Ny xNJ, RS, T, TS RS are auxiliary
matrices. For real valued potentials V(z) and Q(z) the transmission T and reflection R
amplitudes satisfy the relations:

T.T,+R,R =1 T, T, +R,R_ =1

00’ 00’

TR, +R°T_=0, RLT, +T /R, =0, 9)
T =T., RL=R,, RL=R_

ensuring unitarity and symmetry of the S-scattering matrix:

R, T
s=( - “), S*S=SS* =1. (10)
T, R_

5
Here symbols *and T denote conjugate transpose and the transpose of a matrix, respectively.
2.2.2. For the eigenvalue problem

The KANTBP 4M program calculates a set of M energy eigenvalues
E: RE <RE, <...<RE,;, and the set of corresponding eigenfunctions
®(2) ={d" ()}, ®"(2) = (D" (2),..., 0" (2))" from the space H7 for the system
(3). The solutions are subjected to the normalization and orthogonality conditions:

<o M =J.Z

Zmln

max

f5 (2)(@™ (2))" @™ (2)dz = 5y (11)
To solve the problem for bound states on the axis or on the semiaxis the initial problem
is approximated by boundary value problem (3)-(6) on a finite interval z e (z™", zM®)
with boundary conditions (4)—(6).
2.2.3. For the calculation of metastable states
With complex eigenvalues E =RE +i3E, JE <0: RE, <RE, <... the Robin BC

follow from outgoing wave fundamental asymptotic solutions that correspond to Siegert
outgoing wave BCs (Gusev et al., 2015).
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For the set ODEs (1) with f,(z)= f;(z) =1 Qij(z) =0 and constant effective
potentials V. (Z) V "in the asymptotic region, asymptotic solutions Xi(*)(z — Fo0) are
expressed by the followmg formulas:

Xi(f)(z—>oo)—>exp[+i E—ii(':'R|z|jl//it'R, AR <RE, iy =1, Ng'®,
(12)

Xi(cc)(z—mo)—)exp( ﬁLR E|z |j CF AR 2 RE, = Ng R LN,

I"‘“"I‘“ 0 keypot=2 Functional

Scheme of
\l KANTBP SM
Code

| solproco e—s! IHPs = wrpars = mpaers |

|HF"()'I ITHPPI ¢ Cown e IHPMATRICOS IHPPI
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— ¥
___.———'_'_._._._-_'—7_- f s *
m— CGmatricesdef testifP
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It newt IHPEIgv 5 - d ¥
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cwt i ’ ;
Reween HPEig!

solproc
*=1.2.3

Smatsol
L

Figure 2. Functional structure of KANTBP 4M code for different types of quantum problems
keypot =0, approximation of function given in nodes by a continuous one in the form of a
procedure.
keypot =1 solution of the eigenvalue problem,
keypot = 2 solution of the multichannel scattering problem,
keypot =3 solution of the eigenvalue problem by Newton method.
keypot = 4 (supplementary) calculations of errors estimation of IHP and stiffness and mass matrices
elements of the algebraic problem.

DirL, DirR; boundary condition key in the left and right points of interval:
1 Dirichlet boundary condition,

2 Neumann boundary condition,

3 Robin boundary condition,

0 Robin boundary condition that determined from the asymptotic solution,
4 Robin boundary condition that determined from the asymptotic solution for the user supplied

procedure.
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Figure 2 shows the functional structure of the KANTBP 4M code for different types
of boundary quantum problems. One can be seen that for different values of keypot there are
different boundary problem types. For example, at keypot = 1, we have a solution to the
eigenvalue problem, at keypot = 2, we have a solution to the multichannel scattering problem
and at keypot = 3, we have a solution to the eigenvalue problem by Newton method for
calculating metastable states. DirL and DirR are the boundary condition keys in the left and
right points of the interval.

3. Results of calculating metastable states
3.1. For scattering problem
In this problem, by using KANTBP 4M at keypot = 2 and keypot = 3, the mesh has

been chosen as Q, = [seq(O,?S.i, i:—40,40)} with 111 kind boundary condition (Robin

condition) (6). In this case, DirL = DirR =0 for scattering problem and DirL = DirR = 3 for
calculation of metastable states. The numerical calculating results are presented in Figure 3
and Figure 4. These figures show the graph of wave functions in scattering problem with
fixed energy E =‘RE of the incident wave and wave function of metastable state at different
values of V,,V,, and d. The solid line shows the real part, and the dotted line shows the
imaginary part. It can be seen that for a wave from left there is one open channel, and from
right there is one open channel also. The amplitude of wave functions depends on the height
(V,, V,) of the potential barriers and the distance d between them and decreases after passing
through the potential barriers (left and middle). The metastable states explicitly exist in the
region between the two potential barriers (right). The lower panel shows scattering matrix S
calculated by formula (10). All elements of scattering matrix S are complex.

()

- 3'0 -

-3 -34
0.901758111658375 — 1.025042308960531  —0.0783790134800321 — 0.5517371959019501
—0.0783790134800599 — 0.551737195902141 1  0.901758080424813 — 1.02504234423033 1

Smatr =

Figure 3. Upper panel shows the plot of wave functions @ (z) in the scattering problem (left
and middle) with fixed energy ‘RE =0,23456 of the incident wave and wave function of the
metastable state (right) at V, =1, V, =0,1; d =3,5. The solid line shows the real part, and the
dotted line shows the imaginary part. The lower panel presents scattering matrix S.
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_,nv .v‘lo Wzo\/ﬂ u]\/—:o\/u _ 10- v _v Ju

R - -3\ 20°, \1 o haf c24 30
0.377573349513653 — 0.708873106406891 1 —0.525827562418403 — 0.2800761670529721
—0.525827562418584 — 0.2800761670530691 0.377573315619071 — 0.7088731244604601

D,.(2)

Smatr=

Figure 4. Upper panel shows the plot of wave functions @ (z) in the scattering problem
(left and middle) with fixed energy RE =0,23456 of the incident wave and wave function
of the metastable state (right) at V, =1, V, =0; d =3,5. The solid line shows the real part,

and the dotted line shows the imaginary part. The lower panel presents scattering matrix S.
3.2. For eigenvalue problem
In this problem, by using KANTBP 4M at keypot = 1 and keypot = 3, the mesh has

been chosen as Q, = [seq(0,75.i, [ =—10,10)} with | kind (Dirichlet condition) (4) and

Il kind boundary conditions (Robin condition) (6). In this case, DirL = DirR = 1 for
eigenvalue problem and DirL = DirR = 3 for calculation of metastable states. The numerical
calculating results are presented in Table 1 and in Figure 5 and Figure 6.

Table 1. The first eigenvaluesE,, (m=1,2,3,4) and corresponding resonance energies

RE,,, of the metastable states at different values of V,,V,, and d .

res

Resonance
Parameters of Eigenvalues E energies
potential barrier " RE
V=1V, =03, E, =0,300062354377042 + 0,0530851054023483.i 0,3071
d=3 E, =0,493225802797972+0,059921912036273.i ~ 0.4898

E, =0,533511451371992 + 0,0373263631142993.i 0,5042
E, =0,993897759035974 +0,102470325986607.i 0,9935

E, - 0,346182612766816 + 0,0302082273991865i  0,3545
Vi=13V, =020 £ _( 542068506977339 + 0,0319825004259676]  0.5319
d=3 E, = 0,568501040007439 + 0,0228587820711715j 05697

E, =1,09844657800175+0,0688183686207677.i 1,1036
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Table 1 shows the eigenvalues E_, and corresponding real-valued resonance energies

RE, in the eigenvalue problem. One can be seen that at V, # 0 the imaginary part of
eigenvalues exist and as the difference between the peaks of the two potential barriers (
V, -V, ) increases, the energy eigenvalues also increase, thereby increasing the resonance

energy for the metastable states.

0006235437 M2 +.053085 105402 3483%1 UIFOTTSONZS0T+. 10247032 S0RGE0 T

533511451371992+.0373263631 1430031

il

24!

Figure 5. Upper panel: Plots of wave functions @ (z)with corresponding eigenvalues E_
in eigenvalue problem at V, =1, V, =0,3; d =3. Lower panel: Plots of wave functions for

metastable states in the vicinity of resonance energies RE. ~ 0,3071 (left) and‘RE =

0,9935 (right) respectively, given in Table 1. The solid line shows the real part, and the
dotted line shows the imaginary part

:f:-l:2.'.-5‘(b‘."'.\'."\J-.Z?."I‘Ji:.":ﬂl:“.%:'ﬁ“l SHES0 10400744+ D22ESETE29T 1171 3%1

(98445578001 75+ 0668 18368620761
3461826127668 16+ 03020822 7309 15T 4 031 10984455 sl.llll! 5+ 0688 |B3GBE 20T T

T
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Figure 6. Upper panel: Plots of wave functions @, (z) with corresponding eigenvalues E,_
in eigenvalue problem at V, =1,3;V, =0,2; d =3. Lower panel: Plots of wave functions for

metastable states in the vicinity of resonance energies RE =~ 0,3545 (left) and RE =

1,1036 (right) respectively, given in Table 1. The solid line shows the real part, and the
dotted line shows the imaginary part
Figure 5 and Figure 6 show the wave functions @ (z) with corresponding eigenvalues

E,., in the eigenvalue problem (upper panel) at different values of V,; V,; d.As can be seen

that the wave functions obtained by using KANTBP 4M are similar to the ones in the
analytical method (Jia, Sun & Li, 2002). That means that the program KANTBP 4M gives
pretty high accuracy. The lower panel shows wave functions for metastable states in the

vicinity of resonance energies ‘RE_. , given in Table 1. The solid line shows the real part and

fes 7
the dotted line shows the imaginary part. One can be seen that as the resonance energy
increases, the wave function will oscillate more strongly in the region between the two
potential barriers.
4.  Conclusion

This paper presented a computational scheme and calculation results of metastable
states in scattering and eigenvalue problems for complex Poschl-Teller potential barriers.
These two problems are considered boundary value problems on a finite interval of one
independent variable. The reduced mathematical model was solved using the authors'
software package with the high-accuracy finite element method. The complex Poschl-Teller
potential barrier has different shapes depending on its parameters. As expected, this potential
barrier has not only bound states, but also finite number of metastable states.

These results have significant importance for further experiments in studying
important mathematical models, describing wave propagation in smoothly irregular
waveguides, tunneling and channelling of compound quantum systems through
multidimensional potential barriers, photoionization, photoabsorption, and transport in
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atomic, molecular, and quantum-dimensional semiconductor systems. In the future, based
on the obtained elaborated method and results, we will continue to investigate the metastable
state for complex potential barriers in a more complex form, thereby constructing new
numerical schemes and algorithms to investigate the physical properties of any
quantum system.
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TINH TOAN CAC TRANG THAI SIEU BEN

TRONG BAI TOAN TAN XA VA BAI TOAN TRI RIENG CHUA RAO THE PHUC
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TOM TAT

Trong badi bdo ndy chiing t6i trinh bay so do thugdt todn va két qud tinh toan cac trang thai siéu
bén trong bai toan tan xa va bai toan tr; riéng chiza rao thé ndng ¢ dang phite. Péi véi bai toén tan
Xa, c&c ham song vai ma trdn tan xa S duoc tinh todn voi nang luong ¢ gid tri thuc xdc dinh cua
s6ng tdi, con doi véi bai todn trj riéng, cac ham song cling Vdi Cac tri riéng twong iing ciing duwoc
tinh toan. Sau dé, chiing téi khao sét va tinh toan ham song cua cac trgng thai siéu bén trong l1an
cdn cua Cac gia tri nang luwong cong huong cho hai bai toan nay. Nghiém cia bai todn bién dugc
tinh toan bang chicong trinh phan mém dwoc bién sogn bgi tac gia bai béo cing cac céng sw khoa
hoc ¢ Vién Lién hiép Nghién cizu Hgt nhan Dubna, Thanh pho”' Dubna, Lién bang Nga. Cac thugt
toan Ciia chwong trinh tinh todn nay dwa trén phwong phdp phan tir hitu han véi dg chinh xéc cao.
Két qud tinh todnduwoc biéu dién dudi dang bdng va do thi.

Tir khéa: rao thé ning; bai toan tri riéng; chuong trinh KANTBP 4M; trang thai siéu bén; bai
toan tan xa
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