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ABSTRACT

In this paper, we introduce a general class of parametric mixed variational-hemivariational
problems involving the Clarke's generalized derivatives and equilibrium functions (for brevity,
PMVHP). Then, based on the technique involving the Tarafdar’s fixed point theorem and some
arguments in the nonsmooth analysis, the existence of solutions for the problem PMVHP is studied.
Furthermore, we establish the uniqueness of the solution to the problem PMVHP under some strong
monotonicity assumptions. Our main results in this paper extend the corresponding results in Matei
(2019, 2022).

Keywords: Clarke's generalized derivative; existence and uniqueness; fixed points for set-
valued mappings; parametric mixed variational-hemivariational problem

1.  Introduction and Preliminaries

Let (X,(-,-)X, I ILA) and (Q, (o I Ig) be two Hilbert spaces, T be a metric space,
Zc X and A cQ be nonempty subsets, A: XxX —->Rand B: X xQ — R be bilinear
functions, 7:I'x X — X be continuous operator, h:ZxZ —->R and k:AxA—>R
satisfying h(z,z)=0 and k(4,4)=0,VzeZ,VieA, P:X > X, and Q:Q—Q, be

linear operators with (Xp,(-,-)xp, I Hx,,) and (QQ,(~,-)QQ, I |5Q) being Hilbert spaces,

®: X, >R and Y:Q, — R be Lipschitz continuous functions. The goal of this paper is

to investigate the following parametric mixed variational-hemivariational problem involving
the Clarke's generalized derivatives and equilibrium functions:
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Problem 1.1. Given yeT" and f € X, find (z,4) € Zx A such that
A(n(y,z),v—2)+B(v-2,2) +h(z,v) + ®°(Pz; Pv— Pz) > (f ,v—12),
{B(Z,ﬂ—/l)—k(ﬂ,ﬂ)—YO(Qﬁ:Qﬂ—Qﬂ)SO,
For all (v,u)eZxA, where ®°(p;v) (resp., Y°(g;w)) stands for Clarke's generalized

derivative of @ at pe X, (resp., qeQ,) with respect to the direction ve X, (resp.,
we Q).

It is well known that the theory of variational-hemivariational inequalities is a
generalization of hemivariational inequalities and variational inequalities involving both the
convex and the nonconvex potentials and based on the Clarke’s generalized gradient for
locally Lipschitz functions. This theory was developed in the early 1980s in mechanics and
has found various complex problems in mechanics and engineering, especially in
optimization and nonsmooth analysis(see Panagiotopoulos,1985, 1993). Many authors have
extensively studied this theory in different directions, such as the existing results, the
solution method, the stability, the well-posedness, and the error bound (see Han et al., 2014;
Sofonea & Danan, 2018; Nguyen et al., 2020a, 2020b, 2021; Vo, 2022). Very recently,
various mixed variational-hemivariational problems have been studied to their existence and
their applications (Matei, 2019; Migorski et al., 2019; and Bai et al., 2020). Matei (2022)
recently developed the theory of mixed variational-hemivariational problems by considering
a new class of abstract problems based on the mathematical modeling of various physical
phenomena.

It should be mentioned that Problem 1.1 is a generalized problem that contains the
problems considered by Matei (2019, 2022) as special cases.

If n(2) =12, h(z,v)= f(v)— f(2), k(1, 1) =1() - 1(A), forall zzveZ and A, ue A
, then Problem 1.1 reduces to the following mixed variational-hemivariational problem:
Given f € X, find (z,1) € Zx A such that for all (v, ) e ZxA,

A(z,v-2)+B(v-z,2)+ f (V) - f(z) + ®°(Pz; Pv—Pz) > (f ,v-2),

{B(Z,ﬂ—ﬂ)—|(ﬂ)+|(/1)—Y°(Q/1:Qﬂ—Qﬁ) <0, (1)
which was considered by Matei (2022).

If X,Q are the real reflexive Banach spaces, X = X,, A(,-) = (-,-)X*’X stand for the
duality pairing, P(z2)=1z, n(,2)=n(z), h=0,k=0,Y=0 for all zeZ, then Problem 1.1
reduces to the following mixed variational problem studied by Matei (2019).

Given f e X7, find (z,4) € Zx A such that for all (v, ) e ZxA,

{(n(z),v— Z)x*,x +B(V-2,1)+®°(z;v-2) > (f,v- Z),- 4

B(z, i~ 4) <0. (1.2)
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The purpose of this paper is to study the existence and uniqueness of the results for
Problem 1.1. Firstly, we establish the existence by using the technique involving the
Tarafdar’s fixed point theorem and some arguments in the nonsmooth analysis. Afterward,
we discuss the uniqueness of the solution to Problem 1.1 under some strong monotonicity
assumptions. Finally, our main results extend the corresponding results in Matei
(2019, 2022).

For the reader's convenience, we identify some mathematical tools which will be
required for the sequel ( Migorski et al., 2013).

Let ®:W — R be a locally Lipschitz functional on a Hilbert space W . The Clarke's
generalized gradient of ® at zeW is defined by

oD (2) :{gew*| °(z;v) > (£ V)., forall VEW},
where (;, ')w*,w stands for the duality pairing and ®°(z;v) stands for the Clarke's generalized

derivative of @ at zeW with respect to the direction veW , i.e.,
Ou+tv)—D(2)
" .

®°(z;v) = limsup
u—>z
t40

As usual, W™ stands for the dual of W .
Proposition 1.2. Let ®:W — R be Lipschitz (of rank k >0). Then

(i) v — ®°(z;v) is finite, positively homogeneous, subadditive on W and satisfies
‘CDO (z;v)‘ <k|v, -

(ii) (z,v) > @°(z;v) is upper semicontinuous;

(iii) for each zeW,®°(z;v) = max{(g”,v)w*]w | & e@(l)(z)} for each veWw .

The following theorem presents a fixed point result for set-valued mappings. We refer
to Tarafdar (1987) for the proof of this theorem.

Theorem 1.3. Let Q be a Hilbert space and @ = K = Q be a convex set. Let H : K — 2"
be a set-valued map such that

(i) foreach ze K, H(z) is a nonempty convex subset of i;
(ii) for each ve K, H(v)={ze K |veH(z)} contains a relatively open subset O,
(OV may be empty for some v) ;

(i) o, =K

vek
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(iv) there exists a nonempty set T, contained in a compact convex subset IT, of K such

that =[O, ]C is either empty or compact.

VeE,

Then, there exists z* € K such that z* e H (z)

Notice that 2 denotes the family of all subsets of &, and [, | is the complement

of O, in K.

2. Main results
In this section, we investigate the existence and uniqueness of the solution for Problem

1.1. Throughout the paper, the symbol —— (resp., —) stands for the weak (resp., strong)
convergence and yeI" and f e X . To start our main results, we impose the following

hypotheses on the data of Problem 1.1.
(a) (X,(-,~)X, I le) and (Q,(',-)Q, I |5) are two Hilbert spaces.
(az) Z c X and A < Q are nonempty, bounded, closed, convex subsets.
(a;) (i) The form A: X x X —R is bilinear and continuous, and there exists m, >0
such that
A(n(.2,)-n(.2),2,—2z)=m, |z, - 22||i , V2,2, €Z,
where 77:I'x X — X is continuous and T is a metric space.

(if) The form B: X xQ — R is bilinear and continuous.
(a4) (i) The function h:ZxZ — R is upper semicontinuous in the first component,

convex in the second component, and h(z,z)=0,Vz e Z.
(ii) The function k:AxA — R is upper semicontinuous in the first component,
convex in the second component, and k(4,1) =0,V € A.

(a;) P:X > X, and Q:Q — Q) are linear and compact operators (Xp,(-,-)xp, I Hx,,)
and (Qq,(-,-)%, I IEQ) are Hilbert spaces.
(a) (i) The function @: X, — R is Lipschitz continuous (of rank L,, >0).
(i) The function Y:Q, — R is Lipschitz continuous (of rank L, >0).
(a;) (i) There exists m, >0 such that
h(z,.2)+h(z,2,) 2m, |z, - 2,|, , V2,2, € X.

(if) There exists m, >0 such that
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k(A A) + k(A ) =M | =4[, VAL, 4, € Q.

(a3) (i) There exists m,, >0 such that

CDO(pz; pl_ p2)+q)0(p1; p2 - pl)S mq> ”pl_ pz”ip ) Vpl, pz € XP'

(if) There exists m, >0 such that

YO(053 6~ 6) + Y7 (60, ~ 6) <M, o, ~ [, ., V6,0, € Q.
Remark 2.1.
(i) The condition (a7) is known as the strong monotonicity assumption of the equilibrium
functions h:ZxZ ->Rand k:AxA —>R.
(ii) For locally Lipschitz functions ®: X, >R and Y:Q, — R, it follows from the
definition of Clarke's generalized gradient and Proposition 1.2 that the inequalities in (ag)

are equivalent to

(W =W, D= By)c 2=, [Py = P VW, €00 (py), W, € 0D(p,), VP, P, € X,

(§1_§2’q1_q2)95% 2-m, ”Ch_qz”;Q V& e@Y(ql),§2 EaY(qz)’vch’qz GQQ’

respectively which are known as the relaxed monotonicity conditions (Migorski et al.,2013).
Next, we consider an auxiliary problem as follows:
Problem 2.2. Given yeT" and f € X, find (z,4) € Zx A such that

A(n(y.z),v—2)+B(v,1)—B(z, u) + "(z,v) + k(4, 1)
+®°(Pz; Pv—Pz)+ Y°(Q4;Qu—-QA) > (f,v—-2),
forall (v,u)eZxA.

Lemma 2.3. (z,4)eZxA is a solution to Problem 1.1 if and only if it is a solution to

Problem 2.2.
Proof. If (z,4) € Zx A is asolution to Problem 1.1, then for all (v, u) € Z x A, we can write

A(n(y,z),v—2)+B(v-2,2)+h(z,v) + ®°(Pz; Pv-Pz) > (f,v-12),
{—B(Z,ﬂ—ﬂ)+k(/1,ﬂ)+Y°(Q/1;Qu—Q/”t) >0.
By summing the two inequalities above and using the bilinearity of B, we obtain
A(n(y.z),v—2)+B(v,1) - B(z, 1) + h(z,v) + k(4, )
+®@°(Pz;Pv—Pz) + Y°(Q4;Qu—-QA) > (f,v-2),.
Hence, (z,4) is a solution to Problem 2.2.
Conversely, if (z,4) € Zx A is a solution to Problem 2.2, then
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A(n(r,z),v—2)+B(v,A2)—B(z, 1) + h(z,v) + k(4, 1)
+®°(Pz;Pv-Pz)+ Y°(QA;Qu—-QA) > (f,v-12),
for all (v, 1) € ZxA. We set in the inequality above with £ =1 and v=z and get
A(n(y,2),v—12)+B(v,4)—B(z,4) +h(z,v) +k(4, 1)
+®°(Pz;Pv-Pz)+Y°(Q4;0) > (f,v-2),,
A(n(r.2),0)+B(z,2)—B(z, 1) +h(z,2) + k(4, 1)
+®°(Pz;0)+ Y°(Q4;Qu—-QA) > 0.
As A(n(y.2),0)=h(z,z) =k(4,4) =®°(Pz;0) = Y’(Q4;0) =0 and the bifunctionB is
bilinear, it follows that
{A(n(y, z),v-2)+B(v—-2,4)+h(z,v) + ®°(Pz; Pv—Pz) > (f ,v-12),
B(z, u—2)—k(4, )= Y*(Q4;Qu—-Q1) <0,
i.e., (z,4) isasolution to Problem 1.1. O
The following result provides the existence of solutions to Problem 1.1.

Theorem 2.4. Suppose that(a,)—(ay) hold. Then Problem 1.1 has at least one solution

(z,A)eZxA.
Proof. It follows from Lemma 2.3 that it is enough to prove that Problem 2.2 has at least one
solution (z,4)eZxA. Arguing by contradiction, for each (z,4)eZxA, there exists

(v, ) € Zx A such that
A(n(y,z),v-2)+B(v,1) - B(z, 1) + h(z,v) + k(4, )
+®°(Pz;Pv—Pz) + Y°(QA4;Qu—-QA) < (f,v—2),.
Foreach y eT', let us define a set-valued map H, :ZxA — 27" as follows:
A(n(y,2),v—2)+B(v,4) —B(z, 1) + h(z,v) + k(4, 1)
+®°(Pz; Pv—Pz) + Y°(QA;Qu—QA) < (f ,v—z)X}
Let (z,4) e ZxA. As Problem 2.2 has no solution, then H,(z,1) =& . Moreover, the set

Hy(Z,l):{(V,,u)erA

H, (z,A)is convex. Indeed, let (v, z),(V,,4,)eH, (z,4) and se[0,1]. Since
(Vi) (Voo 1) €ZxA and ZxA is a convex set, S(Vy, s )+1—5)(V,, 11,) €ZxA . Set
V, =5V, + (1), and 1 =Sp4 +(1—5) s, It follows from (v, 14),(V,, 11,) € H (z,4) that

A(n(y.z),v,—2)+B(v;, A) = B(z, 1) + h(z,v;) + k(4, 11,)
+®°(Pz; Pv, - P2) + Y°(QA;Quy, —QA) < (f,v, - 2),
and
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A(ﬂ(}/, 2),V, — Z)+ B(v,,4) —B(z, 1,) + h(z,v,) + k(4, 1,)
+®°(Pz;Pv, —Pz)+ Y°(Q4;Qu, —QA) < (f,v, - 2),.
As h,k,®° and Y° are convex in the second argument, using the two inequalities above, we
have

A(n(r.2),v, —2)+B(v,, 1) - B(z, 1£,) + "(z,V,) + k(4, 11;)
+®°(Pz; Pv, — Pz) + Y°(QA; Qu, —QA)
<s[ A(n(r,2),v,— 2)+B(v, A) — B(z, 1) + h(z,%;) + K (4, 11))
+®°(Pz; Pv, — P2) + Y°(QA;Quy —QA)]
+(1- s)[A(n(y, Z),V, —2)+ B(V,, 1) = B(z, 11,) + h(z,V,) + K(4, 11,)
+®°(Pz; Pv, — P2) + Y°(QA; Qu, —Qﬁ)}
<s(f,v,—2)y +@—-s)(f,v,—2)y
=(f,sv,+@-s)v,-2),.
Thus,
S(Vy 4y)+(@=58) (Vyo 1, ) = (Vo 41, ) € H (2, A)
and so (i) in Theorem 1.3 is verified.

We now introduce H 7‘1(v, w) and O, as follows:

H, (v, 1) ={(z,4) e Zx A | (v, 1) € H, (2, 1)}
A(7(y,v),v—12)+B(v,2) - B(z, 1) + h(z,v) + k(4, 1) }

(’){Vﬂ): (z,A)eZxA ,
' +®°(Pz;Pv-P2)+ Y (QA;:Qu—-QA) < (f,v-2), +m, |v—2],

Let (v,u) e ZxA. Then,

[Hyil(v”u)]c < [O(yvvﬂ)]c' (2.2)
Indeed, since

Hyl(v,,u):{ (z,A)eZxA

A(n(y,2),v—2)+B(v,1)—B(z, 1) + h(z,v) + k(4, 1)
+@°(Pz;Pv—Pz) + Y°(QA;Qu-QA) < (f v=2), |
if (z,2)€[H, (v, )] , then

A(n(r,z),v—2)+B(v,1) - B(z, 1) + h(z,v) + k(4, )
+®°(Pz;Pv—-Pz) + Y°(QA4;Qu—QA) > (f,v—2),.

By using (a,), we obtain
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A(n(y,v),v—2)+B(v, 1) - B(z, 1) + h(z,v) + k(4, 1)
+®°(Pz;Pv—Pz)+ Y°(Q4;Qu—-QA) > (f,v-1), +mA||v—z||i .

This implies that (z,1) € [O{W)T, and so (2.2) holds. Thus,
Qi € Hy’l(v,y).

The set [C’Y

(v,u)

] is weakly closed. Indeed, let (z,,, 4, ), <[

C
w)] be a sequence such that

(Zy: A )——>(z,4) in XxQ as m— 0. As, forall m>1, one has
A(n(r. V).V =2,)+ BV, 4,) = B(z,, 1) +h(z,,, V) +K(4,, 1)

2.3)

+®°(Pz,;Pv—Pz,) + Y (QA;Qu~QA,) = (f,v—2,), +m, v -z,

then, using the assumptions supposed in this theorem and Proposition 1.2, as z, ——z in

X asm—-owand 4 ——>21 in Q as m— oo, by passing to the superior limitas m — o
in (2.3), we have
A(n(y,v),v—2)+B(v,2)—B(z, 1) +h(z,v) +k(4, 1)
+®°(Pz;Pv—Pz) + Y°(QA;Qu—-QA) < (f,v—2), +mA||v—z||i.

Hence, we deduce that (z, 1) e [O(Q#JC As[ O]

(v, 1)

]c is weakly closed then O

v, 1S Weakly

open. As a result, O], is a relatively open subset in the weak topology. Thus, the
assumption (ii) of Theorem 1.3 holds.
Next, we prove that the equality Z xA = U o

. - It can be easily seen that
(v,u)eZxA

U 9., czxA.

(V,u)eZxA
We verify that
ZxAc U o7

(v, 11)eZxA )
Indeed, let (z,4) e Zx A. Since Problem 2.2 has no solution, we deduce that there exists
(v, 1) € Zx A such that (z,4) € O, ,, . We conclude that the condition (iii) of Theorem 1.3
holds true.
To show the condition (iv) of Theorem 1.3, we denote IT, =TT, =Z x A . As for each

(V,u)eZxA, [(’)7

(v,u)

z= ﬂ [O(yv,m]c

(v,u)eZxA

]C is a weakly closed set, the intersection
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is an empty or weakly closed set. Since the subset Zx A is a nonempty closed convex
bounded on the reflexive Banach space X xQ, it follows that Zx A is weakly compact.
Hence, X is either empty or weakly compact.

Thus, all hypotheses of Theorem 1.3 hold true in the weak topology on X xQ . We deduce
that there exists (z",4")e H, (z",27), i.e.,

A(n(y.2),2" -2 )+B(Z,A)-B(Z", ) +h(z", ') +k(2", 1)
e . . - (2.4)
+®°(PZ ;P -PZ )+ Y°(QA";Q4 -QA) < (f, 27 -2"),.

Since

A(n(7,2°),0)=h(z",2") =k(2", A7) = ®°(Pz";0) = Y°(Q4";0) =0,
the inequality (2.4) is impossible.

Therefore, Problem 2.2 has at least one solution. Then, Problem 1.1 has at least one
solution. This completes the proof. O
Remark 2.5. In special cases of the problems (1.1) and (1.2) in Section 1, Theorem 2.4
extends Theorem 2 in Matei (2022) and Theorem 2 in Matei (2019) to the mixed variational-
hemivariational problem provided by the perturbed parameter A in the operator 7 and

equilibrium functions h,k . Therefore, this class of problems is useful for investigating well-
posedness by perturbations and Holder continuity of solution mapping.
Theorem 2.6. Assume that the assumptions (a,)—(a,) are fulfilled and

min {mA + My =M, ”P”i(x,xp) My =My, ”Q”i(Q,QQ)> >0. (2.4)

Then, Problem 1.1 has a unique solution.
Proof. If followed from Theorem 2.4 that Problem 1.1 has at least one solution. We need to

prove our uniqueness. Indeed, let (z;,4,) € Zx A, (j€{L,2}), be two solutions to Problem
1.1. Then, forall (v, u)eZxA, we get
A(n(7,2,),v-2;)+B(v—2;,2) +h(z;,v) + D°(Pz;;Pv—Pz;) = (f,v-7),
{B(zj,ﬂ—z,-)—k(zj,u)—r%m,.;@ﬂ—m,.)so, (23)
Letv=2z,,u=4, if j=land v=2z,u=4 if j=2in(2.5). By Lemma 2.2, we can write
A(n(r,2,),2,-2,)+B(2,, 4,) = B(2,, 4) +1(2,,2,) +K(4,, 4)
+®°(Pz,; Pz, — Pz,) + Y*(Q4,; Q4 —Q4,) > (f,2, - 2,),
A(n(r.z,).2,-2,)+B(z,,4) - B(z,,4,) + h(z,, 2,) + k(4,, 4,)
+®°(Pz,;Pz, - P7) + Y°(QA; Q4 —QA) > (f,z, - 7).

We sum up the above inequalities to obtain
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A(77(7/’ 2,),2,— Zz)+ A(77(71 2)),2, - 21)
+h(z,,2) +7(z,,2,) + k(4,, 4) + k(4. 4,)
>-®°(Pz,; Pz, - Pz,) - ®°(Pz,; Pz, - Pz))
~Y°(Q4;Q4 —Q4,) - Y*(Q4;Q4, —Q4)
By the conditions (a;)(1) and (a, ), we have
A(ﬂ(?” 2,),2, - Zz)"’ A(77(71 2,),2, - Zl)
+h(z,,2,) + (2, 2,) + k(A 4) + k(A 4,) (2.7)
<—(my+m )z - 2,[, - m 4 -2,

The condition (a,) verifies that

(2.6)

~®°(Pz,; Pz, - Pz,) - ®°(Pz,;; Pz, - Pz))
~Y°(QA4iQ4 ~Q4,) - Y°(Q4;Q4, - Q4) 28)
>y [Py 12— 2ol =M QUL 0, e = -

Having in mind relations (2.6)-(2.8), it follows that
2

(Mo, = P = 2l (O A~ <0
Hence,

Alz -zl -l ) <o (2.9)

where
A =min {mA +m —m, ”P"i(x,xp) ,M, —m, ||Q||i(QVQQ)}-

By the condition (2.4), A >0, hence it follows from (2.9) that z, =z, and 4 =4,.

Therefore, Problem 1.1 has a unique solution (z,4) € Z x A. O
Remark 2.7. In Theorem 2.6, we derived a new condition (2.4) to establish the uniqueness

of a solution to Problem 1.1 without the assumption Y° = 0. Thus, this result is a significant
extension of Theorem 7 in Matei (2022) in the case that A is bounded.

3. Conclusion
In this paper, we have introduced a general kind of mixed parametric variational-

hemivariational problems involving the Clarke's generalized derivatives and equilibrium
functions (Problem 1.1). Using a fixed point result for set-valued mappings and the
arguments of monotonicity, we establish the results concerning the existence and uniqueness
of a solution to Problem 1.1. Our main results extend to the corresponding results by Matei
(2019, 2022).

1765



HCMUE Journal of Science Vol. 19, No. 10 (2022): 1756-1767

As future research, we intend to study well-posedness by perturbations, error bounds, Holder
continuity of solution mapping, and applications to contact mechanics for
Problem 1.1.
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TOM TAT

Trong bai b4o nay, ching toi gisi thiéu mét I6p tong quét cac bai todn bién phdn-nira bién
phan hon hop tham sé lién quan dén dao ham suy réng Clarke va nhitng ham cdn bang (viét tdt la
PMVHP). Dua trén ki thudt chirng minh lién quan dén dinh i diém bat dong Tarafdar va mgt s tinh
chdt cia giai tich phi tuyén, ching ti nghién cizu su ton tai nghiém cua bai toAn PMVHP. Hon nita,
chiing téi ciing thiét ldp dwge sw duy nhdt nghiém dén bai toan PMVHP dwdi mét sé gia thiét don
diéu manh. Céc két qud chinh cia ching t6i la mé réng nhiing két qua twong iing trong cdc cong
trinh Matei (2019, 2022).

Tir khoa: dao ham suy rong Clarke; ton tai va duy nhat nghiém; dinh 1i diém bat dong cho anh
xa da tri; bai toan bién phan-ntra bién phan hdn hop tham s6
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