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ABSTRACT 
 In this paper, we study the convergence and convergence rates of damped Newton algorithms 
for solving unconstrained optimization problems with twice continuously differentiable objective 
functions. Under the assumption of the positive definiteness of the Hessian matrix of the objective 
function on an open set containing the level set corresponding to the value of the objective function 
at the starting point, we prove that the sequence generated by the damped Newton algorithm belongs 
to that open set, and the corresponding sequence of objective function values is monotonically 
decreasing. If the sequence has a limit point, that limit point is a locally strong minimum of the 
objective function, and the iterative sequence superlinearly globally converges to this minimizer. 
Furthermore, if the Hessian matrix of the objective function is Lipschitz continuous, the iterative 
sequence achieves the quadratic convergence rate. 

Keywords: convergence rates; damped Newton algorithm; global convergence; positive-
definiteness; quadratic; superlinear 
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1. Introduction 
Consider the unconstrained optimization problem of the type  

 ( )minimize    subject to  ,nf x x∈  (1.1) 

with a twice continuously differentiable ( 2C -smooth) cost function : nf →  . Newton's 
methods are the most effective methods to tackle such problems (1.1). Given a starting point 

0
nx ∈ , Newton algorithms generate the iterative sequences in the form of  

{ }1 :   for all  : 1, 2,... ,k k k kx x t d k+ = + ∈ =  

where 0kt ≥  is a step size and 0kd ≠  is a Newton direction at the k th iteration (Beck, 2014; 

Boyd & Vandenberghe, 2004; Ben-Tal & Nemirovski, 1987; Bertsekas, 1999; Dennis & 
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Schnabel, 1987; James, 2014; Izmailov & Solodov, 2014; Nesterov, 2004; Nocedal & 
Wright, 1999; h, 1987; Ruszczyński, 2006). When kt  is chosen by the backtracking line 

search technique, such method is called the damped Newton method or guarded Newton 
method, to distinguish it from the pure Newton method, which uses a fixed step size 1t = .     

To the best of our knowledge, there have been numerous types of research relevant to 
the damped Newton method (Beck, 2014; Boyd & Vandenberghe, 2004; James, 2014; 
Nesterov, 2004; Polyak, 1987). The literature review shows that they just derive the local 
results under the global assumptions. James (2014) claims that the uniformly positive 
definiteness of all Hessian matrices is required on the entire space n

 . However, the results 
are just that all accumulation points of the iterative sequences generated by the damped 
Newton method are stationary points of the objective function, i.e. James (2014) has not 
confirmed the convergence of those iterative sequences yet. Although Nesterov (2004) only 
used Hessian matrices to be uniformly positive-definite at the optimal solution, it requires 
an additional assumption of Lipschitz continuity of all Hessian matrices over n

  and also 
gets only the local convergence of the damped Newton algorithm. The books by Boyd and 
Vandenberghe (2004) and Polyak (1987) have already shown the global convergence of the 
iterative sequences. However, the results from these studies were obtained under some very 
strong assumptions that the objective function must be strongly convex and its corresponding 
Hessian matrices are obliged to be Lipschitz continuous on the whole space .n

  
Motivated by these works, we attempt to set some weaker assumptions than those in 

previous studies (Beck, 2014; Boyd & Vandenberghe, 2004; James, 2014; Nesterov, 2004; 
Polyak, 1987), and also achieve the global convergence and convergence rates of the damped 
Newton algorithm. Specifically, we verify that if there exists an open set containing the level 
set corresponding to the objective function value at the initial point such that the Hessian 
matrix of the objective function is positive-definite over that set, the damped Newton 
algorithm generates a sequence belonging to that open set. Additionally, the sequence of 
objective function values corresponding to this sequence is monotonically decreasing. If the 
sequence possesses a limit point, that point is a locally strong minimum of the objective 
function, and the iterative sequence converges superlinearly to this minimizer on a global 
scale. Furthermore, the iterative sequence achieves a quadratic rate of convergence if the 
Lipschitz continuity of the Hessian matrix of the objective function is guaranteed.  

The rest of the paper is organized as follows. In the next section, we introduce some 
basic notions of locally strongly convex functions, strong local minimizers, the rates of 
convergence of the iterative sequences, and clarify essential lemmas for the main results. 
Section 3 presents the main results of this paper which are the global convergence and the 
convergence rates of the damped Newton algorithm.  
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2. Preliminaries 
Let ( ),n ⋅

 be an Euclid space. The open and closed balls with center nx ∈  and 

radius δ  are denoted by ( ),B x δ  and ( ),B x δ , respectively. We recall the notions of the 

locally strongly convex functions and the strong local minimizers, which are used throughout 
this paper.  
Definition 2.1. (Locally strongly convex functions). The function : nf →   is called to 

be locally strongly convex around nx ∈  with modulus 0α >  if there exists 0δ >  such 
that 

( )( ) ( ) ( ) ( ) ( ) 21 1 1 ,
2

f x y f x f y x yαλ λ λ λ λ λ+ − ≤ + − − − −  

for all ( ), ,x y B x δ∈  and [ ]0,1λ∈ . 

Definition 2.2. A point nx ∈  is called a strong local minimizer of : nf →   with 
modulus 0α >  if there exists 0δ >  such that 

( ) ( ) ( )2 ,   ,
2

f x f x x x x B xα δ≥ + − ∀ ∈ . 

For the class 2C -smooth functions, the two aforementioned definitions are equivalent.  
Lemma 2.3. (The characterization of strong local minimizers). Let : nf →   be a 2C

-smooth function and nx ∈  such that ( ) 0f x∇ = . Then f  is locally strongly convex 

around x  if and only if x  is a strong local minimizer of f  with the same modulus. 

Remark 2.4. Suppose that f  is locally strongly convex around x  with respect to ( ),B x δ . 

If ( ),x B x δ∈  is a strong local minimizer of f , then .x x=  

To guarantee the gradient mapping being Lipschitz continuous, we provide a necessary and 
sufficient condition in the lemma below. 
Lemma 2.5. Let nC ⊂   be a nonempty compact set and : nf →   be a twice 
continuously differentiable function. Then f∇  is Lipschitz continuous on C , i.e., there 
exists 0L >  such that 

( ) ( ) ,   ,f y f x L y x x y C∇ −∇ ≤ − ∀ ∈ . 

The next lemma provides some estimates of the values and the gradient mappings of a 2C -
smooth function around its strong local minimizer. 
Lemma 2.6. Let : nf →   be a 2C -smooth function and nx ∈  be its strong local 
minimizer with modulus 0α > . Then there exists 0δ >  such that 

 ( ) ( ) ( )2 2 ,   ,
2 2

Lx x f x f x x x x B xα δ− ≤ − ≤ − ∀ ∈ , (2.1) 
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 ( ) ( ),   ,x x f x L x x x B xα δ− ≤ ∇ ≤ − ∀ ∈ , (2.2) 

where L  is the Lipschitz constant of f∇  on ( ),B x δ . 

Proof. Since x  is a strong local minimizer of f  with modulus α , it follows from Lemma 

2.3 that f  is locally strongly convex with modulus α . Thus ( ) 0f x∇ =  and there exists 

0δ >  such that f  is strongly convex on ( ),B x δ  and 

 ( ) ( ) ( )2 ,   ,
2

f x f x x x x B xα δ− ≥ − ∀ ∈ . (2.3) 

Since f  is twice continuously differentiable on ( ),B x δ , it follows from Lemma 2.5 that 

f∇  is Lipschitz continuous on ( ),B x δ  with some constant 0L > . Applying the descent 

lemma (see Lemma A.11 in (Izmailov & Solodov, 2014)), we obtain  

 ( ) ( ) ( ) ( ) ( ) ( )2, ,   ,
2
Lf x f x f x f x f x x x x x x B x δ− = − − ∇ − ≤ − ∀ ∈ . (2.4) 

Combining (2.3) and (2.4), we get (2.1). Due to (2.3) and the first-order characterizations of 
strong convexity Theorem 5.24 in (Beck, 2017) together with Cauchy-Schwarz inequality, 
we have 

 ( ) ( ) ( ) ( ) ( )2. , ,   ,f x f x x x f x f x x x x x x B xα δ∇ −∇ − ≥ ∇ −∇ − ≥ − ∀ ∈ . (2.5) 

Since ( ) 0f x∇ =  and f∇  is Lipschitz continuous on ( ),B x δ  with modulus 0L > , we get 

 ( ) ( ) ( ) ( ),   ,f x f x f x L x x x B x δ∇ = ∇ −∇ ≤ − ∀ ∈ . (2.6) 

Combining (2.5) and (2.6), we achieve (2.2).                            
Next, we consider some notable rates of convergence. 
Definition 2.7. (Rates of convergence). Let { } n

kx ⊂   be a sequence of vectors converging 

to x  as k →∞  with kx x≠  for all k∈ . The convergence rate is said to be (at least) 

(i) superlinear if we have  

1lim 0k

k
k

x x
x x
+

→∞

−
=

−
. 

(ii) quadratic if there exists 0β >  such that   

1
2

k

k

x x
x x

β+ −
≤

−
  

whenever k  is sufficiently large. 
Lemma 2.6 allows us to verify the rates of convergence of two sequences ( ){ }kf x  and 

( ){ }kf x∇  based on the rates of convergence of { }kx . 
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Lemma 2.8. Let : nf →   be a 2C -smooth function and nx ∈  be its strong local 

minimizer. Suppose that the sequence { }kx  converges to x . Then the two following 

assertions hold 
(i) If { }kx  converges superlinearly to x , the sequences ( ){ }kf x  and ( ){ }kf x∇  

converge superlinearly to ( )f x  and 0 , respectively. 

(ii) If { }kx  converges quadratically to x , the sequences ( ){ }kf x  and ( ){ }kf x∇  

converge quadratically to ( )f x  and 0 , respectively. 

Proof. (i) By the convergence kx x→  we have that ( ),kx B x δ∈  for all k  sufficiently large. 

Following from (2.1), we can deduce that 

( ) ( )
( ) ( )

2
1 1

2 ,    is sufficiently largek k

k k

f x f x x xL k
f x f x x xα

+ +− −
≤ ∀

− −
. 

The superlinear convergence of { }kx  to x  implies that 1lim 0k

k
k

x x
x x
+

→∞

−
=

−
. Therefore  

( ) ( )
( ) ( )

1lim 0k

k
k

f x f x
f x f x

+

→∞

−
=

−
, 

and hence the sequence ( ){ }kf x  converges superlinearly to ( )f x .  

Next, we prove the superlinear convergence of ( ){ }kf x∇  to 0 . Inequalities (2.2) give 

us  
( )
( )

1 1 ,    is sufficiently largek k

kk

f x x xL k
x xf x α

+ +∇ −
≤ ∀

−∇
. 

Combining with 1lim 0k

k
k

x x
x x
+

→∞

−
=

−
, we obtain  

( )
( )

1lim 0k

k
k

f x
f x

+

→∞

∇
=

∇
, 

and hence the sequence ( ){ }kf x∇  converges superlinearly to 0 . 

(ii) Inequalities (2.1) bring us 

( ) ( )
( ) ( )

2
1 1

2 42

2 ,    is sufficiently largek k

kk

f x f x x xL k
x xf x f x α

+ +− −
≤ ∀

−−
. 
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The quadratic convergence of { }kx  to x  implies that there exists 0β >  such that  

1
2

k

k

x x
x x

β+ −
≤

−
 whenever k  is sufficiently large. Thus 

( ) ( )
( ) ( )

1 2
2 2

2k

k

f x f x L
f x f x

β
α

+ −
≤

−
 

for all large k∈ , and hence the sequence ( ){ }kf x  converges quadratically to ( )f x . 

 Next, we indicate that the sequence ( ){ }kf x∇  converges quadratically to 0 . 

According to (2.2), we have 
( )
( )

1 1
2 22 ,    is sufficiently largek k

kk

f x x xL k
x xf x α

+ +∇ −
≤ ∀

−∇
. 

The quadratic convergence of { }kx  to x  ensures that   

( )
( )

1
2 2

k

k

f x L
f x

β
α

+∇
≤

∇
 

for all large k∈ , which verifies that the sequence ( ){ }kf x∇  converges quadratically  

to 0.                  
Now, we have enough necessary conditions to present and verify our main results. 
3. Main results 

We first recall the damped Newton algorithm (Beck, 2014; Boyd & Vandenberghe, 
2004; Nesterov, 2004; Polyak, 1987; James, 2014) for solving (1.1).  
Algorithm 3.1. (damped Newton algorithm). 

Input: ( )0
1,  0, ,  0,1
2

nx σ β ∈ ∈ ∈ 
 

  

1: for 0,1,k =  do 

2:  If ( ) 0kf x∇ = , stop; otherwise go to the next step 

3:  Choose n
kd ∈  such that ( ) ( )2 0k k kf x f x d∇ +∇ =  

4:  Set 1kt =  

5: while ( ) ( ) ( ) ,k k k k k k kf x t d f x t f x dσ+ > + ∇  do 

6: set k kt tβ=  

7: end while 
8: Set 1k k k kx x t d+ = +  
9: end for 
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Remark 3.2. In Algorithm 3.1, if at k th iteration we ensure that ( )2 0kf x∇  , 

( )( ) ( )12
k k kd f x f x

−
= − ∇ ∇  is a descent direction of f  at kx , which means that 

( ) , 0k kf x d∇ < . Based on Lemma 4.3 in Beck (2014), the backtracking line search 

procedure in step 5 terminates and an appropriate kt  is found. 

Next, we establish the global convergence of Algorithm 3.1. 
Theorem 3.3. (The global convergence of damped Newton algorithm). Let : nf →   

be a 2C -smooth function on an open set containing Ω  and let 0
nx ∈  be an arbitrary point 

such that 2 ( ) 0f x∇   for every x  in the level set 

( )( ) ( ) ( ){ }0 0: Lev , : .nf f x x f x f xΩ = = ∈ ≤  

Then Algorithm 3.1 with the initial point 0x  either stops after finitely many iterations 

or produces a sequence { }kx ⊂ Ω  such that the corresponding sequence ( ){ }kf x  is 

monotonically decreasing. In addition, if the iterative sequence { }kx  has a limit point ,x  

{ }kx  converges to x , and x  is a strong local minimizer of f . 

Proof. The proof is split into the three following claims. 
Claim 1: Algorithm 3.1 either stops after finitely many iterations or produces a sequence 
{ }kx ⊂ Ω  such that the corresponding sequence ( ){ }kf x  is monotonically decreasing 

and ( ) , 0k kf x d∇ <  for all k∈ , where { }kd  is a sequence generated in Step 3 of 

Algorithm 3.1. 

 Indeed, if there exists 0k ∈  such that ( )0
0kf x∇ =  then Algorithm 3.1 stops at the 

0k th iteration. Thus we only consider Algorithm 3.1 generating the iterative sequence { }kx  

satisfied ( ) 0kf x∇ ≠  for all k∈ . Then kx x≠  for all k∈ . Obviously 0x ∈Ω , it follows 

that ( )2
0 0f x∇  , which means that ( ) { }2

0 , 0,   \ 0 n
nf x u u u∇ > ∀ ∈



 , and hence 

( )( ) ( )12
0 0 0 0 .nd f x f x

−
= − ∇ ∇ ≠



 Thus ( )2
0 0 0, 0f x d d∇ > , which implies that 

( ) ( )2
0 0 0 0 0, , 0.f x d f x d d∇ = −∇ <  Therefore 

( ) ( ) ( ) ( ) ( )1 0 0 0 0 0 0 0 0, ,f x f x t d f x t f x d f xσ= + ≤ + ∇ <  

where the first inequality is the existing condition of the backtracking line search technique, 
and hence 1x ∈Ω . Using the inductive method and arguing similarly for the cases of 

2,3, ,k =   we obtain 
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 ( ) ( )1   for all  k kf x f x k N+ < ∈  (3.1) 

and the sequence { }kx ⊂ Ω . This implies that ( ){ }kf x  is monotonically decreasing and 

( ) , 0k kf x d∇ <  for all k∈ .  

Claim 2: If x  is a limit point of { }kx , x  is a strong local minimizer of f .  

Suppose that { }kx  has a limit point x . Since the set Ω  is closed and { }kx ⊂ Ω , we 

get x ∈Ω , and hence ( )2 0f x∇  . It follows from Proposition 4.6 in Chieu et al. (2017) 

that there exist positive numbers α  and δ  such that  

  ( ) ( )22 ,   for all  , ,   and  .nf x u u u x B x uα δ∇ ≥ ∈ ∈  (3.2) 

Let { }jkx  be a subsequence of { }kx  converging to x  and { }jkt  be a corresponding sequence 

of positive numbers generated in Algorithm 3.1. 

o Claim 2a: The sequence { }jkt  is bounded below by a positive number γ  and we have 

  ( ) ( ) 2

1   for sufficiently large .
j j jk k kf x f x d jσγα+− ≥ ∈  (3.3) 

Suppose on the contrary that { }jkt  is not bounded below by a positive number. Then 

there exists a subsequence of { }jkt  that converges to 0 . Assume without loss of generality 

that 0
jkt →  as j →∞ . Since 

jkx x→ , we have that ( ),
jkx B x δ∈  for all j∈  sufficiently 

large. Substituting ( )( ) ( )1
2

j j jk k ku d f x f x
−

= = − ∇ ∇  and 
jkx x=  into (3.2), we get 

  ( ) 2
, ,   for sufficiently large .

j j jk k kf x d d jα−∇ ≥ ∈  (3.4) 

Applying the Cauchy-Schwarz inequality, we obtain 

  ( ) ( ) ( ). , , ,   
j j j j j jk k k k k kf x d f x d f x d j∇ ≥ ∇ ≥ −∇ ∀ ∈ . (3.5) 

Combining (3.4) and (3.5) verifies that  

( )
,   for sufficiently large j

j

k

k

f x
d j

α

∇
≥ ∈ . 

Since { }jkx  converges to x  and f∇  is continuous, the sequence ( ){ }jkf x∇  converges 

to ( )f x∇ , which implies that the sequence { }jkd  is bounded. Since  
jkx x→ , 0

jkt →  and 

{ }jkd  is bounded, we get 1
j j jk k kx t d xβ −+ →  as ,j →∞  and hence ( )1 ,

j j jk k kx t d B xβ δ−+ ∈  

whenever j  is sufficiently large. Since f  is a twice continuously differentiable function on 
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( ),B x δ , it follows from Lemma 2.5 that f∇  is Lipschitz continuous on ( ),B x δ  with a 

constant 0L > . Then the descent lemma (see Lemma A.11 in Izmailov and Solodov in 2014) 
gives us 

  
( ) ( ) ( )

2 2
2

1 1 ,
2

j

j j j j j j j j

k
k k k k k k k k

L t
f x t d f x t f x d d

β
β β

−
− −+ ≤ + ∇ +  (3.6) 

for sufficiently large j∈ . According to Lemma 4.3 in Beck (2014), the backtracking line 

search in Step 5 of Algorithm 3.1 brings us 
jkt  satisfied 

 ( ) ( ) ( )1 1 , , for sufficiently large .
j j j j j j jk k k k k k kf x t d f x t f x d jβ σβ− −+ > + ∇ ∈  (3.7) 

Combining (3.4), (3.6), and (3.7), for all j∈  is sufficiently large, we have 
 

( ) ( ) ( )
2 2

1 1, , , .
2

j

j j j j j j j j

k
k k k k k k k k

L t
t f x d t f x d f x d

β
σβ β

α

−
− −∇ < ∇ + ∇ −  (3.8) 

Dividing both sides of (3.8) by ( )1 , 0
j j jk k kt f x dβ − ∇ < , we get 

1 ,   for sufficiently large 
2 jk

l t jσ
αβ

> − ∈ . 

Taking j →∞ , we obtain 1σ ≥ , which is a contradiction to the choice of 1.σ <   Thus 

{ }jkt  is bounded below by 0γ > .  Moreover, using the exit condition of backtracking line 

search and the estimate in (3.4) allows us to indicate that the below inequalities hold 
whenever j  is sufficiently large 

( ) ( ) ( ) 2

1 , .
j j j j j jk k k k k kf x f x t f x d dσ σγα+− ≥ −∇ ≥  

The proof of Claim 2a is completed. 
o Claim 2b: x  is a strong local minimizer of f . 

Since ( ){ }kf x  is monotonically decreasing and ( )f x  is a limit point of ( ){ },kf x  the 

sequence ( ){ }kf x  must converge to ( )f x . Letting j →∞  in (3.3), we obtain 0
jkd → . 

Since f∇  is Lipschitz continuous on ( ),B x δ  with modulus 0L > , it follows from Theorem 

2.1.6 in Nesterov (2004) that ( )2 f x L∇ ≤  for all ( ),x B x δ∈ . Since ( ),
jkx B x δ∈  for all 

large j , with ( )( ) ( )1
2

j j jk k kd f x f x
−

= − ∇ ∇  we obtain 

( ) ( ) ( )2 2 ,
j j j j j jk k k k k kf x f x d f x d L d∇ = ∇ ≤ ∇ ≤  

for sufficiently large j∈ . Passing to the limit as j →∞  in this inequality tells us 

that ( ) 0f x∇ = . Following from (3.2) and combining with Theorem 4.3.1 in Hiriart-Urruty 
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and Lemaréchal (2004) give us f  is α -strongly convex on ( ),B x δ . The first-order 

characterizations of strong convexity (Theorem 5.24 in Beck (2017)) and ( ) 0f x∇ =  bring us 

( ) ( ) ( )2 ,   , .
2

f x f x x x x B xα δ≥ + − ∀ ∈  

 This verifies that x  is a strong local minimizer. 
Claim 3: The iterative sequence { }kx  converges to x .  

o Claim 3.1: The sequence { }kx  has no other limit point other than x  in ( ),B x δ .  

Suppose that there exists ( ),x B x δ∈  such that x  is a limit point of { }kx . We 

previously proved that all limit points of the sequence { }kx  are the strongly local minimizes 

of f . Thus, we can deduce that x  is also a strong local minimizer of f  on ( ),B x δ . Remark 

2.4 gives us .x x=  The proof of Claim 3.1 is completed.  
o Claim 3.2: The sequence { }kx  converges to x .  

Supposing that { }jkx  is an arbitrary subsequence of { }kx  with 
jkx x→  as j →∞ . 

We have 1j j j jk k k kx x t d+ = +  combined with (3.3), we obtain 

 
( ) ( )2 2 2 12

1 ,   for sufficiently large j j

j j j j j

k k

k k k k k

f x f x
x x t d d j

σγα
+

+

−
− = ≤ ≤ ∈ . 

The convergence of ( ){ }kf x  to ( )f x  gives us 1lim 0.
j jk kj

x x+→∞
− =  Then Proposition 

8.3.10 in Facchinei and Pang (2003) gives us that the sequence { }kx  converges to .x        

Remark 3.4. In Theorem 3.3, we obtained some better results than those in Corollary 6.2.3 
by James (2014). In terms of assumptions, Corollary 6.2.3 requires the existence of 0β >  

such that ( )2 f x∇ ≽ Iβ  on Ω , we just need ( )2 0f x∇   on Ω . Thus our assumptions are 

much weaker than those in Corollary 6.2.3. Despite using weaker assumptions, we still 
achieve some stronger results. Besides proving all limit points are stationary points of f , 

we additionally clarify that { }kx  converges to x  and x  is a strong local minimizer of .f  

Theorem 3.5. (Convergence rates of damped Newton algorithm). In the setting of 
Theorem 3.3 and x  as a limit point of the iterative sequence { }kx  generated by Algorithm 

3.1, the following statements hold 
 

(a) The sequence { }kx , the value sequence ( ){ }kf x  and the gradient sequence ( ){ }kf x∇  

converge superlinearly to ,x  ( )f x  and 0 , respectively. 
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(b) Suppose in addition that 2 f∇  is Lipschitz continuous with some constant 0M > , then 
all convergence rates in (a) are quadratic. 
Proof. Due to Theorem 3.3, { }kx  converges to x  and ( ) 0f x∇ = . Since 

( ) ( )2
k k kf x f x d−∇ = ∇ , we get 

  ( )( ) ( ) ( )( )2 2 ,   k k k k k kf x x d x f x f x x x k∇ + − = −∇ −∇ − + ∀ ∈ . (3.9) 

Substituting k ku x d x= + −  and kx x=  into (3.2) and using Cauchy-Schwarz inequality 

together with (3.9), we obtain 

  ( ) ( )( )21   for sufficiently large  k k k k kx d x f x f x x x k
α

+ − ≤ ∇ +∇ − + ∈ . (3.10) 

Since f∇  is differentiable at x  and ( ) 0f x∇ = , it follows from Lemma 5.5 in Pham et al. 

(2022) that  

( ) ( )( ) ( ) ( ) ( )( ) ( )2 2
k k k k k k kf x f x x x f x f x f x x x o x x∇ +∇ − + = ∇ −∇ +∇ − + = − . 

Combining this with (3.10), we have 

  ( )k k kx d x o x x+ − = − . (3.11) 

Substituting ( )( ) ( )12
k k ku d f x f x

−
= = − ∇ ∇  and kx x=  into (3.2), we obtain 

  ( ) 2,   for all large   .k k kf x d d kα−∇ ≥ ∈  (3.12) 

We have already proved that the sequence { }kx  converges to x , ( ) 0f x∇ = , the sequence 

{ }kd  satisfies (3.11) and (3.12). Therefore, following from Proposition 8.3.18 in Facchinei 

and Pang (2003), we get 

( ) ( ) ( ) ,   for all large  k k k k kf x d f x f x d kσ+ ≤ + ∇ , 

which means that all kt  chosen by backtracking line search technique always equals 1 

whenever k  is sufficiently large. Then we have 

  1   whenever    is sufficiently largek k k

k k

x x x d x
k

x x x x
+ − + −

=
− −

 (3.13) 

a) Combining (3.11) and (3.13), we obtain 1lim 0k

k
k

x x
x x
+

→∞

−
=

−
, which means that the 

sequence { }kx  converges superlinearly to .x  Following from Lemma 2.8, two sequences 

( ){ }kf x  and ( ){ }kf x∇  converge superlinearly to ( )f x  and 0 , respectively. 



HCMUE Journal of Science Vol. 21, No. 3 (2024): 446-459  
 

457 

b) Since f  is twice continuously differentiable and 2 f∇  is Lipschitz continuous with 

some constant 0M >  on ( ),B x δ , it follows from the descent lemma (see Lemma A.11 in 

Izmailov and Solodov (2014)) that 
 ( ) ( ) ( )( ) 22   for sufficiently large  

2k k k
Mf x f x f x x x x x k∇ −∇ −∇ − ≤ − . (3.14) 

The inclusion ( ),kx B x δ∈  for all k  sufficiently large and the Lipschitz continuity of 2 f∇  

on ( ),B x δ  ensure that 

 ( ) ( )2 2   for sufficiently large  k kf x f x M x x k∇ −∇ ≤ − . (3.15) 

Using the Cauchy–Schwartz inequality, .AB A B≤  and combining (3.14) with (3.15), 

we obtain 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

2

2 2 2

2 2 2

.

3 ,     is sufficiently large.
2 2

k k k

k k k k

k k k

f x f x f x x x

f x f x f x x x f x f x x x

M Mx x M x x x x k

∇ −∇ −∇ −

≤ ∇ −∇ −∇ − + ∇ −∇ −

≤ − + − = − ∀ ∈

 

Combining this with ( ) 0f x∇ =  and (3.10) gives us 

 23  for sufficiently large  
2k k k
Mx d x x x k
α

+ − ≤ − . (3.16) 

(3.13) and (3.16) ensure that the sequence { }kx  converges quadratically to x . Following 

Lemma 2.8, two sequences ( ){ }kf x  and ( ){ }kf x∇  converge quadratically to ( )f x  and 0,  

respectively.                                                       
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TÓM TẮT 

Trong bài báo này, chúng tôi nghiên cứu sự hội tụ và tốc độ hội tụ của các thuật toán damped 
Newton để giải các bài toán tối ưu không ràng buộc với các hàm mục tiêu khả vi liên tục cấp hai. 
Dưới giả thiết về tính xác định dương của ma trận Hessian của hàm mục tiêu trên một tập mở chứa 
tập mức ứng với giá trị hàm mục tiêu tại điểm khởi động, chúng tôi chứng minh dãy lặp sinh bởi 
thuật toán damped Newton sẽ nằm trong tập mở đó và dãy giá trị hàm tương ứng là đơn điệu giảm. 
Nếu dãy lặp có điểm tụ thì điểm tụ sẽ là điểm cực tiểu mạnh của hàm mục tiêu, và dãy lặp hội tụ toàn 
cục siêu tuyến tính về điểm cực tiểu này. Hơn nữa, nếu ma trận Hessian liên tục Lipschitz, dãy lặp 
đạt được tốc độ hội tụ bậc hai.  
  Từ khóa: các tốc độ hội tụ; thuật toán damped Newton; sự hội tụ toàn cục; tính xác định 
dương; bậc hai; siêu tuyến tính 
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