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ABSTRACT

This paper studies the proximal point algorithm for the class of generalized P, variational
inequalities. By using the upper semicontinuity result establishing the class of weakly univalent
operators, we show that the iterative sequence generated by the algorithm is bounded, approaches
to the solution set of the initial problem, and each of its accumulation points is a solution to the
problem, provided that the solution set is bounded. We also give an example to show the necessity of
boundedness.
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1.  Introduction

The variational inequalities (VIs) have many applications in different realistic models,
such as in engineering and economics (Facchinei & Pang, 2003), and contains many classes
of problems, such as complementarity problems, a system of equations problems, fixed point
problems, and Nash equilibrium problems (Facchinei & Pang, 2003; Kinderleher &
Stampacchia, 1980).

Many different methods for solving VIs were proposed (Facchinei & Pang, 2003).
Among them are two approaches based on the regularization idea, namely the Tikhonov
regularization method (TRM) and the proximal point algorithm (PPA). Those two
algorithms, which are crucial for solving monotone problems (Facchinei & Pang, 2003), are
expected to be effective when applied to non-monotone problems. Some investigations in
this direction have been done. For example, the convergence theorems for the Tikhonov
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regularization method applied to finite-dimensional monotone and pseudo monotone
problems could be found in Facchinei and Pang (2003) and Tam, Yao, and Yen ( 2008), and
Nguyen (2006), respectively. For the class of problems more significant than the monotone
ones, Facchinei and Pang (1998) discussed the application of TRM to generalized P,

problems and established the convergence results for the class of subanalytic generalized P,

operator problems. Considering the PPA, Martinet (1970) proposed the exact method, and
Rockafellar (1976) suggested and applied the inexact version for a class of monotone VIs. In
addition, Noor (2002) used the proximal point method to solve the pseudomotone VIs and
obtained some convergence theorems. For the non-monotone problems, Yamashita

(Yamashita & Fukushima, 2001) applied this algorithm to the P, complementarity problem
and constructed several algorithms to solve the original problem. The convergence theorem
for the general class of generalized P, problems when applied both methods is still an open
question.

In this paper, we apply the PPA to the class of generalized P, problems and examine
the behaviors of the sequence of solutions generated by this algorithm. We prove that the
iterative sequence generated by the PPA approaches for the solution set of the original
problem, given that the solution set is bounded. As a consequence, this sequence is bounded,

and all of its accumulation points are solutions to the problem. This result has already been
established for the sequence of solutions generated by the TRM when applied to the
complementarity P, problems in Facchinei and Kanzow (1999). We also provide an
example to show that the boundedness cannot be dropped. In addition, some new
convergence of the PPA for the generalized P, problem will be obtained. Our proof is based
on the upper semicontinuity results for the class of weakly univalent operators (Ravindran
& Gowda, 2000).

The rest of the paper is organized as follows. In the next section, we formally define
the concept of variational inequalities and summarize some primary results that are needed
for the main theorems. Section 3 presents the application of the PPA to the class of Vs of

the generalized P, type and obtains the main results. Finally, section 4 contains some
remarks and open questions for future studies.
2. Preliminaries

This section considers a nonempty subset K of R" and a mapping F from R" to

R". We also define variational inequality problem given by K and F , as well as some
mathematical tools used to establish the main results in the next section.

2.1. Generalized P, variational inequalities problems
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Definition 2.1.1. The variational inequality problem defined by K and F, denoted by
VI(K,F), is to find a vector x € K such that
<F(x*),x—x*>20, vx e K. (1)
The set of solutions to this problem is denoted by SOL(K,F).
We concentrate on problems attaching with classes of P,, P operators, which include a class
of (strict) monotone operators.
Definition 2.1.2. (More & Rheinboldt, 1973) The mapping F =(F,F,,..., F,):R" > R" is
called
(i) B, —function (in the classical sense) on K if for any pair of distinct vectors x, y in K,

there exists an index k =k(x, y) €{1,2,...,n} such that

X, # Y, and (Xk - yk)[Fk(X)_ Fk(Y)] >0;
(ii) P — function (in classical sense) on K if for any pair of distinct vectors x, y in K, we
have that
max (X, — Y, )[F (x) - F (y)]>0;

1<k<n

We next extend the definitions for the B, and P operators when K has a special structure,

namely Cartesian structure. A subset K of R" is called to have the Cartesian structure if it
can be written as

K:ﬁKJ’ (2)

where each K is a nonempty subset of R"™ with an =n. Correspondingly, we also
j=1

partition and represent the vector x in R" and operator F in the following way:
x:(xl,xz,---,xm) and F(x):(Fl(x),Fz(x),--~,Fm(x)),
where each x' and F’(x) belongto R" for all index j in {1,---,m}.

Definition 2.1.3. (Facchinei & Pang, 1998) Let K be a set of which structure is given by
().

(@) F isageneralized P, — function with respect to K if for any pair of distinct vectors
x and y in K, there exists an index j, €{1,2,...,m} such that
x» 2 y» and <xj° —y* Fh(x)- Fj°(y)>20.
(b) F isageneralized P —function with respect to K if for any pair of distinct vectors
x and Y in K, we have that
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max<xj—yj,Fj(x)—Fj(y)>>0.

1<j<m

Clearly, if F is a (strict) monotone operator on set K given by (2), then F isalso a
generalized (P-) P, — function with respect to K .

The VI problem, whose defining set K is given by the Cartesian product, is called the
partitioned V1. The partitioned VI(K, F) where F isageneralized (P-) P, —function with
respect to K is called a generalized (P) P, problem. The classes of generalized R, (P)
problems include some interesting cases.

o Ifm=n (sothat n, =1forall j )and K' =R _,the VI(K,F) ) reduces to a nonlinear
complementarity problem (Facchinei & Pang, 2003) with P, —(P-) function in the classical
sense.

e If m=1,sothat n, =n, F isageneralized P, —(P-) functionon K ifandonly if F
is monotone (strict monotone) on K.

e Ifm=nand K!= [aj b’ } the problem becomes the box constrained VI (Ravindran

& Gowda, 2000) and F is a generalized P,— function on K if and only if F isa P, -

function in the classical sense. If K! =R then F is a generalized P,— (P-) function on
K ifand only if F isa B, —(P-) function in the classical sense and the VI(K,F) reduces

to the system of equations F(x)=0.

2.2. Natural map associated with the VI problem

The natural map has a close relationship with the variational inequality problem and is
used in many proofs of existing solutions to the VI (Facchinei & Pang, 2003) and in the
analysis of sensitivity and stability (Facchinei & Pang, 2003). This mapping is constructed
through the projection operator.
Proposition 2.2.1. (Kinderleher & Stampacchia, 1980) Let K be a nonempty, closed convex

subset of R". Then, for any vector x in R", there exists a unique element y in K such that
[x=yl<[x=ul, vuek. (3)
The unique vector y e K satisfying (3) is called a projection of x onto K, denoted

by P, (x). The mapping P, :R" — K defined by P, (x) =y with Y is the projection of X

onto K is called the projection operator.

We then recall some well-known properties of the projection operator.

Proposition 2.2.2. Let K be a nonempty, closed convex subset of R". Then P () is

nonexpansive, that is

[R ) =P <[x-y]. vxyeR". (4)
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Definition 2.2.1. Given a nonempty, closed convex subset K of R" and a mapping
F:K —> R". The mapping F* : K — R" defined by

F& (V) =v—P (v—F(v)), withve K
is called the natural map associated with the pair (K, F).

We can characterize the set of solutions to the VI problem through the zero set of the
natural map.
Theorem 2.2.1. (Facchinei & Pang, 2003) Let K be a nonempty, closed convex subset of

R" and F:R" — R". Then, avector X" is a solution to the VI (K, F) problem if and only
if X* belongs to the zero set of F™ .

2.3. Univalent and weakly univalent operator

We next introduce the concept of a weakly univalent operator, which has many useful
properties in the analysis of the stability of solutions to the VI problem (Ravindran & Gowda,
2000; Sznajder & Gowda, 1999).

Definition 2.3.1. We say that g: D c R" — R" is univalent if it is continuous and injective,
and weakly univalent if there exist univalent functions g, : D « R" — R" such that g, - ¢

uniformly on every bounded subset of D.
An example of a weakly univalent operator is the natural map associated with the

generalized P, VI problem.
Lemma 2.3.1. (Facchinei & Pang, 1998) Let VI(K,F) be a generalized B, problem where
F is a continuous mapping. Then the natural map F/* associated with the pair (K,F) isa

weakly univalent operator.
The following result describes an upper semicontinuity property of the inverse of a weakly
univalent operator.

Theorem 2.3.1. (Ravindran & Gowda, 2000) Let g:RR" — R" be weakly univalent and
suppose that fora q" e R",
g7*(q") is nonempty and compact.

Then for any given ¢ >0, there exists a ¢ >0 such that for every weakly univalent function
h and for every vector q with

sup Ih(x)—g(x)| <3, Hq —q*H <0

we have
@=h(q)c9™(q")+£B@)
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where Q = g‘l(q*)+gB(1) and B(1) denotes the open unit ball in R". Moreover, h™(q) and

g(q) are nonempty, connected, and uniformly bounded for  in a neighborhood of q .
3. Proximal Point Algorithm for the generalized P, VI problem

The proximal point algorithm used to solve the variational inequality problems is
proposed by Martinet (1970) and further studied by Rockafellar (1976). It is a popular
method and often used for solving a class of monotone VI problems, and for a class of
pseudomonotone ones (EI Faroug, 2001; Noor, 2002; Rockafellar, 1976; Tam, Yao & Yen,
2008). The idea of this method is to substitute the original problem with a sequence of
auxiliary problems that are, in some sense, better behaved.

The proximal point algorithm: Choose a point X, in R" and a sequence {pk} of positive
numbers. If x,_,(k=1,2,...) has been defined, then one can choose as x, any solution of the
problem VI(K, F("’) where

FOMX)=pF(X)+x-x_,xeR", (5)
that is x, € K and

<ka(xk)+xk X, 4, y—xk>20,Vye K.

To terminate the computation process after a finite number of steps and obtain the
approximate solution of VI(K, F), one has to introduce a stopping criterion. (For example,

one can terminate the computation when |x, —x_;|< &, where 6> 0 is a constant.)
First, we establish the solvability of the perturbed problems VI(K, F‘k’) where K is

given by (2) and F is a generalized P, -function with respectto K when implied the PPA

to the original problem. In order to establish the result, we need the following lemma.
Lemma 3.1. (Facchinei & Pang, 2003) Let K be a subset of R" given by (2), where each
K’ is a closed convex set and F:R" —R" be a generalized P,-function with respect to

K. Then, for every & >0 the VI(K, F,) problem has a unique solution where F, :R" — R"

defined by
F.(X)=F(x)+&x, xeR".

Theorem 3.1. Let F:R" — R" be a generalized P,-function and continuous on R" and K
be given by (2), with each K/ is a closed convex set. Then, for any ke N, x _, e R", the

VI(K,F®) has a unique solution.
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Proof. For each natural number k, since F isa generalized P,-function with respectto K
so the mapping G*“ ()= p F()—x., is also a generalized P,-function on K. Then the
mapping G defined by

GHM(X)=GY(x)+x, xeK,
is a generalized P -function on K. This mapping is the mapping F® determined by the
proximal point algorithm. By applying Lemma 3.1 with ¢ =1, we have that the VI(K,Gl(k’)
problem has unique solution, which leads to the existence and uniqueness of solution to the
VI(K,F®).

We next examine some properties of the sequence of solutions { xk} generated by the
auxiliary problems. We will see that {xk} approaches to the solution set SOL(K, F) under
some specific conditions of the sequence {p, } .

Theorem 3.2. Let VI(K, F) be a generalized P, problem where F is continuous on R" and
assume further that the solution set S:=SOL(K, F) is nonempty and bounded. Suppose that the
sequence { pk} of positive numbers arising from the proximal point algorithm satisfies

[%a

o)
where {xk} is the iteration generated by the proximal point algorithm, we have that

lim dist(x, IS)=0

P — +oo and —>0ask > (6)

Furthermore, the sequence {x, } is bounded, and each of its accumulation points is a solution

to the original problem.
Proof. By Theorem 2.2.1, we have that

(Fnat) (0)
Moreover, S is compact and nonempty. Therefore, by Theorem 2.3.1, we deduce that for any
&>0 there exists a positive number & such that for every weakly univalent mapping h
satisfying

sup () - K™ ()] <. (7)
we have
@ = h™(0) g( F ) (0)+¢£B() (8)

where Q, = (R )_ (0)+£B(1) . We next show that the mapping h=F"% where F" is

the natural map associated with the VI(K, If(")) with the mapping F® defined by
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FO() = F0+ - (x-%.4),

o
satisfies the condition (7) for sufficiently large positive integer k. It is easy to check that each
F® is a generalized P -function with respect to K, therefore, by Lemma 2.3.1, it follows

that Ifk’ff} is weakly univalent. From the non-expansiveness property of the projection

operator, for every k e N, we have

Let M be the radius of the open sphere containing ( “at) (0), since ( “at) 0) is

K

R (X) - F”a‘(x)H<—||x X, VX e Q,.

compact, it follows that

Ezg:( ”at) (0)+&BQ) = ( ”at) (0)+&B(1) = ( "at) (0)+&B(1),

that is x| <M +¢ for every x in Q_, hence, for each k € N, we have

[R 00 - R ()] < p—, VxeQ, .

By the conditions —— >0 and || X
P oy

exists a positive integer k, such that for every k > k,, we have

M+5£é, and Msé
Px 3 P 3
Hence, for all k >k, , we have

which implies

M+e %]

— 0 when k tends to infinity, it follows that there

Fe (0 —F& (0 < %5, vxeQ,

sup‘ e (x) F”at(x)H £5<5.
Consequently, by applying the condition (8)
nat nat \ 1
(R ) O <(F&) (0)+£B@A), Vk=k,
Moreover, we can easily check that SOL(K, F(k)) coincide with SOL(K, If(k)) , therefore,

this fact implies
~ -1 -1
(x}=(F%) @ <(R&) (0)+B), Vk=k, 9)
Hence, for any k >k, it holds that
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dist(xk I( Fe )_1 (O)) = inf {||xk —y||:ye (F};1at )_1 (O)} <e.
This implies that
lim dist (x, 1S) = lim dist(xk (F) (0)):&

k—+00

Since the set {xl,...,xko} is finite, it is also bounded. From (9), since Sz(FK”at )71 (0) is

contained in the ball with radius M , we have that
% ]|<M +é&,Vk >k,

Together, we obtain the boundedness of {x, | .

Finally, let X" be any accumulation point of {x, }, then there is a subsequence {in } of {X}

converging to x . For any fixed i, x, Is a solution to VI(K, F(k‘)), thus satisfies the

following inequality for all x in K
<F(ki)(xki),x—xki>20,

or, equivalently,

In the preceding inequality, since {x, |} is bounded and p, — o« as i — o0, we obtain the
following inequality for all x in K when i — o
<F(x*),x—x*>20,
This shows that x” is a solution to the original problem.
Remark 3.1. We can construct a sequence {pk} that satisfies the conditions (6) in the
following way: First, we choose a positive number p, and an arbitrary vector x, in R". We
will then obtain a unique solution x, to the VI (K, F(l’) where
FO(X) = pF(X) +X—X,.
Next, we choose a positive number p, satisfying
(AP
p, 2

and we continue to obtain the unique solution X, to the VI (K, F‘z)) where

P, >max{p,2} and

F@(X) = p,F(X)+X—X,.
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Continuing to choose a positive number p, satisfying

] 1
P, =max{p,,3} and ;SQ
We obtain the unique solution X, to VI(K, F(3)) where
FO(X) = p,F (X) + X—X,.
By doing this process consecutively, we will construct a sequence { pk} which is increasing
and satisfies

Kol 1 oso
P

Therefore, the sequence { pk} satisfies the conditions (6).

P 2K,

=~

The following example shows that the boundedness condition of SOL(K,F) in Theorem
3.2 cannot be dropped.
Example 1. Let K =R? and F:R* — R? defined by

F(X)=Mx+q, xeR?
where

"o of +-Lo]

Obviously, F given above is a P,-function on R* so will be a P,-function on R? in the
classical sense. Then, the VI(K,F) becomes the complementarity problem, that is to find
X =(%,%,) in R satisfying

MX+q>0 and (X,MX+q)=0.
More precisely, X must satisfy

[?1]2 0, (YZ 4}2 0, and %(X,-1)=0.

X, 0

From this point, we have that

SOL(K, F)={(x,1):% 20} u{(0,%,):x, 21},
We see that this set is nonempty and unbounded. Next, we will construct the sequence of
solutions {xk} to the perturbed problems VI(K, F‘k’) by using the proximal point algorithm

and examine its iteration. The iteration can be established generally in the following way:
0

X

0

given an arbitrarily positive number p, and an initial point X, :[
X2

J such that xJ belongs
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to (0,1) and x{ satisfies x’ + p, <0, for each positive integer k >2, we choose p, as a
number satisfying
P 2 max{pk—ﬂ k}!

[xal o 2
o 2

where X, is the unique solution to the VI(K, F(k‘l)). By induction, we obtain the iteration

{x} satisfying all the following conditions:

X = XJ,

X =%+ (1_Xg)’
x>0,

k

forany k , where x, = [Xlkj . The construction of {p, } and {x} give us the following properties:
XZ

. . X
lim p, =40 and lim =+ =0.
k—>+o0 k—>-+o0 pk

In other words, the iteration {xk} generated by the proximal point algorithm in this example
satisfied all the conditions of Theorem 3.2. Moreover, this iteration also satisfies x5 = xJ for
all ke N hence it lies on the ray {(x1 xg) X > 0} . This leads to

dist(x, 1S)=1-x;, VkeN
And obviously, this implies

klirpwdist(xk S)=1-x; #0.

We can illustrate this easily through the following figure.

1
vx, =0
i
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We next consider two particular cases. First, if the set K is bounded, we will obtain the
nonemptiness and boundedness of SOL(K, F). Moreover, we can drop the assumption that

X . .
{L} converges to 0 as k tends to infinity. In summary, we have the following corollary.
Pk

Corollary 3.1. Let VI(K,F) be a generalized P, problem where F is continuous on R".
Assume further that the set K is bounded. Then, if the sequence {p,} satisfies p, — +oo
as kK — +o, it holds that

k"jpwdiSt(Xk S)=0.
If SOL(K, F) is a singleton, the convergence of the iteration is then obtained.
Corollary 3.2. Let VI(K,F) be a generalized P, problem where F is continuous on R".

Assume further that the VI(K,F) has a unique solution x". Then, if the sequence {p, }

satisfies the conditions stated in Theorem 3.2, it holds that
lim x, =X

k—+0

Remark 3.2. Proposition 3.5.10 (a) in Facchinei and Pang (2003) gives us the uniqueness of
a solution to the generalized P problems, then we can apply the PPA to the generalized P
problems and obtain similar results.

4.  Conclusion

We have applied the proximal point algorithm to the generalized P, problem and

obtained several properties for the iteration generated by the algorithm, including the
convergence result. Furthermore, we have constructed an example to illustrate the conditions
stated in the main theorem.Open problems remain in this topic. For instance, it is of interest
to study the following questions:

: X .
(Q1) Is the assumption on the convergence to 0 of the sequence {M} in Theorem 3.2 a
e

redundant one?
(Q2) Are there any other conditions for the sequence { pk} under which we obtain the property

for the {x, | stated in Theorem 3.2 and obtain the convergence of {x, } ?
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TOM TAT

Bai bao nay nghién cizu thudt todn diém gan ké cho 16p bai toan bdt ddng thirc bién phan P,
suy rgng. Bang cach si dung két qua vé tinh niza lién tuc trén cia cac toan tir don diép yéu ching
toi chizng minh day lgp sinh béi thudt toan 1a bi chan va bam vao tap nghiém cuia bai todn ban dau
va mai diém ty cua day lgp 1a nghiém cia bai todn di cho dudi gid thiét tap nghiém bj chan. Ching
16i ciing diwa ra mét vi du chi ra su can thiét cia tinh bi chan cua tdp nghiém.

Tir khoa: hoi ty; anh xa ty nhién; tham P, ; ham P; thuat toan diém gan ké; toan tir don di¢p;

bat dang thirc bién phan
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