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ABSTRACT

Two-dimensional exciton under a uniform magnetic field in monolayer transition-metal
dichalcogenides (TMDCs) has been a fascinating problem for experimental and theoretical studies
in the last decade due to its practical applications in electronic and optics devices. Specifically, there
is significant interest in the diamagnetic coefficients of excitons in monolayer TMDCs, focusing on
the monolayer WSe, encapsulated by boron nitride (h-BN). The discrepancy between theoretical
calculations and experimental data for the diamagnetic coefficient of an exciton in monolayer
TMDCs requires further improvement in theory for this material property. This paper uses the so-
called modulated perturbation method by combining the Rayleigh-Schrddinger perturbation theory
with the Levi-Civita transformation and including a variational parameter. The advantage of the
constructed method is demonstrated in calculating the exciton diamagnetic coefficient within the
second order of approximation. The results are then compared with recent experimental ones.

Keywords: diamagnetic coefficient; exciton; modulated perturbation method; TMDC

1.  Introduction

Two-dimensional exciton in TMDCs is a typical problem that has been much
researched since 2010, after the success of creating two-dimensional materials. Exciton is a
quasiparticle created by electronic interactions between the hole and the electron, often
described by the Keldysh potential (Keldysh, 1979). When an exciton exists under a
magnetic field, it is also called magnetoexciton. The interest in magnetoexciton in TMDCs
arises due to their band gap covering the near-infrared and the entire visible range, leading
to semiconductor properties different from graphene materials (Thambiratnam, 2020).
Studying magnetoexciton in TMDCs can help to understand more about its properties,
particularly the diamagnetic coefficient, which is related to the diamagnetic shift phenomena
in magnetoexciton energy spectra and crucial for photo-electronic applications.

Cite this article as: Nguyen Nhat Quang, Doan Phuoc Thien, Phan Ngoc Hung, Ly Duy Nhat, & Le VVan Hoang
(2024). Energies and diamagnetic coefficients of exciton in monolayer WSe,. Ho Chi Minh City University of
Education Journal of Science, 21(4), 585-595.

585


about:blank
https://doi.org/10.54607/hcmue.js.21.4.3926(2024)
mailto:nhatld@hcmue.edu.vn

HCMUE Journal of Science Nguyen Nhat Quang et al.

There have been several theoretical and experimental studies for calculating the
diamagnetic coefficient of magnetoexciton in TMDCs, particularly in the monolayer WSe2
encapsulated by boron nitride (h-BN). However, experimental results are not in good
agreement and cannot be truly interpreted by theoretical models. Specifically, the experiment
by Stier et al. (2018) shows that beyond the 3s state, the diamagnetic coefficient cannot be
yielded precisely from quadratic regression of magnetoexciton energies as predicted by the
theory. Liu et al. (2019) showed that although their theoretical prediction model aligns with
the experimental data from Stier et al. (2018), their experimental results for the diamagnetic
coefficient were different. In the recent theoretical work by Ly et al. (2023), this discrepancy
is attributed to the inaccuracy of the material parameters, such as exciton-reduced mass, the
screening length, and the dielectric constant. This study then retrieves more accurate material
parameters by analyzing the experimental data of Liu et al. (2019), compared to the exact
numerical calculation. Using these retrieved material parameters, Ly et al. (2023) calculated
the diamagnetic coefficients for WSez and WS: by fitting the exact numerical energies with
the perturbation term quadratically dependent on the magnetic field. However, based on our
adjustment, the results could be more consistent if the theoretical energies used in the fitting
procedure were from the second-order perturbation method.

On the other hand, it is well known that a two-dimensional magnetoexciton under the
Levi-Civita transformation can be rendered to be an anharmonic oscillator model, which is
a familiar system in condensed matter physics and thus easy to use various methods solving
its Schrodinger equation (Hoang et al., 2013; Ly et al., 2022). Particularly, the algebraic
calculation by the FK operator method (Feranchuk et al., 2015) can be applied to this system.
In this study, we use the modulated perturbation method which combines the Rayleigh-
Schrédinger perturbation theory with the Levi-Civita transformation and introduces a free
parameter following the FK operator method to manipulate the rate of convergence of the
perturbation theory schemes for numerical solutions. This modulated perturbation method
allows us to calculate magnetoexciton energies for the ground and some low-lying excited states
in the case of monolayer WSe». Furthermore, using the least mean square regression method,
we can extract the diamagnetic coefficient of magnetoexciton from its energy spectra up to the
second order of approximation and compare the results with the current studies.

2. Theoretical methods
2.1. The Schrddinger equation via the Levi-Civita transformation
First, we consider a neutral exciton that includes one electron and one hole interacting

with each other by the potential \7h_e(r) in monolayer TMDCs. The movement of the exciton
Is constrained to the xy plane in the presence of a magnetic field Be, perpendicular to the

plane and along the z-axis. After separating the center-of-mass motion and assuming its
momentum to be equal to zero at low temperatures, as in the most current experiments, the
Schradinger equation for relative motion is as follows:
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i;52+1—’0§IZ+e B r’+V, (N-Etw(r)=0 1)
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with the exciton reduced mass g =m.m;/(m;+m.), the ratio of masses p=m,/m,

operators of the momentum p, and angular momentum of the relative motion I,. The

interaction between electron and hole \7hfe(r) is well described by the Keldysh potential
expressed via the zero-order Struve and Bessel functions (Berkelbach, 2013; Keldysh, 1979).
However, as shown in Ly et al. (2023), this potential can be rewritten in the Laplace form,
which contains the average dielectric constant x, the screening length r, related to the 2D

polarizability y,, of the TMDC monolayer (1, =27 y,; ).

Now, the Schrodinger equation in the xy space is written in the dimensionless form
2

with the effective Hartree E;, = ue* /167°£;h*, the Bohr effective radius a, = 4zg,h* | e’

for the energy and distance units, respectively, and the dimensionless magnetic field strength
y related to the magnetic field by the expression B =y x uhE;, /e . After that, we take an

important step to solve the equation using the Levi-Civita transformation (Levi-Civita,
1956): x =u®—Vv?, y=2uv to convert equation (1) from xy space into uv space as

1({ o* & 1-pye N I
{_5(_2+W}+(ﬁ§lzi)(u +V )+%(u +V ) +VK(u,v)}y/(u,v):O, (2)

V, (u,v) = (U? +v2)e I, (3)

1 j*wd_q
0 fira'd

Consequently, by employing the Levi-Civita transformation, the Hamiltonian can be
rendered in a form similar to an anharmonic oscillator. This simple equation suggests the
feasibility of using the algebraic calculation method, utilizing creation and annihilation
operators (Feranchuk et al., 2015).
2.2. Algebraic calculation method

For the algebraic calculation, we introduce annihilation and creation operators
a a, 6, b* as functions of u,v,0/ou,o/ov with the definition details presented in Ly et al.
(2023). These operators satisfy the conventional commutation relations

[4,4"]=1 [b,b"|-1. @)

Besides, the operators a, 4" commute with operators b, b* . These relations are crucial

for the algebraic calculation.
All operators in equation (2) can be expressed via the annihilation and creation
operators as following formulae:
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These operators are easy to work with the harmonic wave functions, which can be
written in the algebraic form as eigenvectors of the neutral operators a*4, b*b :

1
|k’m>_\/(k+m)!(k—m)!

Here, the vacuum state |0) is defined by the equation

(é+)k+m (6+)k—m |0> . (8)

a4lo)=0, blo)=0. 9
Because our system has the conserved angular momentum, we pick up for the basis
set (8) only the wave vectors, which are the eigenvectors of the operator fz . From the form

of fzvia the annihilation and creation operators shown in (7), it is easy to verify that vectors
(8) are eigenvectors corresponding to the eigenvalues m =0,+1,+2,.... Then, the rest running
index has the values: k =fm|,|m|+1,|m|+2,...

By using the commutation relations (4) and the vacuum state definitions (9), we can
calculate all the matrix elements of operators in equation (2). Particularly, the elements:

Tjk:a)_l<j’m|-|:|k’m>' Rjk:a)<jim||i|k,m>,
(R, = (i,m|R°[k,m), (V) =(i,m|@V, |k,m)
are given explicitly in Ly et al. (2023), and are useful for our application in the next sections.

2.3. Rayleigh-Schradinger perturbation theory
The perturbation theory was conventionally developed for the typical Schrédinger

equation H w = Ey . However, our equation (2) has a different form
HAz//(u,v):Eliy/(u,v), (10)
requiring a modified theory, which we will discussed in this section. We note that equation

(10) is from equation (2) with changing E —i_—p% — E, for convenience.
+p

The first step is to split the Hamiltonian H and operator R into two terms as
H=H,+AV, R=R,+/R,. (11)
The main terms I—A|0 and Iio include all neutral operators, and the rest of the non-neutral

A

operators Vv , R, can be treated as perturbative. Here, as shown later, energies in the zero-
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order approximation are non-degenerated. The perturbative parameter <« 1 is used to
denote the perturbativeness of operators \7,I§V. This parameter is entered formally to
establish formulas of perturbation corrections; thus, we will put the value f =1 at the

last step.
The second step is to calculate the matrix elements of the related operators. First, we

use functions (8), |k, m> (k =l m],|m|+1,|m]|+2,...), that are normalized and orthogonal for

N A

the basis set. Therefore, the matrix elements of operators H,, R;, V, and FA{, have the
following properties when j + k:
(k,m|[H,|j,m)=0, (k,m|Ry|i,m)=0, (k,m|V|j,m)=v,, {(k,m|R,|i,m)=r,. (12)
In the case of j = k, we have
{k,m|H,|k,m)=h, (k,m|R;|k,m)=r,, (k,m|V|k,m)=0, (k,m|R, |k,m)=0. (13)
In our case, all the elements h,,, 1, v, I, can be expressed via the calculated matrix

elements T, Ry, (R3)jk, (Vi) - We note that the separation of operators in formulas (11)

is just for constructing the theory. In practice, we only need to calculate the matrix elements
by the formulae (12) and (13) and then apply them to the calculation scheme for the
perturbative corrections.

The third step is to calculate zeroth-order energies and wave functions, which can be
yielded from the zeroth-order approximation

Ho|vin) = Ew Rolwio)- (14)

Because the operators I-A|0 and IQO contain only the neutral operators 44, b'b, the zero-

order approximation wave vectors are |y/(°’>:|n,m> corresponding to the zeroth-order

nm

energies:

EQ=¢ :hﬂ. (15)

nm nm
rnn

Next, we get the first order of wave functions and energies in the form of

@) =[nm)+B|Ay®),  EX =g, +BAED . (16)

Substituting (16) into equation (10), using the constraints from (11), (14), and (15),
and simplifying the g parameter to the first-order approximation, we get

(I—AI0 —gnm§0)|Aw(l)>+(\7 —& R, )|n,m>—AE§2 Ry|n,m)=0. (17)

nm

From (17), we can find the corrections |A1//(1)> and AE® of wave function and energy,

nm

respectively. Indeed, we multiply both sides (19) by the wave function |1//(0)> =|n,m) and

nm

integrate all over the domain (u,v). As a result, we have
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(n,m|H,-e,, |Az//(1)> +(n,m|V -£,,R, [n,m) = AE® (n,m|R; [n, m). (18)
Due to operators H0 and Ifio being Hermitian, the first term can be calculated by using

(14), and as a result, it equals zero. Moreover, with the properties of operators V and Ii’v
shown in the equations (12) and (13), we can conclude that other terms of (18) are also equal
to zero, and thus the first-order correction of energy has vanished, i.e.
AEY =0, (19)
At this point, we are able to calculate the first-order correction of the wave function
from equation (17) by plugging equation (19) in it. We achieve

Ap®) = ﬁ(\i—gmﬁv)mm}. (20)

0 nm"*0
The basic set is orthogonal; thus, we can express functions \7|n, m) and R, |n,m) by

the basic set and calculate the expansion coefficients in terms of matrix elements to get

\7|n,m>=§lvjn|j,m>, R, [n,m)= j;nr 2l im). (21)
j#n o

By plugging (21) into (20), we have first-order correction of the wave function as follows

[Avin) = Z—T] = jm). (22)
j=Im| Enm u

j=n

It is necessary to note that the eigenvalue of equation (14) is non-degenerate, so the
denominator in formula (22) is not equal to zero. Otherwise, we need to establish the formula
using the degenerate Rayleigh-Schrodinger perturbation theory. Finally, we move to the
second-order approximation of energy and wave function by the expansion of

|w(2)>—|n m +,B|Aw(l)>+ﬂ |Aw(2)> E@ =g +B°AED, (23)

Plugging (23) into equation (10) with the operators in the form of (11) and expanding
the equation using (23) up to B2, we yield

(Fly =R )| AW @)+ (V =R, )| Aw2) ~AES Ry n,m) = 0. (24)

Followmg the same steps as for the first-order approximation, we get the formulas of
the second-order correction of energy and wave function as follows:

+00 (V )

AErErzn) __ jn'nn nn Jn (25)
%l (h” o~ nn ”)

|Al//(2)> +zoo i jn nn hnnrjn)(vkj nn hnnrk]) |k, m> (26)

} |m|k |m| (hu nn nn ”)(hkkrnn hnnrkk)

2.4. Variational parameter
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We have introduced a parameter @ while defining the annihilation and creation
operators a, a*, b, b* in subsection 2.2. In principle, this variational parameter does not
affect the final results of magnetoexciton energies or wavefunctions but manipulates the
convergence speed of numerical calculations. The variational parameter can be chosen
appropriately to adjust the magnitude relationship between the perturbation and non-
perturbation terms of matrix elements, thus modifying the convergence rate of calculations
at high orders.

One way to identify the parameter w is by taking the derivative of the zeroth-order
energy with respect to w because of its independence from the variational parameter

(0)
where
2 4 2 vV
Eggg=w—+1—pﬂ+(5n2+5n+3—3m2)7—2+%. (28)
2 1+p 2 4do° 2n+1

The equation (27) can be solved numerically. Furthermore, constraint (27) can be
interpreted as a global minimum of E© for each state and value of the magnetic field.

Therefore, we can find the appropriate parameter w corresponding to the state and the
magnetic field strength. The discussion on choosing w is also discussed by Ly et al. (2022).
3. Results and Discusion
3.1. Exciton energies

Magnetoexciton energies at second-order correction are defined by

Ex (B)=ER) +AED (29)
in which E©® and AE® are calculated by formulas (15) and (25), respectively. The

variational parameter is given by solving equation (27). To obtain magnetoexciton energies,
we use the programming language Python for calculating. It is worth noting that the infinite
sum in equation (25) is limited to the first 100 terms, which is sufficient to achieve accurate
magnetoexciton energies up to 8 decimal digits. Here, we use input parameters for
monolayer WSe; encapsulated by boron nitride (h-BN): mass ratio p=0.94, exciton

reduced mass u=0.2039m,, screening length r, =4.2086nm, and dielectric constant of

the surrounding material « = 4.5. The magnetic field is applied up to 10 Tesla. Some exciton
energies for different states are presented in Table 1, followed by the relative errors compared
with the data reported by Ly et al. (2023).

It becomes apparent that the relative errors of each state tend to rise gradually as the
magnetic field strength increases (Table 1). Magnetoexciton energies in the uniform
magnetic field up to 10 Tesla in 1s, 2p*, and 2p°states have significantly low relative errors,
lower than 0.3%. Particularly, at a magnetic field strength of 10 Tesla, the relative error of
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the 2p state attains its minimum value at 0.0002 %, demonstrating a high level of agreement
with the energy values reported in Ly et al. (2023), up to six decimal places. For 2s and 3s,
the relative errors maintain lower than 5% in the low magnetic field.

Table 1. Magnetoexciton energies (eV) for different states.

The results are compared with data from Ly et al. (2023)

1s 2s
E(B,T=0 E(B,T =0
B g® (B ( ) Sa10 g® (B) ( ) Ss10
(Tesla) (Ly etal., 2023) (Ly etal., 2023)
0 -0.16796063 -0.16855204 04%  -0.03700082  -0.03855389 4.0 %
01 -0.16796062 -0.16855204 04%  -0.03700075  -0.03855384 4.0 %
1 -0.16796028 -0.16855176 049%  -0.03699422  -0.03854895 4.0 %
10 -0.16792612 -0.16852370 04%  -0.03635477  -0.03806622 45 %
2p 2p+
E(B,T =0 E(B,T =0
B g® (B) ( ) S 10 g® (B) ( ) Sa10
(Tesla) (Ly etal., 2023) (Ly etal., 2023)
0 -0.04977768 -0.04978157  0.008%  -0.04977768  -0.04978157  0.008 %
0.1 -0.04977854 -0.04978236  0.008%  -0.04977678  -0.04978073 _ 0.008 %
1 -0.04978406 -0.04978737  0.007%  -0.04976650  -0.04977101 _ 0.009 %
10 -0.04962667 -0.04962675 0.0002%  -0.04945159  -0.04946320 0.02 %
3s
E(B,T=0
B E? (B) ( ) o 1o
(Tesla) (Ly etal., 2023)
0 -0.01619889 -0.01655162 2.1%
0.1 -0.01619864 -0.01655136 2.1%
1 -0.01616776 -0.01652562 22%
10 -0.01343757 -0.01420413 5.4 %

3.2. Diamagnetic coefficient

The diamagnetic coefficient is a quantity related to the diamagnetic shift of
magnetoexciton energy. The coefficient is proportional to the quadratic of magnetic field
strength and is generally expressed through the equation

1. 0°E
Onm =EIImBa0 aB;m :
First, we must consider magnetoexciton energy in a weak magnetic field to obtain the
diamagnetic coefficient, where the typical length is much greater than the mean

magnetoexciton radius. Fortunately, the modulated perturbation method allows us to

(30)

592



HCMUE Journal of Science Vol. 21, No. 4 (2024): 585-595

calculate energy numerically in the whole range of magnetic fields without any changes in
the energy equations, which is quite convenient than the traditional perturbation theory.

The zeroth-order energy equation given by the modulated perturbation theory (28) can
be written in a dimensional form as

E® =a,+b,B*+c,B, (31)
where a,, arising from neutral operators in Hamiltonian, is independent of the magnetic
field. At the same time, other coefficients, b, and ¢, are proportional to quadratic and linear
magnetic field strength, respectively. Here, the magnetic field unit is Tesla, and the energy
unit is eV. The coefficient c, only exists when considering non-s-states due to its dependence
on the magnetic quantum number m. According to the definition of the diamagnetic
coefficient, the coefficient b, is indeed the zeroth-order diamagnetic coefficient of
magnetoexciton when taking the second-order derivative of the equation (31) with respect
to the magnetic field.

Similarly, we must rewrite the second-order energy equation as

E® =a,+b,B*+c,B (32)
to obtain the second-order diamagnetic coefficient. Although the equation in its original form
(25) can not be directly expressed as (32), we can interpret numerical results in this form due
to the similarity to the zeroth-order equation. It means that the coefficient b, is the second-
order diamagnetic coefficient. From (31) and (32), we can use linear or quadratic regression
by the least mean square method to retrieve all coefficients in both equations. By utilizing
the adjusted R?, as discussed in Kutner et al. (2005), we obtain great precision from 0.98 up
to 0.99 for all states. Diamagnetic coefficients presented in Table 2 are well comparable with
theoretical calculations (Liu et al., 2019; Ly et al., 2023), and the experimental results from
Stier et al. (2018).

Table 2. Diamagnetic coefficients in different states are given in unit of peV/Tesla® by
the modulated perturbation method compared with experimental and other theoretical

data
1s 2s 2p 2p* 3s
o (Stier etal., 2018) 031002 4.6%0.2 - - 2242
o (Liuetal., 2019) 0.31 4.86 - - 24.2
o (Lyetal., 2023) 0.289 5039 2429  2.429 26.53
ol 0.358 3229 2564 2564 17.241
o? 0.317 4855 2419 2414 23.871

nm

4.  Conclusion
The modulated perturbation method is developed successfully to calculate numerically
magnetoexciton energies at the ground and some low-lying states in the entire range of
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magnetic field up to 10 Tesla. The numerical energies achieve a precision level of up to 8
decimal places and are comparable to the exact numerical results. We also use the linear and
quadratic regression by the least mean square method to obtain the diamagnetic coefficient
of magnetoexciton in several states. The results are similar with other recent studies and even
show some advantages compared to other methods.

The high accuracy of the second-order approximation of the modulated perturbation
theory obtained in the present paper suggests that this method should be applied to achieve
analytical exciton energies. This proposal is ongoing, and we will publish the results
elsewhere.
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NANG LUQNG VA HE SO NGHICH TU CHO EXCITON TRONG PON LOP WSe,
Nguyén Nhdt Quang, Poan Phwéc Thién,
Phan Ngoc Hung, Ly Duy Nhat", Lé Vin Hodng
Truong Pai hoc Su pham Thanh phs Ho Chi Minh, Viét Nam
“Tdc gia lién hé: Ly Duy Nhat— Email: nhatld@hcmue.edu.vn
Ngay nhdn bai: 28-8-2023; ngay nhdn bai sia: 11-12-2023; ngay duyét dang: 20-12-2023

TOM TAT

Exciton hai chiéu trong don 16p TMDC (transition-metal dichalcogenides) dt trong tir trirong
déu la mét bai todn hdp dan doi véi nghién civu thue nghiém lan Ii thuyét trong thdp ki vira qua do
c6 tinh vmg dung cao trong cdc thiét bi quang-dién tir. Péc biét hé sé nghich tir ciia exciton trong
don lop TMDC nhdn duwoc nhiéu sy quan tam, cu thé la don lop WSe, duoc kep bai boron nitride (h-
BN). Tuy nhién, su chénh léch giita cdc tinh toan Ii thuyét va do dac thuc nghiém doi véi cdc dai
leong ciia vt liéu doi hoi can phdi c¢6 nhiéu sy cdi tién vé mat Ii thuyét. Trong cong trinh nay, chiing
16i sir dung phwong phdp nhiéu loan cé diéu tiét bang cach két hop li thuyét nhiéu loan Rayleigh-
Schrédinger cing voi phép bién doi Levi-Civita va thém vio mét tham sé tw do. Phiong phdp nay
co loi thé trong viéc xdc dinh hé 56 nghich tir exciton o gdn dung bdc hai. Cac két qua hé 56 nghich
tir thu dwoc cho thdy sw phi hop tot véi cdc cong trinh hién nay.

Tir khoa: hé s6 nghich tir; exciton; phuong phép nhiéu loan c6 diéu tiét; TMDC
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