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ABSTRACT

In this paper, we study the convergence and convergence rates of damped Newton algorithms
for solving unconstrained optimization problems with twice continuously differentiable objective
functions. Under the assumption of the positive definiteness of the Hessian matrix of the objective
function on an open set containing the level set corresponding to the value of the objective function
at the starting point, we prove that the sequence generated by the damped Newton algorithm belongs
to that open set, and the corresponding sequence of objective function values is monotonically
decreasing. If the sequence has a limit point, that limit point is a locally strong minimum of the
objective function, and the iterative sequence superlinearly globally converges to this minimizer.
Furthermore, if the Hessian matrix of the objective function is Lipschitz continuous, the iterative
sequence achieves the quadratic convergence rate.

Keywords: convergence rates; damped Newton algorithm; global convergence; positive-
definiteness; quadratic; superlinear
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1.  Introduction
Consider the unconstrained optimization problem of the type

minimize f (x) subjectto xeR", (1.1)
with a twice continuously differentiable (C?-smooth) cost function f :R" — R. Newton's
methods are the most effective methods to tackle such problems (1.1). Given a starting point
X, € R", Newton algorithms generate the iterative sequences in the form of

X =X +td, forall ke N:={12,.},
where t,_ >0 is astep size and d, =0 is a Newton direction at the k ™ iteration (Beck, 2014;
Boyd & Vandenberghe, 2004; Ben-Tal & Nemirovski, 1987; Bertsekas, 1999; Dennis &
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Schnabel, 1987; James, 2014; Izmailov & Solodov, 2014; Nesterov, 2004; Nocedal &
Wright, 1999; h, 1987; Ruszczynski, 2006). When t, is chosen by the backtracking line

search technique, such method is called the damped Newton method or guarded Newton
method, to distinguish it from the pure Newton method, which uses a fixed step size t =1.

To the best of our knowledge, there have been numerous types of research relevant to
the damped Newton method (Beck, 2014; Boyd & Vandenberghe, 2004; James, 2014;
Nesterov, 2004; Polyak, 1987). The literature review shows that they just derive the local
results under the global assumptions. James (2014) claims that the uniformly positive
definiteness of all Hessian matrices is required on the entire space R". However, the results
are just that all accumulation points of the iterative sequences generated by the damped
Newton method are stationary points of the objective function, i.e. James (2014) has not
confirmed the convergence of those iterative sequences yet. Although Nesterov (2004) only
used Hessian matrices to be uniformly positive-definite at the optimal solution, it requires
an additional assumption of Lipschitz continuity of all Hessian matrices over R" and also
gets only the local convergence of the damped Newton algorithm. The books by Boyd and
Vandenberghe (2004) and Polyak (1987) have already shown the global convergence of the
iterative sequences. However, the results from these studies were obtained under some very
strong assumptions that the objective function must be strongly convex and its corresponding
Hessian matrices are obliged to be Lipschitz continuous on the whole space R".

Motivated by these works, we attempt to set some weaker assumptions than those in
previous studies (Beck, 2014; Boyd & Vandenberghe, 2004; James, 2014; Nesterov, 2004;
Polyak, 1987), and also achieve the global convergence and convergence rates of the damped
Newton algorithm. Specifically, we verify that if there exists an open set containing the level
set corresponding to the objective function value at the initial point such that the Hessian
matrix of the objective function is positive-definite over that set, the damped Newton
algorithm generates a sequence belonging to that open set. Additionally, the sequence of
objective function values corresponding to this sequence is monotonically decreasing. If the
sequence possesses a limit point, that point is a locally strong minimum of the objective
function, and the iterative sequence converges superlinearly to this minimizer on a global
scale. Furthermore, the iterative sequence achieves a quadratic rate of convergence if the
Lipschitz continuity of the Hessian matrix of the objective function is guaranteed.

The rest of the paper is organized as follows. In the next section, we introduce some
basic notions of locally strongly convex functions, strong local minimizers, the rates of
convergence of the iterative sequences, and clarify essential lemmas for the main results.
Section 3 presents the main results of this paper which are the global convergence and the
convergence rates of the damped Newton algorithm.
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2. Preliminaries
Let (R”””) be an Euclid space. The open and closed balls with center X e R" and

radius & are denoted by B(X,8) and B(X,5), respectively. We recall the notions of the

locally strongly convex functions and the strong local minimizers, which are used throughout
this paper.
Definition 2.1. (Locally strongly convex functions). The function f :R" — R is called to
be locally strongly convex around X e R" with modulus « > 0 if there exists § >0 such
that

f(Ax+(1-2)y)<Af (x)+(1-2) f (y)—%l(l—i)”x— [,

forall x,yeB(X,5) and 2€[0,1].

Definition 2.2. A point X eR" is called a strong local minimizer of f:R" — R with
modulus « > 0 if there exists § >0 such that

f(x)2 f(7)+%||x—7||2, vxeB(X,5).
For the class C*-smooth functions, the two aforementioned definitions are equivalent.
Lemma 2.3. (The characterization of strong local minimizers). Let f :R" > R be a C?
-smooth function and X eR" such that Vf (7)=0. Then f is locally strongly convex

around X if and only if X is a strong local minimizer of f with the same modulus.
Remark 2.4. Suppose that f is locally strongly convex around X with respect to B(X,5).
If XeB(X,d) is astrong local minimizer of f , then X =X.
To guarantee the gradient mapping being Lipschitz continuous, we provide a necessary and
sufficient condition in the lemma below.
Lemma 2.5. Let C<R" be a nonempty compact set and f:R" >R be a twice
continuously differentiable function. Then Vf is Lipschitz continuous on C, i.e., there
exists L >0 such that

[VE (y)-Vf (x)|<L]y-x|. ¥x,yeC.
The next lemma provides some estimates of the values and the gradient mappings of a C?-
smooth function around its strong local minimizer.
Lemma 2.6. Let f:R"—>R be a C>-smooth function and X €R" be its strong local
minimizer with modulus « > 0. Then there exists & >0 such that

2= <8 ()~ 1 (R <%, ¥xeB(%.5). (2.1)
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a|x—x||<|Vf (x)|<L|x-X], vxeB(X,5), (2.2)
where L is the Lipschitz constant of Vf on 5(7,5).
Proof. Since X is a strong local minimizer of f with modulus « , it follows from Lemma

2.3 that f is locally strongly convex with modulus o . Thus Vf (7) =0 and there exists

6 >0 such that f is strongly convex on 8(7,6) and
f(x)-f(X) —||x x|| vxeB(X,5). (2.3)

Since f is twice continuously differentiable on B(X,&), it follows from Lemma 2.5 that

Vf is Lipschitz continuous on 5(7,5) with some constant L >0. Applying the descent

lemma (see Lemma A.11 in (Izmailov & Solodov, 2014)), we obtain
[£.(x)= £ (%) = ()= £ (X)= (v (Y),X—Y>|s%||x—7||2, WxeB(X,5).  (24)

Combining (2.3) and (2.4), we get (2.1). Due to (2.3) and the first-order characterizations of
strong convexity Theorem 5.24 in (Beck, 2017) together with Cauchy-Schwarz inequality,
we have

[V (%)= Vi (X)].|x = %] = (VF (x) ~X)2 a|x—x|", vxeB(X,5). (25)
Since Vf (7) =0 and Vf is Lipschitz continuous on I§(x,5) with modulus L >0, we get
[Vt (= [9f (x) - ()] < Lx=%]. vxeB(%.). (2.6)
Combining (2.5) and (2.6), we achieve (2.2). [

Next, we consider some notable rates of convergence.
Definition 2.7. (Rates of convergence). Let {xk} c R" be a sequence of vectors converging

to X as k > o with x, =X forall k e N. The convergence rate is said to be (at least)
(i) superlinear if we have

Ilm—|| kil Y”—O.
o [~ X]

(if) quadratic if there exists £ >0 guch that

5],
1

whenever k is sufficiently large.
Lemma 2.6 allows us to verify the rates of convergence of two sequences {f ()} and

{Vf (%)} based on the rates of convergence of {X, }.
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Lemma 2.8. Let f:R" —R be a C*-smooth function and X eR" be its strong local
minimizer. Suppose that the sequence {xk} converges to X. Then the two following

assertions hold
(i) If {x} converges superlinearly to X, the sequences {f(xk)} and {Vf(xk)}

converge superlinearly to f(Y) and 0, respectively.
(i) If {x} converges quadratically to X, the sequences {f(xk)} and {Vf(xk)}
converge quadratically to f(Y) and 0, respectively.

Proof. (i) By the convergence x, — X we have that X, € B(Y,&) for all k sufficiently large.

Following from (2.1), we can deduce that

— —2
[f (%)~ f (_X)| LHXM_X! , Vk is sufficiently large .
[f (%)= (%)

IN

@ [x %]

The superlinear convergence of {xk} to X implies that ImH 0. Therefore

and hence the sequence { } converges superlinearly to f ( )

Next, we prove the superlinear convergence of {Vf (xk)} to 0. Inequalities (2.2) give

us

VT (6l L% =¥

vk is sufficiently large .
Mool " X

Combining with I|mM 0, we obtain
“ % x|

m||Vf Xk+l)
vl

and hence the sequence {Vf (Xk)} converges superlinearly to 0.
(ii) Inequalities (2.1) bring us
[ (%)= T () _ 2L [ =%
[F(x)-f(x) @ %X

. VK is sufficiently large .
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The quadratic convergence of {xk} to X implies that there exists g >0 such that

|—|Xk+1_7” < B whenever k is sufficiently large. Thus
o o

|f(Xk+1)_f(7)|S2_|— 2
LICORICY

for all large k € N, and hence the sequence {f (Xk)} converges quadratically to f (7)

Next, we indicate that the sequence {Vf(xk)} converges quadratically to O.

According to (2.2), we have
AALGY) P |

IV (%) || a |x —x|

” vk is sufficiently large .

The quadratic convergence of {x,} to X ensures that

6 (s L

ve o

B

for all large k e N, which verifies that the sequence {Vf (Xk)} converges quadratically

to 0. 0
Now, we have enough necessary conditions to present and verify our main results.
3. Main results

We first recall the damped Newton algorithm (Beck, 2014; Boyd & Vandenberghe,
2004; Nesterov, 2004; Polyak, 1987; James, 2014) for solving (1.1).
Algorithm 3.1. (damped Newton algorithm).

Input: x, e R", GE(O,%J, ,Be(O,l)

1: for k=0,1,... do
2:If |V (x,)|=0, stop; otherwise go to the next step

Set x,, =X, +t.d,

3:  Choose d, e R" such that Vf (x )+V*f(x )d, =0
4. Sett =1

5. while f(x +td)> f(x)+ot (Vf(x).d,) do
6: sett =/t

7:  end while

8:

9

:end for
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Remark 3.2. In Algorittm 3.1, if at k™ iteration we ensure that V*f(x )>0,

dkz—(sz(Xk))&Vf(Xk) is a descent direction of f at x, which means that

(Vf(x).d,)<0. Based on Lemma 4.3 in Beck (2014), the backtracking line search

procedure in step 5 terminates and an appropriate t, is found.

Next, we establish the global convergence of Algorithm 3.1.
Theorem 3.3. (The global convergence of damped Newton algorithm). Let f :R" > R

be a C?-smooth function on an open set containing Q and let x, e R" be an arbitrary point
such that V*f (x) =0 for every x in the level set

Qi=Lev(f, f(x))={xeR": f(x)<f(x)}.

Then Algorithm 3.1 with the initial point x, either stops after finitely many iterations
or produces a sequence {xk}cQ such that the corresponding sequence {f(xk)} IS

monotonically decreasing. In addition, if the iterative sequence {xk} has a limit point X,

{X.} convergesto X, and X is a strong local minimizer of f .

Proof. The proof is split into the three following claims.
Claim 1: Algorithm 3.1 either stops after finitely many iterations or produces a sequence

{X.} =Q such that the corresponding sequence {f ()} is monotonically decreasing
and (Vf(x,).d,}<0 for all keN, where {d,} is a sequence generated in Step 3 of

Algorithm 3.1.
Indeed, if there exists k, € N such that Vf (xko ) =0 then Algorithm 3.1 stops at the

k, ™ iteration. Thus we only consider Algorithm 3.1 generating the iterative sequence {xk}
satisfied Vf (x )#0 forall k e N. Then x, =X forall k e N . Obviously x, € Q, it follows
that V?f(X,)>0, which means that <V2f (xo)u,u> >0, VueR" \{ORH}, and hence
d, = —(sz (XO))AVf (%)#0,,. Thus <V2f (xo)do,d0> >0, which implies that
(VI (%), dg)=(-V*f (x,)d,,dy) < 0. Therefore

F (%)= (% +tde) < F(X)+0t, (VE(%).do )< F(X),

where the first inequality is the existing condition of the backtracking line search technique,
and hence x Q. Using the inductive method and arguing similarly for the cases of

k=2,3,..., we obtain
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f (%)< f(x) forall keN (3.1)
and the sequence {x,} < Q. This implies that {f(xk)} is monotonically decreasing and
(Vf(x%).d)<0 forall keN.

Claim 2: If X is a limit point of {xk}, X is a strong local minimizer of f .
Suppose that {x,} has a limit point X . Since the set Q is closed and {x,} = Q, we

get x e 2, and hence V*f (X)>0. It follows from Proposition 4.6 in Chieu et al. (2017)
that there exist positive numbers « and § such that
<V2f (x)u,u> > a||u||2 forall xe B(X,5), and ueR". (3.2)

i

Let {xkj} be a subsequence of {xk} converging to X and {tk } be a corresponding sequence

of positive numbers generated in Algorithm 3.1.
o Claim 2a: The sequence {tkj} is bounded below by a positive number » and we have
2 - - -
f (xkj )— f (ij+1) > oyo Hdkj H for sufficiently large j e N. (3.3)
Suppose on the contrary that {tkj} is not bounded below by a positive number. Then

i

there exists a subsequence of {tk } that converges to 0. Assume without loss of generality

thatt, —0 as j—oo.Since X, — X, wehavethat x, <B(X,d) forall jeN sufficiently
- - _l -
large. Substituting u = dkj = —(sz (xkj )) vf (Xk,.) and X = X, into (3.2), we get

<—Vf (xkj ),dkj > > “Hdk,- Hz , for sufficiently large j € N. (3.4)
Applying the Cauchy-Schwarz inequality, we obtain
198 (s, |-t | zKVf (% ).d )= (-vf (x, )0, ), vien. (35)
Combining (3.4) and (3.5) verifies that

o ‘ankj || for sufficiently large j e N

Since {xkj} convergesto X and Vf is continuous, the sequence {Vf (xkj )} converges
to Vf (X), which implies that the sequence {dk,.} is bounded. Since X, —X, t — 0 and
{dkj} is bounded, we get x, + /7t d, —X as j—>oo, andhence x, +£7t, d, € B(X,5)

whenever | is sufficiently large. Since f isatwice continuously differentiable function on
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B(X.5), it follows from Lemma 2.5 that Vf is Lipschitz continuous on B(X,5) with a

constant L > 0. Then the descent lemma (see Lemma A.11 in Izmailov and Solodov in 2014)

gives us
B ~ Lﬂ_ztkz_ 2
f(x,+ A0 )< f (%, )+ A%, <Vf (xkj),dkj>+ — la.,|

for sufficiently large j e N. According to Lemma 4.3 in Beck (2014), the backtracking line

(3.6)

search in Step 5 of Algorithm 3.1 brings us tkj satisfied
£(x, + 674, )> F (% )+oB™, <Vf (%, )9 >,for sufficiently largej e N, (3.7)
Combining (3.4), (3.6), and (3.7), for all j e N is sufficiently large, we have

opt, <Vf (%, ). d. > <pM, <Vf (%, ) .. >+ Lﬂzjkz" <Vf (x, ), > (3.8)

Dividing both sides of (3.8) by ﬁ*ltkj <Vf (xki ),ko > <0, we get

o >1—|—tk_ , for sufficiently large j e N.
203 7

Taking j — oo, weobtain o >1, which is a contradiction to the choice of o <1. Thus
{tkj} is bounded below by » >0. Moreover, using the exit condition of backtracking line

search and the estimate in (3.4) allows us to indicate that the below inequalities hold
whenever | is sufficiently large

(%)= (42) 2 ot (=97 (%, ).d,, ) > g, I
The proof of Claim 2a is completed.
o Claim 2b: X is a strong local minimizer of f .

Since {f (xk)} is monotonically decreasing and f (X) is a limit point of {f (xk)}, the
sequence {f(xk)} must converge to f(Y). Letting j — oo in (3.3), we obtain Hdkj H—>O.
Since Vf is Lipschitz continuous on B(X,5) with modulus L >0, it follows from Theorem
2.1.6 in Nesterov (2004) that [v*f (x)|< L for all xe B(X,5). Since x, B(X,5) for all

large j, with d, =—(V2f (ij ))_1Vf (ij) we obtain

v (x, )] =] V21 (x )| < e |

for sufficiently large j e N. Passing to the limit as j — oo in this inequality tells us

V2§ (ka )dkj

“

that Vf (Y) =0. Following from (3.2) and combining with Theorem 4.3.1 in Hiriart-Urruty
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and Lemaréchal (2004) give us f is « -strongly convex on 8(7,5). The first-order

characterizations of strong convexity (Theorem 5.24 in Beck (2017)) and Vf (7) =0 bring us
f(x)2 f(7)+%||x—7||2, vx e B(X,5).
This verifies that X is a strong local minimizer.
Claim 3: The iterative sequence {X,} convergesto X.
o Claim 3.1: The sequence {x,} has no other limit point other than X in B(X,5).
Suppose that there exists Xe B(X,5) such that x is a limit point of {x }. We

previously proved that all limit points of the sequence {xk} are the strongly local minimizes
of f.Thus, we candeduce that % isalso astrong local minimizer of f on B(X,5). Remark
2.4 gives us X=X. The proof of Claim 3.1 is completed.
o Claim 3.2: The sequence {x,} convergesto X.

Supposing that {ij} is an arbitrary subsequence of {x,} with X, —>X as j—>oo.
We have X, ,; =X+t d, combined with (3.3), we obtain
2 < f (in )_ f (Xkﬁl)

oya

The convergence of { f (x )} to f(X) gives us !m||xkj+1 - X, || =0. Then Proposition

2

i < ”dkj , for sufficiently large je N.

- tkzi ||dkj

||ij+1_xkj

8.3.10 in Facchinei and Pang (2003) gives us that the sequence {xk} convergesto X. [l

Remark 3.4. In Theorem 3.3, we obtained some better results than those in Corollary 6.2.3
by James (2014). In terms of assumptions, Corollary 6.2.3 requires the existence of >0

such that V*f ()= B1 on Q, we justneed V*f (x)>0 on Q. Thus our assumptions are

much weaker than those in Corollary 6.2.3. Despite using weaker assumptions, we still
achieve some stronger results. Besides proving all limit points are stationary points of f ,

we additionally clarify that {Xk} converges to X and X is a strong local minimizer of f.

Theorem 3.5. (Convergence rates of damped Newton algorithm). In the setting of
Theorem 3.3 and X as a limit point of the iterative sequence {xk} generated by Algorithm

3.1, the following statements hold

()The sequence {x,}, the value sequence {f (X, )} and the gradient sequence {Vf (X, )}

converge superlinearlyto S , f(Y) and 0, respectively.
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(b)Suppose in addition that V2 f is Lipschitz continuous with some constant M >0, then
all convergence rates in (a) are quadratic.
Proof. Due to Theorem 3.3, {x} converges to X and Vf(X)=0. Since

-Vi (% )=V*f(x,)d,, we get
VA (%) (% +d, =X)==Vf (% )-V*f (% ) (% +X), VkeN. (3.9)
Substituting u=x, +d, —X and x=x, into (3.2) and using Cauchy-Schwarz inequality
together with (3.9), we obtain
% +d, — %] gé”Vf (%)+V?f (% )(=x +X)| for sufficiently large ke N.  (3.10)

Since Vf is differentiable at X and Vf (X)=0, it follows from Lemma 5.5 in Pham et al.
(2022) that

||Vf (% )+ V2 (%) (=X +7)|| =||Vf (%)= VE(X)+ V2 (%) (=% +7)|| =o(||x —x])-
Combining this with (3.10), we have

1% +d, =X =0(|[x —X]) (3.11)
Substituting u=d, = —(sz (X, ))_l Vf (%) and x = x, into (3.2), we obtain

(vt (x).d,)za|d | foralllarge keN. (3.12)
We have already proved that the sequence {xk} converges to X, Vf (7) =0, the sequence

{dk} satisfies (3.11) and (3.12). Therefore, following from Proposition 8.3.18 in Facchinei
and Pang (2003), we get

f (% +d)<f(x)+o(Vf(x).d) foralllarge k,
which means that all { chosen by backtracking line search technique always equals 1

whenever k is sufficiently large. Then we have

X1 = X] _ [% +di = %]
o=l =]

whenever k is sufficiently large (3.13)

a) Combining (3.11) and (3.13), we obtain Iim”x"*l_x|| =0, which means that the

< % =]

sequence {Xk} converges superlinearly to X. Following from Lemma 2.8, two sequences

{f (%)} and {Vf (x)} converge superlinearly to f (X) and 0, respectively.
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b) Since f is twice continuously differentiable and Vi s Lipschitz continuous with
some constant M >0 on I§(7,5), it follows from the descent lemma (see Lemma A.11 in
Izmailov and Solodov (2014)) that

HVf (%)= VF (X)=V*f (X)(x, —X) H<—||xk—x|| for sufficiently large k.  (3.14)

The inclusion X, € I§(¥,§) for all k sufficiently large and the Lipschitz continuity of Ve f

on B(X,8) ensure that

[v2 1 (%)= V21 (X)| <M [x,~X| for sufficiently large k. (3.15)
Using the Cauchy-Schwartz inequality, ||AB| <[ A|.|B| and combining (3.14) with (3.15),
we obtain

[VF (%)= VE (X)= V2 (%) (% %))

<|Vf (%) -Vf (X)-V ( =X)|+ [V (%)= V2 ()% ]

< %”xk —x[[ +M|x x|’ :3T||xk —X|[, vkeN is sufficiently large.
Combining this with Vf (X) =0 and (3.10) gives us
% +d, —X]|| < iﬂ”xk —Y||2 for sufficiently large k . (3.16)
(04

(3.13) and (3.16) ensure that the sequence {X,| converges quadratically to X. Following

Lemma 2.8, two sequences { f (%)} and {Vf (X, )} converge quadratically to f(X) and o,
respectively. [
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TOM TAT

Trong bai bao nay, chiing ti nghién cizu si hdi tu va téc dé héi tu cia cac thugt toan damped
Newton dé gidi cac bai toan tdi wu khéng rdang bugc véi cac ham muyc tidu kha vi lién tuc cdp hai.
Duei gid thiét vé tinh xdc dinh dwong ciia ma trgn Hessian ciza ham muyc tiéu trén mét tdp mo chia
tdp mirc deng Vi gia tri ham muc tiéu tai diém khoi dgng, ching toi chieng minh day Igp sinh boi
thugt toan damped Newton sé nam trong tdp mé dé va day gid tri ham twong img la don diéu giam.
Néu day ldp c6 diém tu thi diém tu sé la diém cuc tiéu manh cia ham muc tiéu, va day lgp hdi tu toan
cuc siéu tuyén tinh vé diém cuc tiéu nay. Hon nira, néu ma trdn Hessian lién tuc Lipschitz, day lap
dat deoc toc do héi tu bac hai.

Tir khoa: cac téc d6 hoi tu; thuat toan damped Newton; sy hdi tu toan cuc; tinh xac dinh
duong; bac hai; siéu tuyén tinh
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