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ABSTRACT 
Two-dimensional exciton under a uniform magnetic field in monolayer transition-metal 

dichalcogenides (TMDCs) has been a fascinating problem for experimental and theoretical studies 
in the last decade due to its practical applications in electronic and optics devices. Specifically, there 
is significant interest in the diamagnetic coefficients of excitons in monolayer TMDCs, focusing on 
the monolayer WSe2 encapsulated by boron nitride (h-BN). The discrepancy between theoretical 
calculations and experimental data for the diamagnetic coefficient of an exciton in monolayer 
TMDCs requires further improvement in theory for this material property. This paper uses the so-
called modulated perturbation method by combining the Rayleigh-Schrӧdinger perturbation theory 
with the Levi-Civita transformation and including a variational parameter. The advantage of the 
constructed method is demonstrated in calculating the exciton diamagnetic coefficient within the 
second order of approximation. The results are then compared with recent experimental ones. 

Keywords: diamagnetic coefficient; exciton; modulated perturbation method; TMDC  
 
1. Introduction 

Two-dimensional exciton in TMDCs is a typical problem that has been much 
researched since 2010, after the success of creating two-dimensional materials. Exciton is a 
quasiparticle created by electronic interactions between the hole and the electron, often 
described by the Keldysh potential (Keldysh, 1979). When an exciton exists under a 
magnetic field, it is also called magnetoexciton. The interest in magnetoexciton in TMDCs 
arises due to their band gap covering the near-infrared and the entire visible range, leading 
to semiconductor properties different from graphene materials (Thambiratnam, 2020). 
Studying magnetoexciton in TMDCs can help to understand more about its properties, 
particularly the diamagnetic coefficient, which is related to the diamagnetic shift phenomena 
in magnetoexciton energy spectra and crucial for photo-electronic applications. 
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There have been several theoretical and experimental studies for calculating the 
diamagnetic coefficient of magnetoexciton in TMDCs, particularly in the monolayer WSe2 
encapsulated by boron nitride (h-BN). However, experimental results are not in good 
agreement and cannot be truly interpreted by theoretical models. Specifically, the experiment 
by Stier et al. (2018) shows that beyond the 3s state, the diamagnetic coefficient cannot be 
yielded precisely from quadratic regression of magnetoexciton energies as predicted by the 
theory. Liu et al. (2019) showed that although their theoretical prediction model aligns with 
the experimental data from Stier et al. (2018), their experimental results for the diamagnetic 
coefficient were different. In the recent theoretical work by Ly et al. (2023), this discrepancy 
is attributed to the inaccuracy of the material parameters, such as exciton-reduced mass, the 
screening length, and the dielectric constant. This study then retrieves more accurate material 
parameters by analyzing the experimental data of Liu et al. (2019), compared to the exact 
numerical calculation. Using these retrieved material parameters, Ly et al. (2023) calculated 
the diamagnetic coefficients for WSe2 and WS2 by fitting the exact numerical energies with 
the perturbation term quadratically dependent on the magnetic field. However, based on our 
adjustment, the results could be more consistent if the theoretical energies used in the fitting 
procedure were from the second-order perturbation method.  

On the other hand, it is well known that a two-dimensional magnetoexciton under the 
Levi-Civita transformation can be rendered to be an anharmonic oscillator model, which is 
a familiar system in condensed matter physics and thus easy to use various methods solving 
its Schrodinger equation (Hoang et al., 2013; Ly et al., 2022). Particularly, the algebraic 
calculation by the FK operator method (Feranchuk et al., 2015) can be applied to this system. 
In this study, we use the modulated perturbation method which combines the Rayleigh-
Schrödinger perturbation theory with the Levi-Civita transformation and introduces a free 
parameter following the FK operator method to manipulate the rate of convergence of the 
perturbation theory schemes for numerical solutions. This modulated perturbation method 
allows us to calculate magnetoexciton energies for the ground and some low-lying excited states 
in the case of monolayer WSe2. Furthermore, using the least mean square regression method, 
we can extract the diamagnetic coefficient of magnetoexciton from its energy spectra up to the 
second order of approximation and compare the results with the current studies.     
2. Theoretical methods  
2.1. The Schrödinger equation via the Levi-Civita transformation 

First, we consider a neutral exciton that includes one electron and one hole interacting 
with each other by the potential ˆ ( )h eV r−  in monolayer TMDCs. The movement of the exciton 

is constrained to the xy plane in the presence of a magnetic field zBe  perpendicular to the 

plane and along the z-axis. After separating the center-of-mass motion and assuming its 
momentum to be equal to zero at low temperatures, as in the most current experiments, the 
Schrödinger equation for relative motion is as follows:  
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2 2
2 21 1 ˆ ˆˆ ( ) ( ) 0

2 1 2 8z h e
eB e Bl r V r Eρ ψ

µ ρ µ µ −

 −
+ + + − = + 

p r  (1) 

with the exciton reduced mass * * * */ ( )e h e hm m m mµ = + , the ratio of masses * */e hm mρ = , 

operators of the momentum p̂ , and angular momentum of the relative motion ẑl . The 

interaction between electron and hole ˆ ( )h eV r−  is well described by the Keldysh potential 
expressed via the zero-order Struve and Bessel functions (Berkelbach, 2013; Keldysh, 1979). 
However, as shown in Ly et al. (2023), this potential can be rewritten in the Laplace form, 
which contains the average dielectric constant κ , the screening length 0r  related to the 2D 

polarizability 2Dχ  of  the TMDC monolayer ( 0 22 Dr π χ= ). 

Now, the Schrödinger equation in the xy space is written in the dimensionless form 
with the effective Hartree * 4 2 2 2

0/16HE eµ π ε=  , the Bohr effective radius * 2 2
0 04 /a eπε µ=   

for the energy and distance units, respectively, and the dimensionless magnetic field strength 
γ  related to the magnetic field by the expression * /HB E eγ µ= ×  . After that, we take an 

important step to solve the equation using the Levi-Civita transformation (Levi-Civita, 
1956): 2 2 , 2x u v y uv= − =  to convert equation (1) from xy space into uv space as 

( ) ( )
2 2 2 32 2 2 2
2 2

1 1 ˆ ˆ ( , ) ( , ) 0,
8 1 2 8z Kl E u v u v V u v u v

u v
ρ γ γ ψ
ρ

    ∂ ∂ − − + + − + + + + =    ∂ ∂ +    
  (2)    

2 22 2 ( )

2 20

1ˆ ( , ) ( ) .
1

q u v
K

dqV u v u v e
qκ α

+∞ − += − +
+

∫         (3) 

Consequently, by employing the Levi-Civita transformation, the Hamiltonian can be 
rendered in a form similar to an anharmonic oscillator. This simple equation suggests the 
feasibility of using the algebraic calculation method, utilizing creation and annihilation 
operators (Feranchuk et al., 2015).  
2.2. Algebraic calculation method 

For the algebraic calculation, we introduce annihilation and creation operators 
ˆ ˆˆ ˆ, , ,a a b b+ + as functions of , , / , /u v u v∂ ∂ ∂ ∂  with the definition details presented in Ly et al. 

(2023). These operators satisfy the conventional commutation relations 
ˆ ˆˆ ˆ, 1, , 1a a b b+ +   = =    .   (4) 

Besides, the operators ˆ ˆ,a a+ commute with operators ˆ ˆ,b b+ . These relations are crucial 
for the algebraic calculation.  

All operators in equation (2) can be expressed via the annihilation and creation 
operators as following formulae: 
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( )
2 2

2 2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ 1T ab a b a a b b

u v
ω + + + +∂ ∂

= + = + − − −
∂ ∂

,     (5) 

( )2 2 1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ 1R u v ab a b a a b b
ω

+ + + += + = + + + + ,  (6) 

( )1ˆ ˆ ˆˆ ˆ
2 2z
il v u a a b b

u v
+ +∂ ∂ = − − = − ∂ ∂ 

.  (7) 

These operators are easy to work with the harmonic wave functions, which  can be 
written in the algebraic form as eigenvectors of the neutral operators ˆ ˆˆ ˆ,a a b b+ + : 

1 ˆˆ, ( ) ( ) 0
( )!( )!

k m k mk m a b
k m k m

+ + + −=
+ −

.  (8) 

Here, the vacuum state 0  is defined by the equation  

ˆˆ 0 0, 0 0.a b= =      (9) 

Because our system has the conserved angular momentum, we pick up for the basis 
set (8) only the wave vectors, which are the eigenvectors of the operator ẑl . From the form 

of ẑl via the annihilation and creation operators shown in (7), it is easy to verify that vectors 

(8) are eigenvectors corresponding to the eigenvalues 0, 1, 2,...m = ± ± . Then, the rest running 
index has the values: | |,| | 1,| | 2,...k m m m= + +  

By using the commutation relations (4) and the vacuum state definitions (9), we can 
calculate all the matrix elements of operators in equation (2). Particularly, the elements:  

1 ˆ, ,jkT j m T k mω−= ,       ˆ, ,jkR j m R k mω= ,  
3 3 3ˆ( ) , ,jkR j m R k mω= ,      ˆ( ) , ,K jk KV j m V k mω=  

are given explicitly in Ly et al. (2023), and are useful for our application in the next sections. 
2.3. Rayleigh-Schrӧdinger perturbation theory 

The perturbation theory was conventionally developed for the typical Schrödinger 
equation Ĥ Eψ ψ= . However, our equation (2) has a different form 

ˆ ˆ( , ) ( , )H u v E R u vψ ψ= ,  (10) 
requiring a modified theory, which we will discussed in this section. We note that equation 

(10) is from equation (2) with changing 1
1 2

mE Eρ γ
ρ

−
− →

+
, for convenience. 

The first step is to split the Hamiltonian Ĥ   and operator R̂  into two terms as  

0
ˆ ˆ ˆH H Vβ= + ,         0

ˆ ˆ ˆ
VR R Rβ= + .          (11) 

The main terms 0Ĥ  and 0R̂  include all neutral operators, and the rest of the non-neutral 

operators V̂ , ˆ
VR  can be treated as perturbative. Here, as shown later, energies in the zero-
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order approximation are non-degenerated. The perturbative parameter 𝛽𝛽 ≪ 1 is used to 
denote the perturbativeness of operators ˆ ˆ, VV R . This parameter is entered formally to 

establish formulas of perturbation corrections; thus, we will put the value 𝛽𝛽 = 1 at the  
last step. 

The second step is to calculate the matrix elements of the related operators. First, we 
use functions (8), ,k m   ( | |,| | 1,| | 2,...)k m m m= + + , that are normalized and orthogonal for 

the basis set. Therefore, the matrix elements of operators 0Ĥ , 0R̂ , V̂ , and ˆ
VR  have the 

following properties when 𝑗𝑗 ≠ 𝑘𝑘: 

0 0
ˆ ˆ ˆ ˆ, , 0,  , , 0,  , , ,  , , .kj V kjk m H j m k m R j m k m V j m v k m R j m r= = = =    (12) 

In the case of 𝑗𝑗 = 𝑘𝑘, we have 
 0 0

ˆ ˆ ˆ ˆ, , , , , , , , 0, , , 0.kk kk Vk m H k m h k m R k m r k m V k m k m R k m= = = =    (13) 

In our case, all the elements , , ,kk kk kj kjh r v r  can be expressed via the calculated matrix 

elements jkT , jkR , 3( ) jkR , ( )K jkV . We note that the separation of operators in formulas (11) 

is just for constructing the theory. In practice, we only need to calculate the matrix elements 
by the formulae (12) and (13) and then apply them to the calculation scheme for the 
perturbative corrections.  

The third step is to calculate zeroth-order energies and wave functions, which can be 
yielded from the zeroth-order approximation   

(0) (0) (0)
0 0

ˆ ˆ
nm nm nmH E Rψ ψ= .  (14) 

Because the operators 0Ĥ  and 0R̂  contain only the neutral operators ˆ ˆˆ ˆ,a a b b+ + , the zero-

order approximation wave vectors are (0) ,nm n mψ =  corresponding to the zeroth-order 

energies: 
(0) nn
nm nm

nn

hE
r

ε= = .      (15) 

Next, we get the first order of wave functions and energies in the form of 
(1) (1),nm nmn mψ β ψ= + ∆ ,       (1) (1)

nm nm nmE Eε β= + ∆  .    (16) 

Substituting (16) into equation (10), using the constraints from (11), (14), and (15), 
and simplifying the 𝛽𝛽 parameter to the first-order approximation, we get 

( ) ( )(1) (1)
0 0 0

ˆ ˆ ˆ ˆ ˆ, , 0nm nm nm V nmH R V R n m E R n mε ψ ε− ∆ + − −∆ = .    (17) 

From (17), we can find the corrections (1)
nmψ∆  and (1)

nmE∆  of wave function and energy, 

respectively. Indeed, we multiply both sides (19) by the wave function (0) ,nm n mψ =  and 

integrate all over the domain (u,v). As a result, we have 
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(1) (1)
0 0 0

ˆ ˆ ˆ ˆ ˆ, , , , ,nm nm nm V nmn m H R n m V R n m E n m R n mε ψ ε− ∆ + − = ∆ .  (18) 

Due to operators 0Ĥ  and 0R̂  being Hermitian, the first term can be calculated by using 

(14), and as a result, it equals zero. Moreover, with the properties of operators V̂  and ˆ
VR  

shown in the equations (12) and (13), we can conclude that other terms of (18) are also equal 
to zero, and thus the first-order correction of energy has vanished, i.e.   

(1) 0nmE∆ = .    (19) 

At this point, we are able to calculate the first-order correction of the wave function 
from equation (17) by plugging equation (19) in it. We achieve 

( )(1)

0 0

1 ˆ ˆ ,ˆ ˆnm nm V
nm

V R n m
H R

ψ ε
ε

∆ = − −
−

.   (20) 

The basic set is orthogonal; thus, we can express functions ˆ ,V n m  and ˆ ,VR n m  by 

the basic set and calculate the expansion coefficients in terms of matrix elements to get  

| |

ˆ , ,jn
j m
j n

V n m v j m
+∞

=
≠

= ∑  ,    
| |

ˆ , ,V jn
j m
j n

R n m r j m
+∞

=
≠

= ∑ .   (21) 

By plugging (21) into (20), we have first-order correction of the wave function as follows 

(1)

| |
,jn nm jn

nm
j m jj nm jj
j n

v r
j m

h r
ε

ψ
ε

+∞

=
≠

−
∆ = −

−∑ .  (22) 

It is necessary to note that the eigenvalue of equation (14) is non-degenerate, so the 
denominator in formula (22) is not equal to zero. Otherwise, we need to establish the formula 
using the degenerate Rayleigh-Schrӧdinger perturbation theory. Finally, we move to the 
second-order approximation of energy and wave function by the expansion of 

(2) (1) 2 (2),nm nm nmn mψ β ψ β ψ= + ∆ + ∆ ,       (2) 2 (2)
nm nm nmE Eε β= + ∆ .   (23) 

Plugging (23) into equation (10) with the operators in the form of (11) and expanding 
the equation using (23) up to 𝛽𝛽2, we yield 

( ) ( )(2) (1) (2)
0 0 0

ˆ ˆ ˆ ˆ ˆ , 0nm nm nm V nm nmH R V R E R n mε ψ ε ψ− ∆ + − ∆ −∆ = .  (24) 

Following the same steps as for the first-order approximation, we get the formulas of 
the second-order correction of energy and wave function as follows: 

2
(2)

2 2
| |

( )
( )

jn nn nn jn
nm

j m jj nn nn jj nn
j n

v r h r
E

h r h r r

+∞

=
≠

−
∆ = −

−∑ ,    (25) 

(2)

| | | |

( )( )
,

( )( )
jn nn nn jn kj nn nn kj

nm
j m k m jj nn nn jj kk nn nn kk
j n k n

v r h r v r h r
k m

h r h r h r h r
ψ

+∞ +∞

= =
≠ ≠

− −
∆ = −

− −∑ ∑ .    (26) 

2.4. Variational parameter 
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We have introduced a parameter ω  while defining the annihilation and creation 
operators ˆ ˆˆ ˆ, , ,a a b b+ +  in subsection 2.2. In principle, this variational parameter does not 
affect the final results of magnetoexciton energies or wavefunctions but manipulates the 
convergence speed of numerical calculations. The variational parameter can be chosen 
appropriately to adjust the magnitude relationship between the perturbation and non-
perturbation terms of matrix elements, thus modifying the convergence rate of calculations 
at high orders.  

One way to identify the parameter 𝜔𝜔 is by taking the derivative of the zeroth-order 
energy with respect to 𝜔𝜔 because of its independence from the variational parameter 

(0)

0nmE
ω

∂
=

∂
,   (27) 

where 
( )2 2

(0) 2 2
2

1 (5 5 3 3 )
2 1 2 4 2 1

K nm
nm

VmE n n m
n

ω ρ γ γ
ρ ω

−
= + + + + − +

+ +
.     (28) 

The equation (27) can be solved numerically. Furthermore, constraint (27) can be 
interpreted as a global minimum of (0)

nmE for each state and value of the magnetic field. 

Therefore, we can find the appropriate parameter 𝜔𝜔 corresponding to the state and the 
magnetic field strength. The discussion on choosing 𝜔𝜔 is also discussed by Ly et al. (2022).  
3. Results and Discusion 
3.1. Exciton energies 

Magnetoexciton energies at second-order correction are defined by 
(2) (0) (2)( )nm nm nmE B E E= + ∆        (29)     

in which (0)
nmE  and (2)

nmE∆  are calculated by formulas (15) and (25), respectively. The 

variational parameter is given by solving equation (27). To obtain magnetoexciton energies, 
we use the programming language Python for calculating. It is worth noting that the infinite 
sum in equation (25) is limited to the first 100 terms, which is sufficient to achieve accurate 
magnetoexciton energies up to 8 decimal digits. Here, we use input parameters for 
monolayer WSe2 encapsulated by boron nitride (h-BN): mass ratio 0.94ρ = , exciton 

reduced mass e0.2039mµ = , screening length 0 4.2086nmr = , and dielectric constant of 

the surrounding material 4.5.κ =  The magnetic field is applied up to 10 Tesla. Some exciton 
energies for different states are presented in Table 1, followed by the relative errors compared 
with the data reported by Ly et al. (2023). 

It becomes apparent that the relative errors of each state tend to rise gradually as the 
magnetic field strength increases (Table 1). Magnetoexciton energies in the uniform 
magnetic field up to 10 Tesla in 1s, 2p+, and 2p- states have significantly low relative errors, 
lower than 0.3%. Particularly, at a magnetic field strength of 10 Tesla, the relative error of 



HCMUE Journal of Science Nguyen Nhat Quang et al. 
 

592 

the 2p- state attains its minimum value at 0.0002 %, demonstrating a high level of agreement 
with the energy values reported in Ly et al. (2023), up to six decimal places. For 2s and 3s, 
the relative errors maintain lower than 5% in the low magnetic field.  

Table 1. Magnetoexciton energies (eV) for different states.  
The results are compared with data from Ly et al. (2023) 

 1s 2s 

B
(Tesla) 

( ) ( )2E B  ( ), 0E B T =  

(Ly et al., 2023) 
, 0B Tδ =  ( ) ( )2E B  ( ), 0E B T =  

(Ly et al., 2023) 
, 0B Tδ =  

0 -0.16796063 -0.16855204 0.4 % -0.03700082 -0.03855389 4.0 % 
0.1 -0.16796062 -0.16855204 0.4 % -0.03700075 -0.03855384 4.0 % 

1 -0.16796028 -0.16855176 0.4 % -0.03699422 -0.03854895 4.0 % 
10 -0.16792612 -0.16852370 0.4 % -0.03635477 -0.03806622 4.5 % 

       
 2p- 2p+ 

B
(Tesla) 

( ) ( )2E B  ( ), 0E B T =
(Ly et al., 2023) 

, 0B Tδ =  ( ) ( )2E B  ( ), 0E B T =
(Ly et al., 2023) 

, 0B Tδ =  

0 -0.04977768 -0.04978157 0.008 % -0.04977768 -0.04978157 0.008 % 
0.1 -0.04977854 -0.04978236 0.008 % -0.04977678 -0.04978073 0.008 % 

1 -0.04978406 -0.04978737 0.007 % -0.04976650 -0.04977101 0.009 % 
10 -0.04962667 -0.04962675 0.0002 % -0.04945159 -0.04946320 0.02 % 

       
           3s 

B
(Tesla) 

( ) ( )2E B  ( ), 0E B T =  

(Ly et al., 2023) 
, 0B Tδ =  

0 -0.01619889 -0.01655162 2.1 % 
0.1 -0.01619864 -0.01655136 2.1 % 

1 -0.01616776 -0.01652562 2.2 % 
10 -0.01343757 -0.01420413 5.4 % 

    

3.2. Diamagnetic coefficient 
The diamagnetic coefficient is a quantity related to the diamagnetic shift of 

magnetoexciton energy. The coefficient is proportional to the quadratic of magnetic field 
strength and is generally expressed through the equation 

2

0 2

1 lim
2

nm
nm B

E
B

σ →

∂
=

∂
.   (30) 

First, we must consider magnetoexciton energy in a weak magnetic field to obtain the 
diamagnetic coefficient, where the typical length is much greater than the mean 
magnetoexciton radius. Fortunately, the modulated perturbation method allows us to 
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calculate energy numerically in the whole range of magnetic fields without any changes in 
the energy equations, which is quite convenient than the traditional perturbation theory.  

The zeroth-order energy equation given by the modulated perturbation theory (28) can 
be written in a dimensional form as 

(0) 2
0 0 0nmE a b B c B= + + ,   (31) 

where 𝑎𝑎0, arising from neutral operators in Hamiltonian, is independent of the magnetic 
field. At the same time, other coefficients, 𝑏𝑏0 and 𝑐𝑐0, are proportional to quadratic and linear 
magnetic field strength, respectively. Here, the magnetic field unit is Tesla, and the energy 
unit is eV. The coefficient 𝑐𝑐0 only exists when considering non-s-states due to its dependence 
on the magnetic quantum number m. According to the definition of the diamagnetic 
coefficient, the coefficient 𝑏𝑏0 is indeed the zeroth-order diamagnetic coefficient of 
magnetoexciton when taking the second-order derivative of the equation (31) with respect 
to the magnetic field.  

Similarly, we must rewrite the second-order energy equation as 
(2) 2

2 2 2nmE a b B c B= + +     (32) 
to obtain the second-order diamagnetic coefficient. Although the equation in its original form 
(25) can not be directly expressed as (32), we can interpret numerical results in this form due 
to the similarity to the zeroth-order equation. It means that the coefficient 𝑏𝑏2 is the second-
order diamagnetic coefficient. From (31) and (32), we can use linear or quadratic regression 
by the least mean square method to retrieve all coefficients in both equations. By utilizing 
the adjusted 𝑅𝑅2, as discussed in Kutner et al. (2005), we obtain great precision from 0.98 up 
to 0.99 for all states. Diamagnetic coefficients presented in Table 2 are well comparable with 
theoretical calculations (Liu et al., 2019; Ly et al., 2023), and the experimental results from 
Stier et al. (2018). 

Table 2. Diamagnetic coefficients in different states are given in unit of 2μeV/Tesla by 
the modulated perturbation method compared with experimental and other theoretical 

data 
 1s 2s 2p- 2p+ 3s 

nmσ (Stier et al., 2018) 0.31 ± 0.02 4.6 ± 0.2 - - 22 ± 2 

nmσ (Liu et al., 2019) 0.31 4.86 - - 24.2 

nmσ (Ly et al., 2023) 0.289 5.039 2.429 2.429 26.53 
( )0
nmσ  0.358 3.229 2.564 2.564 17.241 
( )2
nmσ  0.317 4.855 2.419 2.414 23.871 

4. Conclusion 
The modulated perturbation method is developed successfully to calculate numerically 

magnetoexciton energies at the ground and some low-lying states in the entire range of 
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magnetic field up to 10 Tesla. The numerical energies achieve a precision level of up to 8 
decimal places and are comparable to the exact numerical results. We also use the linear and 
quadratic regression by the least mean square method to obtain the diamagnetic coefficient 
of magnetoexciton in several states. The results are similar with other recent studies and even 
show some advantages compared to other methods. 

The high accuracy of the second-order approximation of the modulated perturbation 
theory obtained in the present paper suggests that this method should be applied to achieve 
analytical exciton energies. This proposal is ongoing, and we will publish the results 
elsewhere. 
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TÓM TẮT  
Exciton hai chiều trong đơn lớp TMDC (transition-metal dichalcogenides) đặt trong từ trường 

đều là một bài toán hấp dẫn đối với nghiên cứu thực nghiệm lẫn lí thuyết trong thập kỉ vừa qua do 
có tính ứng dụng cao trong các thiết bị quang-điện tử. Đặc biệt hệ số nghịch từ của exciton trong 
đơn lớp TMDC nhận được nhiều sự quan tâm, cụ thể là đơn lớp WSe2 được kẹp bởi boron nitride (h-
BN). Tuy nhiên, sự chênh lệch giữa các tính toán lí thuyết và đo đạc thực nghiệm đối với các đại 
lượng của vật liệu đòi hỏi cần phải có nhiều sự cải tiến về mặt lí thuyết. Trong công trình này, chúng 
tôi sử dụng phương pháp nhiễu loạn có điều tiết bằng cách kết hợp lí thuyết nhiễu loạn Rayleigh-
Schrӧdinger cùng với phép biến đổi Levi-Civita và thêm vào một tham số tự do. Phương pháp này 
có lợi thế trong việc xác định hệ số nghịch từ exciton ở gần đúng bậc hai. Các kết quả hệ số nghịch 
từ thu được cho thấy sự phù hợp tốt với các công trình hiện nay.     

Từ khóa: hệ số nghịch từ; exciton; phương pháp nhiễu loạn có điều tiết; TMDC 
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