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ABSTRACT

Neural Machine Translation (NMT) is a new paradigm in machine translation (MT) powered
by recent advances in sequence to sequence learning frameworks. With the advance of Neural
Networks, NMT has become the most promising MT approach in recent years. Despite the apparent
success, NMT still suffers from one significant drawback in integrating syntactic knowledge into
neural networks. This paper proposes an extension of the NMT model to incorporate additional
syntactic information from constituency trees. We represent the constituency trees under graph forms
encoded by a graph encoder to enhance the attention layer, which allows the decoder to focus on
both sequential and graph representation at each decoding step. The experiments show promising
results of the proposed method on English-Vietnamese datasets, proving the effectiveness of our
syntax-enhanced NMT method.
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1.  Introduction

Neural Machine Translation (NMT) has emerged as the most promising machine
translation approach in recent years, showing great progress with the state-of-the-art result.
Despite promising, NMT still lacks the ability to model deeper syntactic aspects of
languages. Motivated by the success of adding syntactic information to Statistical Machine
Translation (SMT) (Koehn & Hoang, 2007; Wang et al., 2014), we explore these syntactic
aspects in NMT models.

Recent works have established that explicitly leveraging syntactic information can
improve NMT quality. Li et al. (2017) linearized a parse tree into a structural label sequence
and let the model automatically learn syntactic knowledge through it. Eriguchi et al. (2016)
proposed an approach that focuses on the phrase structure of the input sentence to extend
attentional NMT models. Chen et al. (2017) investigated NMT, using explicit source-side
syntactic trees, by proposing a syntax-aware encoder-decoder model. Nadejde et al. (2017)
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introduced a method for modeling explicit target syntax by interleaving target words with
their corresponding CCG supertags in NMT systems. However, the above approaches must
normalize the tree structure of syntactic trees to sequential representations, which usually
lose dependencies between nodes.

In this paper, we investigate utilizing syntactic information from constituency trees
under a graph perspective in the context of the NMT framework. Specifically, we employed
a graph encoder to encode the constituency trees as graph vector representations. Second,
we enhance the normal attention layer to adapt with a new graph attention layer (i.e., dual
attention), which decides where the decoder should focus at each decoding step.

This method shows several advantages. Firstly, it could be a way to model extra
syntactic knowledge to NMT systems. Then, it could solve the dependency problem between
nodes in the constituency trees. Finally, dual attention could help NMT models focusing on
sequential and tree representations at each decoding step.

2.  Methodology

We first present a brief introduction to NMT background. After that, we focus on our
graph encoder (illustrated in Figure 1), which is the means to encode constituency trees to
continuous representations and dual attention decoder, which is the place that we integrate
the graph representations to each decoding step.

2.1. The NMT background

We use a standard encoder-decoder attention-based model (Bahdanau et al., 2015) in
which the encoder takes the source sentence x as its input and computes a representation for
each word w; in x. The decoder calculates the target sentence y based on the representation
of the source sentence produced by the encoder.

Traditionally, the encoder and decoder are parametrized by a Recurrent Neural
Network. Recently, Convolutional Neural Networks (Gehring et al.,, 2017), and
Transformers (Vaswani et al., 2017) with parallel computation and self-attention
mechanisms have also achieved competitive results in NMT. In this paper, we investigated
RNN and Lightweight Convolution (Wu et al., 2019) (a variant of CNN).
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Figure 1. Graph encoder architecture
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RNNs compute the hidden representation h; of a word x; based on the previously
hidden state h,.._4 or its left context. Bidirectional RNNs comprise two RNNS: one runs in
the forward direction, and another runs in the backward direction. In other words, the
forward RNN presents the left context of the word x;,and the backward RNN presents the
right context of the word x;. The final representation is their concatenation:

he = [hf",n2¥] (1)

Once the source sentence has been encoded, the target sentence y is produced word
by word using an RNN decoder which computes the probability of the next word y; given a
context vector ¢, and previously hidden states of the RNN decoder. The context vector c; is
calculated using an attention mechanism (Bahdanau et al., 2015).

Similar to BiRNN encoder-decoder architecture, we used Lightweight Convolution
(Wu et al., 2019) for both the encoder and decoder. Depthwise Convolution (DConv):
perform a convolution operation independently over every channel, thereby reducing the
number of parameters significantly from d?k to dk with k as the kernel width and d as the
dimension of word embedding. In general, at the position i and direction c, the output O; .
is calculated as follows:

k
0, =Z W, X et )
" = o e[ )

where X € R™*4 is the representation of the sentence.
2.2. Syntactic Graph Encoder

Given a constituency tree T, V is the node set of the tree. We first describe the node
embedding algorithm adopted from (Xu et al., 2018):

1. We first transformed the text attribute of node v into a feature vector, a,, by looking
up the embedding matrix Wy.

2. Next, we categorized the neighbors of v into two subsets: forward neighbors, V_(v)
and backward neighbors, IV, (v). Particularly, V. (v) returns the nodes that v directs to and
vice versa.

3. We aggregated the forward information of v’s forward neighbors {hX:t, vu € IV, (v)}
with the current node feature h%-1, where k € {1,..., K} is the iteration index. We did this
by using one of three AGGH mentioned below:

hy, = AGG* (hi", hit, vu € N (v)) (3)
4. Similar for backward information:
hy. = AGG™(h§3", hist, Yu € NV, (v)) (4)

5. Repeat steps (3)~(5) K times. The concatenation of the final forward and backward
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representation is used as the final bi-directional representation of v.
z, = CONCAT(hX_, hX.),vv eV (5)

In steps (3) and (5), we aggregated v’s representation by using one of these aggregator
architectures:

Mean aggregator: This aggregator function takes the element-wise mean of the
vectors in {hX-t, vu € V. (v)} and {hXZ1, vu € Vv, (v)}.

GCN aggregator: Similar to Mean aggregator, but followed by a feed-forward layer
and a non-linearity activation function:

AGG; = c(WMEAN(hE,) + b),Vu € N_(v) (6)

AGG, = o(WMEAN(RE.) + b),Vu € NV, (v) @)

where MEAN denotes the element-wise average operator, and o is a nonlinear activation
function.

Pooling aggregator: In this aggregator, each neighbor’s vector is fed through a fully-
connected neural network, and an element-wise max-pooling operation is applied:

AGGY = max({oc(W,hE, + b),vu € N.(v)}) (8)

AGGE = max({oc(W,h%, + b),Yu € N, (v)}) 9)

where max denotes the element-wise max operator, and ¢ is a nonlinear activation
function.

The graph embedding vector, Z which contains information in the entire graph, is
computed as follows:

7 = AGG(z,, Vv € V) (10)

where AGG denotes the aggregator.
2.3. Dual Attention Decoder

We found that using an additional attention mechanism not only helped the model
learn the alignment between the source sentence and constituency tree automatically but also
addressed the bottleneck problem when adopting only a single attention mechanism because
a large amount of information when combining features from the source sentence and the
corresponding constituency tree that could not effectively leverage with just one attention
mechanism. Our decoder architecture is illustrated in Figure 2.
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Figure 2. Decoder architecture
The graph attention takes graph hidden h; and the decoder state s;_; as its input. The
context vector ¢; is computed as:

él'j = a(si_l, h]) (11)
3 exp(é;;) (12)
dij = 5w 5
k=1 exp(éu)
N (13)
k=1

where a is the alignment model, which is a feed-forward network, scores how well the inputs
surround position j and the input at position i match. Then, a probability distribution over
the target vocabulary to produce the output:

Pyocap = softmax(W}) [Si; Ci 61’] + bo) (14)

where W, and b, are model parameters, [s;,c;, ¢;] demotes a concatenation operation
between s;, ¢;, ¢;.
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3. Experiments

We provided our dataset information, configuration settings as well as our
experimental results and analyses.
3.1. Datasets

We used the IWSLT 2015 English-Vietnamese dataset (Cettolo et al., 2015), which
contains around 130 thousand sentence pairs for training, and used tst2012 for tuning model
parameters and early stopping. We evaluate the official test sets tst2013 and tst2015, which
are also included in the IWSLT dataset.

Table 1. Statistics of the English-Vietnamese datasets

Dataset #tokens #types #sents
en Vi en Vi
train 2,435,771 2,867,788 44,573 21,611 131,263
dev (tst2012) 27,988 34,298 3,518 2,170 1,553
test (tst2013) 26,729 33,683 3,676 2,332 1,268
test (tst2015) 20,850 26,235 3,127 2,059 1,080

For the preprocessing phase, we used byte-pair encoding (BPE) (Sennrich et al., 2016)
with 8000 merge operations to deal with rare and compound words and apply them to both
English and Vietnamese sides. We measured the end translation quality with case-insensitive
BLEU (Papineni et al., 2002). We also applied the bootstrap re-sampling method (Koehn,
2004) to measure the statistical significance (p < 0.05) of BLEU score differences between
the translation outputs of proposed models compared to the baseline.

3.2. Configurations

The proposed models use bi-LSTM with 512 hidden units for the encoder and decoder.
The word embedding dim was set to 512. In the training phase, Adam optimizer (Kingma &
Ba, 2015) with a fixed learning rate of 0.001 was used, and the number of tokens per batch
was 3500. , A number of epochs is set to 10. For the graph encoder, we used 128-dimensional
vectors for node representations. We stacked two layers of graph encoder to learn higher-
level representation. The testing process was executed on Google Colab, which offers
accessible GPUs for each session lasting up to 12 hours. The configuration in Google Colab
consists of 12GB RAM and 16GB NVIDIA Tesla P100 GPU. The training time for the base
and the proposed models is around 40 minutes.

3.3. Results and Discussions

Once the models have been trained, a beam search with the size of 5 is utilized to find
a translation that maximizes the conditional probabilities. First, we start with the results of
the tst2013 test set as shown in Table 2.
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As expected, bi-LSTM results are stronger than CNN ones. In general, we observed that
using graph encoders and additional attention mechanisms leads to an improvement over the
baseline model for both encoders. Particularly, the improvement is 0.53 BLEU for bi-LSTM-
mean and 0.33 BLEU for CNN. This is slightly surprising as the potentially non-local semantic
information should in principle, be more beneficial within a less powerful and local CNN
encoder. Models with mean aggregators appear stronger than others with different aggregators.

Table 2. Experimental results

Model bi-LSTM LightConv
NMT baseline 28.13 27.67
Syntax-enhanced-NMT (mean aggregator) 28.69 27.84
Syntax-enhanced-NMT (max pooling aggregator) 28.36 28.00
Syntax-enhanced-NMT (gcn aggregator) 28.44 27.50
29.00
bi-LSTM
28.75 —e— LightConv
28.50 1
28.25
= |
W 28.00
m
27.75 1
27.50 1
27.25 1
27.00 “— , " ,
1 2 4 8
#layers

Figure 3. Results on various graph layers
(mean aggregator for bi-LSTM, max pooling aggregator for LightConv)

We also use the tst2013 test set to investigate whether the more graph encoder layers
are stacked, the better performance the model could achieve. To do so, we evaluated our
proposed methods with one to eight layers. As shown in Figure 3, our models with two graph
encoder layers performed the best. In general, there is a downward trend in the BLEU score
as we stack more layers. If the number of layers is excessive, the model will become unstable
due to the vanishing gradient and information redundancy. On the other hand, node
representations cannot propagate far when the number of layers is small.

4.  Conclusion

In this paper, we explore a graph encoder to explicitly model the syntactic information

from constituency trees to NMT models. The experiments indicate that the syntax-enhanced
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NMT models really outperformed the baseline and with the help of syntactic information,
the translation quality was improved even on low-resource settings.

In the future, we aim to analyze the effect of immediate nodes as well as tree depth to
each syntactic component during the decoding phase. Moreover, it would be interesting to
study the impact of using source-side syntax together with the target-side syntax in the same
NMT model.
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TANG CUONG TRI THUC CU PHAP CHO DICH MAY MANG NEURAL
SU DUNG BQO MA HOA PO THI
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Ngay nhdn bai: 11-10-2022; ngay nhdn bai sira: 25-10-2022; ngay duyét dang: 26-10-2022

TOM TAT

Dich mdy mang neural (NMT) la mét mé hinh méi trong dich mdy (MT) dwoc hé tro boi nhing
tién bé gan ddy trong ki thudt hoc sau. Véi cde mang neural, NMT da tré thanh hudng tiép cdn dich
ti ddng hira hen trong nhitng nam gan day. Mdc di, da cé nhitng thanh cong ré rang, NMT c6 mét
nhuwoc diém quan trong la khéng cé kha nang tich hop tri thire cii phdp vao mé hinh dich. Bai bdo
nay dé xudt mo rong mé hinh NMT dé két hop théong tin cii phdp bé sung tir cdy phdn tich cii phdp
thanh phan. Chiing téi biéu dién cdc cdy cdu triic thanh phan dwéi dang biéu do dwoc ma héa bang
bé ma héa do thi dé ndng cao co ché tdp trung, givip bé gidi md cé thé tdp trung vao cd biéu dién
chudi tuan tw va do thi & méi bude gigi ma. Céc thire nghiém cho thdy két qua kha quan ciia phwong
phap dwoc d@é xudt trén bé dir liéu Anh-Viét, chirng minh tinh hiéu qua ciia phwong phdp NMT khi
duwoc tich hop thém thong tin tri thirc cu phap.

Tir khéa: ciy ch phap thanh phan; mang neural d thi; dich may mang neural; cti phap
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