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ABSTRACT

The quasi-linear non-uniformly elliptic problems were motivated by minimizing problems for
non-standard integral energy functionals, which can be applied to many applications in sciences
such as fluid dynamics, nonlinear elasticity, and physics. A typical example of this type of problem
may be seen as the (p,q)-Laplace equation. In this paper, we establish some gradient estimates via
fractional maximal operators for a class of (p,q)-Laplace type equations in generalized Morrey
spaces. The global regularity results were obtained in two steps. In the first step, we construcedt the
gradient estimate in the setting of weighted Lorentz spaces. The regularity result in Morrey spaces
were obtained in the second step.

Keywords: generalized Morrey spaces; Non-uniformly elliptic problems; (p,q)-Laplace
equation; regularity; weighted Lorentz spaces

1. Introduction
The main goal of this paper is to establish some global gradient estimates for non-
uniformly elliptic problems which have a typical version as below:

—div(V (x,Vu))=—div(V(x,F)) inQ, (1.1)
where the vector field V is defined by
V(x.&)=plg " E+qa)é e EeR" (1.2)

Here, the domain Q < R" (n>2) is open bounded, and the given data F:Q —>R" is a
vector field. The coefficient function a € C*(Q,R") for some o € (0,1]and two parameters

p, g satisfy the following assumption:

1< p<qs(1+%j p. (1.3)
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The (p,q)-Laplace equation in (1.1) can be seen as the Euler-Lagrange equation of the
following functional:

W E(W)ZZJ(D(X,VW)dX— j(V(x, F),Vw)dx

where the function & is defined by the Euclidean norm of V in (1.2) as follows:

®(z,8) =g +al@)¢ (.6 e QxR (1.4)

The mapping E is called double phase functional which was first studied by Zhikov (1986,
1995) to describe the change of ellipticity according to the range of functions a. Related to
the regularity of solutions to (1.1), Marcellini (1991), Esposito, Leonetti, & Mingione (2004)
and(Colombo, & Mingione (2015, 2016) studied the local gradient estimates as follows:

Oz, F)e Ll = ®(x,Vu)e L , forally>1. (1.5)

After that, there have been many studies on the regularity for non-uniformly elliptic
problems, such as Byun and Oh (2017), Baroni, Colombo, & Mingione (2018), De Filippis
and Mingione (2020), Beck and Mingione (2020), Byun and Lee (2021), Tran and Nguyen
(2021), Tran (2022), Dang and Pham (2022), and Nguyen et al. (2023).

It is worth mentioning that in a special case a =0, equation (1.1) is well known as p-
Laplace equation which has attracted the interest of many researchers in recent years. In
particular, we are interested in the global Calderon-Zygmund estimates of the solutions in
various generalized Lebesgue spaces (Nguyen & Tran, 2020; Tran, Nguyen, & Nguyen,
2021; Tran & Nguyen (2020, 2023). In these papers, the key technique comes from the
construction of level-set inequalities by combining comparison estimates and Vitali covering
lemma. This technique was introduced by Tran and Nguyen (2021), Tran and Nguyen (2019,
2022), and Nguyen, Tran, and Huynh (2021). Motivated by these works, we continue to
investigate the regularity results for (p,q)-Laplace type equations in some more general
function spaces.

In the present paper, we study a class of (p,q)-Laplace type equations which are more
general than (1.1). Roughly speaking, the vector-valued function V in (1.2) will be
generalized by two nonlinear operators A, B. In other words, we consider the following
equations:

—div(.A(x,Vu)) = —div <B(a:,F)), in Q,

1.6
U = 0, on (99, ( )

Where the nonlinear operators A,B: QxR" —R" satisfy the following conditions:
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(|«4($,£)| + |15’ 26|+ [0 Al, € ||g|)|§| < Ld(z,€),
ot
A= Al O < Late) —ata |

forall X, X, X, €Q and &, zeR"\{0}, with two given constants 5, L > 0. More precisely,

q2]|| 8Ax£zz) (1.7)

we establish the following regularity result:
M, (D(x,F)) e M**(£2) = M, (D(x,Vu))e M*" (), (1.8)

where M*>* (£2) denotes the generalized Morrey space and M 5 Is the fractional maximal

operators that will be defined later. To prove (1.8), we first apply the distribution function
via fractional maximal operators for weak solutions to (1.6). An interesting point is that the
quasi-norm in generalized weighted Lorentz spaces can be presented by the distribution
function mentioned above. Therefore we may obtain the gradient estimate in generalized
weighted Lorentz spaces. Then, we choose a very special weight and use the dyadic

decomposition of R" to establish the result in Morrey spaces. We refer to Nguyen et al.,
(2023) or Tran et al. (2022) for a similar method applying to some classes of steady Stokes
systems.

The rest of the paper will be organized as follows. In the next section, we recall some
notations and definitions related to weak solutions, fractional maximal operators,
distribution functions, and several functional spaces. In the last section, we prove the
gradient estimates in weighted Lorentz spaces and generalized Morrey spaces.

2. Preliminaries
Let us first introduce some notations and definitions that are considered throughout the

paper. The diameter of the open bounded domain Q < R" will be denoted by diam(Q). We
denote an open ball in R" with center x, and radius R >0 by

Be (%) ={&eR":|£ x| <R}.

The union of Q and a ball will denoted by Q. (x,)=Q N B, (X,). Moreover, we use
notation {|h|> 7} instead of {x e Q:|n(x)|> r}. On the other hand, we write £’ (A) for the

Lebesgue measure of a set Ac R". With the coefficient function a e C*?(Q,R"), we write
[a(x)-a(y)
a| = sup ——=.
[ ]G;Q x,yeQPx:ty |X — y|o-

The existence of solutions to (1.6) is studied in Musielak-Orlicz-Sobolev spaces, see
Benkirane and El Vally (2014). Let us now recall the definition of Musielak-Orlicz-Sobolev
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spaces according to the operator ® in (1.4). We notice here that we still denote by & for the
following function:

ow,6) = +a@) s (@R,
Definition 2.1. (Musielak-Orlicz-Sobolev spaces) Let h: Q2 — R be a measurable function,

we say h belongs to the Musielak-Orlicz class O (Q) if it satisfies

f@(m, h)dzx < 4o0.
Q

The Musielak-Orlicz space L”(Q) is the smallest vectorial space containing O®(Q)

equipped to the norm | .

. _ h(x)
@) = inf {/1 > 0: i@(x,b—qu 31}

The Musielak-Orlicz-Sobolev space W'®(Q) is the set of all measurable functions

... as below:
L*(©)

[

heL®(Q) such that [Vh| e L (©2). The norm of the space W*® (Q) is given by
[Alhzoay = [l 170

Furthermore, we define by W,"* (Q) the closure of C;*(Q) in W*®(Q).

(@)

Definition 2.2. (Weak solution) A function ueW;"*(Q) is a weak solution to (1.6) under

assumptions (1.3) and (1.7) if it satisfies
[ (A@. V), Veydz = [ (B F), Ve

for every test function ¢ € C(€2), where notation <> denotes the inner product in R".

The existence and uniqueness of weak solutions to (1.6) is well known in Marcellini
(1991) and Colombo and Mingione (2016). Moreover, the authors prove that we can test the

variational formula ¢ €W,*® (Q) instead of ¢ € C7(Q).

Lemma 2.3. (Colombo & Mingione, 2016) Let ueW,"*(Q) be a weak solution to (1.6)

under conditions (1.3) and (1.7) with given data F € W"* (Q) . Then the following formula
fQ (A(w, Vu), V)dz = L (B, F), Vig)da

holds for every test function @ €W, (Q).

Definition 2.4. (Fractional maximal operator) We define M, the maximal operator with

order 0 < 8 < n, which is the operator given by
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8
M) s

hE)|dé, Yre R,

forall he L, (R").

It is well known that when 5 = 0, then M, = M, is exactly the Hardy-L.ittlewood operator
M defined by

1
Mh(l’) = S}ig) W fBr(z)

WEE, VxR,
A nice feature of a fractional maximal operator M@ is its bounded property.

n
Lemma 2.5. (Tran & Nguyen, 2021, Lemma 2.8) For every 0 < 3 < n and 1<s< E , there

exists a constant C > 0 such that

n
n—sf

S

c ({x € R" M h(x) > )\}) < de

£ [ oo

Y

forall heL*(R") and for all A > 0.
Definition 2.6. (Muckenhoupt weights) Let 1<wv<oo, we say that a weight

wE Li (R”;R*) belongs to the class of Muckenhoupt weights A if

v—1

< 00,

o= T_"f B,(2) w(g)d&][r‘"f B,(x) w(g_ﬁdf

BT(I)CR” T
when 1 < v < o0,

W], = sup [ fBT(I)w(é)dé] sup L

< o0
' B (z)cR" ¢eB.(x) w(&) ’

when v = 1 and there exists positive constants C', C,, and 7, 7, satisfying

1 Ty

L(E)
L'(B)

L'(E)

£'(B)

<WE)
T w(B)

Y

when v = oo, for any ball B in R" , and all measurable subsets £ of B . Here, w(F) is
defined by

Mmzﬁy@m.

In this case, we denote [w], = (C,,C,,7,,7,).
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Definition 2.7. (Distribution functions) Let w € A_ and h be a locally integrable function

on R". A weighted distribution function d’ : R* — R" is defined by
d*()) = w({az e Q: |h)> )\}) A>0.

Moreover, we consider a new distribution function that corresponds to the fractional
maximal operators. More precisely, we define

D“(\) = d;y, () = w({z € Q: M p@)]> )], Azo. (2.1)
Next, to define the generalized weighted Lorentz space, we consider a new weight
¢ e L (R";R") anon-decreasing function X defined by

A
KO = ["<)dr, A =0, 2.2)
The weighted Lorentz spaces can be defined as below, see Carro, Raposo, and Soria (2007).
Definition 2.8. (Generalized weighted Lorentz spaces) Let w € A_ and K defined by (2.2).
Let s € (0,00) and 0 < ¢t < oo, the generalized weighted Lorentz space Aj;:(Q) is the set

of all functions A such that

t

,
||h||A:_L<Q) — s fu A [/c(d;j(A))}s d\

if t<oo and
1
1. = sup A e[ 00)]
if t =00

We remark here that H

o IS a quasi-norm in the generalized weighted Lorentz
AP (Q
space A" () if and only if there exists 3, > 0 such that
K@2N) < B,L(N), YA>0.
On the other hand, if ¢ =1 and w =1 then the generalized weighted Lorentz space Aj’f;(Q)

becomes the classical Lorentz space L*(12).
Definition 2.9. (¥ — generalized Morrey spaces) Let ¥ : QO x R"™ — R be a measurable

function. Then, a measurable mapping A : 2 — R is said to belong to the ¥ — generalized
Morrey space M*"(Q) with s € (0,00) if
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‘ < Q. (2.3)

1 s
||h||M‘”I'(Q) = :EESZ;OELLI()iiam(Q)[\I}(,I’Q) j;g(z) h(£)| ds

For simplicity of notation, we use data to stand for the set of parameters that will
affect the constant dependence in our statements below. In the sequel, we use
data = data(n, q,p,o0,,L,4,[a]_, ,||a||Lm(Q) P (x, Vu)||L1(Q) ,[a)]Aw).

Finally, we always denote C a general positive constant that depends on data.
3. Results

The gradient estimate in generalized Morrey spaces was obtained in two steps. The
first one is the estimate in weighted Lorentz spaces. The key point of this work was based
on the weighted level-set inequality of data and the gradient of weak solutions. In particular,
thanks to Theorem 4.3 by Tran and Nguyen (2021), for every « > 0 it is possible to find

g, =¢,(k)€(0,1), n=n(x)>0 and a positive constant C such that the following
inequality:
w({Mﬂ(CI)(x, V) > e A M, (@(z, ) < A 0 Q)
< C'ew({M,(@(z, V) > A} n Q) (3.1)
holds for every A >0 and ¢ (0,¢,). This level-set inequality is also called good-\

inequality. For more information, read Tran (2022) and Dang and Pham (2022) for the proofs
of (3.1). We remark that this level-set inequality can be proved under an additional

assumption on the boundary of the domain. More precisely, we assume that 692 is 7.
Theorem 3.1. Let €2 be an open bounded domain in R” such that 6 is C"”. Assume that
ueW,"(Q) is a weak solution to (1.6) under assumptions (1.3) and (1.7) with given data

Few" (Q) . Suppose moreoverthat w e A_, < € L}OC(RﬂR*) and /C isgivenasin (2.1)
satisfying

0K(N) < K(2X) < 0,K(N), VA=0, (3.2)
for some 6, > 0 >1. Then for every 3 €[0,n), s (0,0) and 0 <t < oo, the following
gradient estimate

M, (@(a, w))”mw < C|M,(@(, )| (3.3)

. ALL(Q)
holds true with a constant C = C(data, s,t,6.,0.).

771 72

Proof. Firstly, for every x > 0 one can find some contants ¢, € (0,1) and 7 > 0 such that

(3.1) holds for every A > 0 and ¢ € (0,¢,). It leads to
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w({M‘d(QD(J;, Vu) > e A} Q) < w({Mﬁ(QD(a;, F))> e} n Q)
+ Cew ({M,(@(z, Vu)) > A} 0 Q)

which can be rewritten in the form of distribution functions in (2.1) as below:

D, ("N < CeDpr o (A +CDy (")), (3.4)
forevery A > 0 and ¢ € (0,¢,). Thanks to assumption (3.2), we show that
KO +2)<6,(KO)+K(N,)), VAL 20 (3.5)

Indeed, we can suppose that 0 < A < A, since K is non-decreasing, there holds

KO\ +2,) < K@2)) < 0,K0,) <6, (K + K(,)).
From the estimates in (3.4) and (3.5), one obtains that

KDy, (EN) <6, (/c (CeDie,, )+ K (C*Dg;;ﬂ(gu))). (3.6)
On the other hand, we can fix m € N such that 2" < C" < 2". By (3.2) for every 7> 0,
we deduce that

K(C'r) < K(2"7) < 07K(7),
together with (3.6) one has

K (Dg‘(jm)(g’”)\)) <o (IC (gng‘;w@)) +K (DQ;;F)(E"A))). (3.7)
Let 0<t <o and 0< s < oo, we now consider the quasi-norm in the weighted Lorentz
space Aj;i (£2) . We can present as follows:

N :
O A R NI

= t
- g-%[{ N E(DJ (67 N) [ dA

0

Substituting (3.7) into this formula, we obtain that

M (@(z, V)|

AZL@)

= t
< Cs-“'sL A [IC(ED‘S)’“’ (A))Js A

(z,Vu)

(3.8)

t

+ Ce*"sr A [/c (Dggﬂ(au))}? .

0
We may now define k£ € N such that

l<2"'5S1<:>10g2[1j—1</’gslogZ[lJ.
2 € 5

Then for every 7 > 0, from the assumption (3.2), we can assert that
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1 . 1
Kler) < =K (2% 1)< —
(e7) 0! ( ) 0" log, (D)1

which from (3.8) allows us to imply that

t

jxj:‘w,(Q) <Ce™ 1%1[1]1 SJ'O AT [IC (Dgé,w)()‘))}g dA

&

”Mg((I)(x, w))”

= t
4 Cs-“'e-“st A [/c (D;;_F)(A))} .

This inequality can be rewritten in the form of a quasi-norm in weighted Lorentz space
A (Q) as follows:

t

k]

t

M, @@ V) | <ot | —

AL Mo LAY
0

AL)
! |
1

+Ce M (@, F))|

5.t
AY(9)

Using a fundamental inequality, the above estimate implies to
1

S

M, (@@ V)|, <ce ! - M., (®(z, V)

Aili Q) log, [lJ
6 €

1

AZL(9) (3.9)

+ Qe

M (@ F)) -

Aj;_i(ﬂ)
We now apply this argument again to show that (3.9) still holds for s € (0,0) and ¢ = o,
To get the goal inequality in (3.3), it is sufficient to choose x>0 and ¢ € (0,¢,) small

enough in (3.9) such that

9(8) =Ce™" @ <%,

1

which finishes the proof. With the following presentation,

1 1 1 1
g(2)=co; (o) = cop (=)

we remark that the choices of x and e are possible. Indeed, one just needs to choose
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log, 0
S

and therefore lim g(s) =0. O

e—0"
In the rest of the paper, we study the gradient estimate of weak solutions in the
generalized Morrey spaces.

Theorem 3.2. Let 2 be an open bounded domain in R" such that Q2 is C'* for some

o" €[o,1]. Assume that ueW,"* () is a weak solution to (1.6) under assumptions (1.3)

and (1.7) with given data F € W' (Q). Let se(0,0) and ¥:QxR" —»R" be a
measurable function satisfying
\If(x, 29) <v,¥ (m,g), forevery z € (2 and 0 < ¢ < diam((?),
(3.10)
for some constanty, (1, 2) . Then, for every 3 e [O,n) and s e (O,oo), there holds

M, (2(, VU))HW(Q) <M (@, F)) (3.11)

M)’

where the constant C' depends on s, v, data.

onabac
Proof. For every (€ [O,n) , S € (O,oo) and w e A_, thanks to Theorem 3.1 with ¢ = s,

there exists a constant ¢' > Qsuch that

| PaM, (@@ va)) ©)f w@yds < ¢ [ M, (@ F))(e)
(3.12)

Given 6<(0,1), zeQ and 0<p<diam(Q), we further set =y, .

S

w(é)de.

Then, the

following estimate holds true
X ((€) < (&) < Mpu(€) < (Mp)'(€) < 1 (3.13)

for every £ € R". Therefore, we get that

T = 1 J
U(z,0) Y 9,

XM, (®(z, V) (€)

S

dg

s

(€)d€ (3.14)

M, (®(z, Vu))(&)

1
B U(z,0) jR"

1 s 5
iR (Mp) (E)ds.

XM, (2, V) (€)
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Thanks to Proposition 2 in Coifman and Rochberg (1980), one (Mp)’ e A c A, which
allows us to deduce from (3.12) and (3.14) that
C s 5
T < (D(z, F M de. 3.15
Tie o o MA@ ] (M) ()i (3.15)

At this time, using the following dyadic decomposition of R" by

R" =B, (z)u [ B, (2)\ BQA_D(ZL')],

k=1 b b

the estimate (3.15) can be rewritten as below:

¢ s 5
1< G f XQM5<f<z,F>><s>| (Mp)' (€)de -
T o, JL @G P o e

ForeveryfeB“ (z )\B (x , wehave
2fp < |£ - :z:| < 2"y
Therefore, if 0 <7 < (2" —1)o then B () N B (z) = & . It enables us to estimate

£'(B (&) B ()

=su _ - su
MO =5 ) o P Ol =0 2 )
o EBONBE)
r>(2"-1)0 H(Br(f))
Vol (B,,(ﬁ)mBg(x))‘ £ (BQ(”))
= max sup o T (BEN ]
(2 “1)o<r<(2 +1)0 L (B7(€)) ra@ ey L1 (B7(§))

which leads to

1

For this reason, we may approximate as follows:

1
Mpu(€) ~ Py forevery & € B2Mg(x) \ B2kg(:1:).

Hence, applying the preceding estimates and taking into account (3.13), we conclude from
(3.16) that
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: q,(f,g)f

XQM_S@(x, F>><£>|“ ds

SOy g [, M e d

knéd
k= 2 k+1 0 z

oM (@(a F))(£>|s 3 (317)

%/ f
U(z,20)

k+1
1

AZ: 2/wé 2k+1g) fBEA+lg(m)
< C”yo 1+ Z(

XM, ((z, F)()| d¢

3] s,

277(5 Q) :

Under the assumption ~, (1,2“) , One can choose 6 € (0,1) such that ;—% < 1. For this

reason, the series in (3.17) is convergent. In particular, there holds

k
1
1+Z(2m} = -
_ _'0

1 2715

The statement of inequality (3.11) is thus complete by taking the supremum of T in (3.17)
forall z € Q and 0 < ¢ < diam(£2). O
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TOM TAT

Bai toan elliptic twa tuyén tinh khéng dong nhat c6 nguon goc tir bai toan cyc tiéu phiém ham
tich phéan ning lwong khong tiéu chudn, duroc 1ng dung nhiéu trong cac nganh khoa hoc nhuwr Co hoc
chat léng, Vat |i va bai todn dan hoi phi tuyén. Mét vi du dién hinh cho Ip bdi todn nay la phwong
trinh (p,q)-Laplace. Trong bai bao nay, chung tdi thiét ldp cdc danh gid gradient 1img véi toan tir cuc
dai cap phan sé cho mét Iép bai toan dang (p,q)-Laplace trong khéng gian Morrey tong quat. Két
qua chinh quy toan cuc dwoc chitng minh qua hai buéc. O bude dau tién, ching toi xay dung danh
gia gradient trong khong gian Lorentz c6 trong. Két qud chinh quy trong khéng gian Morrey diroc
chitng minh trong buoc thir hai.

Tir khda: khdng gian Morrey tong quét; bai toan elliptic khong dong nhat; phuong trinh (p,q)-
Laplace; chinh quy nghiém; khéng gian Lorentz c trong
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