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ABSTRACT 
The distributional inequality recently introduced by Tran and Nguyen has been used to 

investigate gradient estimates for solutions to partial differential equations. In particular, the 
authors established several sufficient conditions under which two measurable functions can be 
compared via their norms in general Lebesgue spaces. The results are then applied to some classes 
of p-Laplace type problems. This paper extends this inequality to make it applicable to a broader 
range of equations. Specifically, we propose a generalized distributional inequality that can be 
applied to the p(x)-Laplace equation, the typical version of quasi-linear elliptic equations with 
variable exponents.  

Keywords: Generalized distributional inequality; Lorentz spaces; p(x)-Laplace equation; 
Quasi-linear elliptic problems; Regularity theory; Variable exponents 

 
1. Motivation and introduction 

Let Ω  be an open bounded domain in n  and  ,   be two Lebesgue measurable 
functions defined in Ω . In recent papers, Nguyen et al. (2021) and Nguyen and Tran (2021) 
proved the following distribution inequality.  

     ,  a bd C d dα α αε λ ε λ ε λ    (1.1) 

for all 0λ  and 0ε  small enough, under some sufficient conditions of  and  . Here, 

a  and b  are two positive constants, and the distribution function hdα  is considered as the 

Lebesgue measure of level sets corresponding to the fractional maximal operators αΜ . 

More precisely, hdα  is defined by     : : for 0,hd x h xα
αλ λ λΩ   Μ  where h  is 

measurable in Ω  and αΜ  is the fractional maximal operator (see Definition 2.2). The most 
interesting point is that the distribution inequality (1.1) implies the following statement  

,α α    Μ Μ  (1.2) 
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in several function spaces   and  , such as Lebesgue space, Lorentz space, or Orlicz space. 
The statement in (1.2) has many meanings about the fractional maximal operator, which is 
closely related to the fractional order derivative and Riesz potential (Muckenhoupt & 
Wheeden, 1974). On the other hand, using the boundedness property of maximal operators 
Μ , one can obtain that .      

If we present   and   as the terms of data and solutions of partial differential 
equations, respectively, then we can obtain a regularity result for solutions. This type of 
result has been studied in many works (Acerbi & Mingione, 2005, 2007; Byun & Ok, 2016). 
By (1.2), Nguyen and Tran (2021) presented some applications to obtain the regularity 
results for some classes of quasi-linear elliptic equations, such as the p-Laplace equation and 
the obstacle problems associated with the p-Laplace operator. The method can be applied to 
many other problems (Nguyen et al., 2023; Tran & Nguyen, 2022a, 2022b, 2023; Tran et al., 
2023). However, it cannot be applied to several cases of problems, such as the quasi-linear 
elliptic systems, the non-linear problems with variable exponents, and the measure data 
problems. Motivated by these works, this study aims to establish a new distribution inequality 
that is more general than (1.1) for applying to larger classes of partial differential equations. 

We now introduce some general notations. We write  rB x  to indicate the ball with 

radius 0r   and centered at nx∈  and    Ω Ωr rx B x  . Next, notation B  presents the 

Lebesgue measure of the measurable subset nB  . For simplicity of notation, the set 

 h λ  will be used instead of   Ω :x h x λ  . On the other hand, we always consider 

the letter C  as a general constant, and its value may change from different lines of estimates. 
Let us consider two given vector-valued functions u  and : Ω mv    with 1m ≥ . Assume 
that f ,  : 0,mg    and  : Ω 0,F    satisfy all the following assumptions. We will 

write  f u  instead of   f u z  with Ωz  . 

Assumption 1.1. There exists a constant 0C   not depending on u  and v  such that 
              and   ,   in Ω.f u C f u v f v f v C f u v f u             

Assumption 1.2. There exists a constant 0C >  not depending on f , g  and F  such that 

     d d .f u z C g u F z z
Ω Ω

      

Assumption 1.3. There exists a constant 0 0R   and Θ 1  satisfying

 
 

   
 

 0 2 0

1
Θ

Θ

Ω Ω
0 2 0

1 d 1 d
Ω Ωr rx x

r r

Cf v z f v z
x x

             
   for all 0x Ω  and  00;r R . 

Assumption 1.4. There exists a constant 0κ  and 0C   such that the following inequality 

  
 

 
 

 
 

   
 0 0 0 0

1 2 1 2Ω Ω Ω Ω
d d d d

r r r rx x x x
f u v z f u z g u z C F z zκτ τ τ τ 

        , 



HCMUE Journal of Science Le Khanh Huy 
 

426 

holds for every 1τ ,  2 0,1τ  , 0r   and 0x Ω . Let us now state our main results under 

Assumptions 1.1–1.4. The results are studied in two steps. In the first step, we construct the 
following distribution function inequality 

           ,a b c
Ff u f u g ud C d d dα α α αε λ ε λ ε λ ε λ     

for ε  small enough and λ  large enough. Using this inequality and the definition of norm in 
Lorentz space  , Ωq sL , we can show that 

      , , ,Ω Ω Ω
1q s q s q sL L L

P C F Qα α α  Μ Μ Μ  

for a suitable value of α , where  P f u  and  Q g u . 

In the next section, we recall some well-known definitions of Lorentz spaces and 
fractional maximal operators, and we present key results concerning the boundedness of the 
maximal operator. In Section 3, we establish the general form of the level set inequality, 
from which the distributional inequality is derived. Then we also obtain the norm estimates 
in Lorentz space. These proofs are presented in Section 4. In the last section, we discuss 
some applications to quasi-linear elliptic problems involving variable exponents. 
2. Lorentz spaces and maximal operators 

In this section, let us recall the definitions of Lorentz spaces, fractional maximal 
operators, and distribution functions associated with maximal operators. Moreover, we 
present some useful boundedness properties of maximal operators. 
Definition 2.1. (Lorentz spaces) For some  0,q    and  0,s   , the Lorentz space 

 , Ωq sL  is defined as the set of all Lebesgue measurable functions h  on Ω  such that 

    ,

1

Ω 0

d: Ω : ,q s

s s
s q

L
h q x h x λλ λ

λ
 

     
  
   (2.1) 

as s   and  
    ,

1

0
: sup : .q

q
L

h x h x
λ

λ λ
Ω

Ω


     

Definition 2.2. For every  0,nα  , the fractional maximal operator αM  is defined by 

 
 

 
 

1
loc

0
( ).sup d , for ,

r

n n

B xr r

rh x h y y x h L
B x

α

αM 


     

If 0α  , it coincides with the Hardy-Littlewood operator, i.e. 0Μ Μ . The two following 
results (Propositions 2.3 and 2.4) can be found in Grafakos (2004). 
Proposition 2.3. The Hardy-Littlewood operator Μ  is bounded from  q nL   to  ,q nL 

  

for all 1q  . This means there exists a constant 0C   such that 

    : d , for all 0 and .( )
n

qn q n
q

Cx h x h x x h Lλ λ
λ 
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Proposition 2.4. Operator Μ  is bounded in Lorentz space  ,q s nL   for all 1q  and 

0 s  . This means there exists a constant 0C   such that 

   , , ,q s n q s nL L
h C h

 

Μ   for all  ,q s nh L  . 

Let us now state the boundedness properties of fractional maximal operators (see Tran & 
Nguyen, 2020 for the proofs). 
Proposition 2.5. (Tran & Nguyen, 2020) For all  0, nα  , there holds 

    1: d ,
n

n
nnx h x C h y y

α

α λ
λ

      


 Μ   for all 0λ  and  1 nh L  . 

Corollary 2.6. Let 0 nα  , 0r   and nx  . Then exists a constant 0C   satisfying 

     
 

,1 d
r

r

n
n

B x B x
h C h y y

α

α χ λ
λ

     Μ    for all 0λ  and  1
loc

nh L  . 

Proposition 2.7.  (Tran & Nguyen, 2020) Assume 1s   and 0, n
s

α
   

. Then exists a positive 

constant  , , 0C C n s α   such that 

   1 d ,
n

n
n ss

sh C h y y
α

α λ
λ

     


Μ   for all 0λ  and  s nh L  . 

Definition 2.8. Let  0, nα   and h  be a measurable function in Ω . We define by hdα  the 

distribution function of h  as     : Ω : , 0.hd x h xα
αλ λ λ   Μ  

3. Main results  
3.1. Generalized level-set inequality  

We first prove a generalized level-set inequality, which can be obtained by the 
following covering lemma. 
Lemma 3.1. (Covering & Peral, 1998) Let 0 0R   and    be two measurable subsets 

of Ω . Assume that  0,1ε   satisfying  
0

0RBε . Moreover, Ωx   and  00,r R , 

      r r rB x B x B xε Ω      . Then, there exists a constant   0C C n   

such that Cε  .  

From now on, for simplicity of notation, let us denote     and .P f u Q g u   

Theorem 3.2. We assume that all Assumptions 1.1–1.4 are satisfied. For every 0,
Θ
nα

   
 

and Θ
Θ

na
n

α
 , there exist positive constants 0λ , 0ε , b , c  and 

0

0, , , DC C n s
R

α
 

=  

>
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such that the distribution inequality , Cε λ λε  holds for all  00,ε ε  and 0λ λ> . 

Here ,ε λ , λ  are defined by 

   , ; ; .a b cP F Q and Pε λ α α α λ αε λ ε λ ε λ λ     Μ Μ Μ Μ   

Proof. The proof will be divided into two steps. In the first step, let us prove that for all
0ε   small enough and 0λ λ> , there holds 

 
0, 0 .RBε λ ε                                                                                                      (3.1) 

We assume ,ε λ  , since (3.1) is valid if ,ε λ  . Then there exists 1 Ωx   such that 

 
 

 
 

 
 

 
 

1

1

1
1

1
1

0 : d ,

0 : d .

b b

B x

c

B x

c

F x F x x
B x

Q x Q x x
B x

η

η

α

α
η

α

α
η

ηε λ η ε λ

ηε λ η ε λ

          





Μ

Μ
   (3.2) 

Let us set  2diam ΩD   and  1B DB x , where  diam Ω  denotes the diameter of Ω . By 

Proposition 2.7 for 1s  , we can see that 

   , d .
n

na
a

CP P x x
α

ε λ α ε λ
ε λ Ω




      Μ   (3.3) 

Using Assumption 1.2, we observe that 

     d d .P x x C Q x F x x
Ω Ω

                                                                            (3.4) 

Substituting (3.4) into (3.3), we can rewrite (3.3) as 

         , B B
d .d d

n n
n n

a a
C CQ x F x x Q x x F x x

α α

ε λ ε λ ε λΩ

 

 

                       (3.5) 

From (3.2), and choosing  2diam ΩDη   , we have 

   
B B

d , and d .
B B

b cD DF x x Q x x
α α

ε λ ε λ    

It follows that 

       
B B

d , and d .n b n cF x x C n D Q x x C n Dα αε λ ε λ      (3.6) 

Replacing (3.5) by (3.6), we obtain 

   
   

 
0

1 1

,
0

0 .
n na b n a c n

nn b c n n
Ra

C DC n D C B
R

αα α α
ε λ ε ε λ ε ε ε

ε λ

 
    



                          
  

Let us choose positive constants b , c  and 1ε satisfying conditions 
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        1 1

11
0

1 0, 1 0, 1. (3.7)
a b n a c n
n n

na b n a c n DC
n n R

α αε ε
α α

 
 

 
                     

                                            

It allows us to conclude (3.1) for every  10,ε ε . 

Let us consider the second step of the proof. For all Ωx   and  0,r R , assume that 

 Ω rB x λ  , we need to prove that 

   , .r rB x B xε λ ε                                                                                           (3.8) 

Inequality (3.8) holds if  , rB xε λ   , so let us suppose  , rB xε λ   . Then there 

exist  2 Ω c
rx B x λ    and  3 , rx B xε λ  , which means 

     2 3 3 , , and .b cP x F x Q xα α αλ ε λ ε λ  Μ Μ Μ  (3.9) 

We now prove that the operator PαΜ  can be replaced by the cut-off operator r PαΜ  when 
ε  is small enough. Indeed, for all Ωy  , it is easy to check that 

      max ; ,r rP y P y P yα α α TΜ Μ                                                                    (3.10) 

where the cut-off operators r
αΜ  and r

αT  are defined by 

 
 

 
 

 
 

 
 0

sup d ,  sup d .r r

B y B yr r
P y P z z P y P z z

B y B yη η

α α

α α
η ηη η

η η
  

  TΜ  

We have       , : ,a
r rB x y B x P yε λ α ε λ   Μ  which by (3.10) yields that  

           , : : .r a r a
r r rB x y B x P y y B x P yε λ α αε λ ε λ       TΜ       (3.11) 

Getting  ry B x , for all rη   and  z B yη ,    3 2B y B xη η . Hence, one has 

   
 

 
 

 
3 2

2
3 2

13 sup 3 d 3 .r n

r x

n

B
P y P z z P x

B x η

αα α
α α

η η

ηT  


  Μ  

Using inequality (3.9), we have    3 , .r n
rP y y B xα

α λ  T  For all 0ε   satisfying 

23 : 3
n

a n a
α

αε ε ε


     , it is easy to see that 

    : .r a
ry B x P yα ε λ  T                                                                         (3.12) 

Combining (3.11) and (3.12), we obtain 

      , : .r a
r rB x y B x P yε λ α ε λ   Μ   (3.13) 

Further, for all  ry B x  and  0, rη  , it is clearly to see that    2rB y B xη   and 

 
   

 
     

2 20
sup d . (3.14)

x rr

r r
B B xB yr

P y P z z P y
B y η

α

α α
η η

η χ χ
 

 Μ Μ  

Substituting (3.14) into (3.13), there holds 
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     2, .
r

r a
r B xB x Pε λ α χ ε λ  Μ   (3.15) 

for all  20,ε ε . Next, we apply Assumptions 1.3 and 1.4 to prove inequality (3.8). We 

consider two cases. In the first case, let us assume that  4 ΩrB x  . Using Assumption 1.4, 

we have 0C   and 0κ   such that 

 
 

 
 

 
 

   
 4 4 4 4

1 2 1 2d d d d ,
r r r rB x B x B x B x

f u v z f u z g u z C F z zκτ τ τ τ 
         

for all 1τ ,  2 0,1τ  . Since  2 rx B x , we can check that    4 5 2r rB x B x . It leads to 

 
 

 

 
 

 
 

 

 
 

 

     

4 5 2

4

5 2

4 4 5 2 5 2

2

d d1 5d
4

5 55 5 . (3.16)
4 4

r r

r

n
B x B xr

B x
r r r r

n n

P z z P z zB x
P z z

B x B x B x B x

r P x r Crα α α
α λ λ  

      

              

 


Μ

 

Similarly, we have    4 5 3r rB x B x . Using inequality (3.9), it is easily seen that 

 
 

 
     

4
3

4

1 5 5d  5 5 . (3.17)
4 4r

n n
c c

B x
r

Q z z r Q x r Cr
B x

α α α
α ε λ ε λ                 Μ  

Performing the same proof, we also have 

 
 

 44

1 d .
r

b

B x
r

F z z Cr
B x

αε λ   (3.18) 

Combining all estimates in (3.16), (3.17), and (3.18), we obtain that 

 
 

 
 

 
 

4

1 2

1 2 1 2
4 , 0

1 d .
r

c b

B x
r

f u v z C r C r
B x

κ α α

τ τ τ τ

τ τ ε τ τ ε λ τ λ  

 

            




          (3.19) 

Using Assumption 1.3, there exists Θ 1>  such that 

 
 

   
  

 2 4

1
Θ

Θ

2 4

1 d 1 d .
r rB x B x

r r

f v z f v z
B x B x

C          
    (3.20) 

From Assumption 1.1, we have      f v C f u v f u     . Using (3.16) and (3.19), we 

obtain 

 
 

   
 

 
 

 
 

4 4 44 4

1 d d d 1 .(3.21)
r r rB x B x B x

r r

Cf v z f u v z f z Cr
B x B

u
x

αλ τ           

Substituting (3.21) into (3.20), we get that 

 
 

 
 

2

ΘΘ

2

1 d 1 1 .
rB x

r

f v z C r
B x

αλ τ            (3.22) 
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Using Assumption 1.1 again, we get      f u C f u v f v      and 

            
2 2 2

.
r r r

r r r
B x B x B xP C f u v f vα α αχ χ χ    




Μ Μ Μ   (3.23) 

On the other hand, from (3.15), we obtain that 

              2 2, .
r r

r a r a
r B x B xB x f u v C f v Cε λ α αχ ε λ χ ε λ      Μ Μ  (3.24) 

Applying Proposition 2.7 for 1s   and Θ 1s   respectively, we have 

       
 2

2

d ,1
r

r

n
nr a

B x a B x
f u v C C f u v z

C
α

α χ ε λ
ε λ




       


  Μ   (3.25) 

and       
 

 
 2

2

Θ
Θ

Θ
1 d .

r
r

n
n

r a
B x a B x

f v C C f v z
C

α

α χ ε λ
ε λ







             



Μ                (3.26) 

It is seen that    4 2
n

r rB x B x r  , and we get 

 
 

 
 

 
2 4

4

d d
,r r

n n
B x B x a n

a a a
r

f u v z f u v zCr C r C r
C B x

α
ατ τε

ε λ ε λ ε




  







  

 
 

which will be substituted into (3.25). On the other hand, we have 

 
 

   

 
 

 
 

    

   

2 2

Θ Θ
Θ Θ

Θ Θ Θ
2

Θ
ΘΘ Θ

Θ Θ Θ Θ Θ Θ

d d
1 1

11 2

2 1 ,

r r
n n a

B x B x

a a
r

n a n a

n a n a

f v z f v zCr Cr r
B xC

Cr r Cr r

C r C r

α

α α

α α

ε λ τ
λε λ ε λ

ε τ ε τ
λ

τ ε τ ε



 

 

 

   
            

       

   



 

 

which will be substituted into (3.26). We need λ  satisfying condition 

.1 r rα αλ
λ

     (3.27) 

Choosing 0 0 0rαλ   , then inequality (3.27) holds for all 0λ λ  because 0 0 .r rα αλ λ  

Finally, from (3.24), (3.25), and (3.26), we have 

      

   

Θ Θ Θ Θ
,

Θ1 1Θ ΘΘ

1

1 . (3.28)

nn
a n n a nn

r

n na nan
n n nn

r

B x C r r

C B x

α α αα
ε λ

α α αα

τε τ ε

τ ε τ ε ε

  

 
  

 
       
       



 

Choosing 1τ  and 2τ , which are satisfied 
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1 21 2
1 2 1 2

112 1 2 2

,

1 .

cc
c b

b c
c b c

κ
κκ

κκ

τ τ ετ τ ε
τ τ ε τ τ ε

τ ε τ τ ε τ ε ε


 


               

 

We need 0ε   small enough to ensure that 1τ  and 2τ  in  0,1 , which is equivalent to  

  1 11
2 1 1

b c b c
c

κ
κ κκτ ε ε ε

 


      and 1 2 1.cτ τ ε   

For b c , it is possible to find 0ε   small enough to imply that 1τ  and 2τ  in  0,1 . 

Subsequently, we obtain that  

  1 1 1
1 2 1 2 23 3 .

b c b c b
c b c c C C

κ
κ κ κ κτ τ τ ε τ τ ε τ ε ε ε ε ε

 
             (3.29) 

Combining (3.28) and (3.29), we can rewrite 

    


 

 
    

1 11
,

1

1
1

1
1

3 1

.

nnb na nann bn n
r r

nan b a
n n

r

B x C B x

C B x
κ

α

αα κ α α
ε λ

ακ

ε ε ε ε ε

ε ε ε

ΘΘ
Θ Θ Θ

Θ
Θ

   
 

    






                  
        



 

Since Θ
Θ

na
n
α

 , we may choose b  such that 
 

  
1

1
1

n b a
n

κ
α κ

    
 

. One can find 3 0ε   

such that (3.8) holds for all  30,ε ε . In the remaining case, when  4rB x Ω  , there 

exists 4 Ωx  , satisfying  4 , 4 .x x d x rΩ     Since    2 6 4r rB x B x , we get that 

     6 4, Ω .
r

r a
r xB x Pε λ α χ ε λ  Μ  

Using Assumption 1.4, we have 0κ   satisfying for all 1τ ,  2 0,1τ  , we have 

   
 

 
 

 

 
 

 
 

   

12 412 4

12 4 12 4

1 ΩΩ
12 4 12 4

2 1 2Ω Ω
12 4 12 4

1 1d d
Ω Ω

1 1d d .
Ω Ω

xx

x x

f u v z f u z
x x

g u z C F z
x x

κ

τ

τ τ τ 

 

  



 
 

By Assumption 1.3, we have 1Θ  such that 

 
 

   
 

 6 4 12 4

1
Θ

Θ

Ω Ω
6 4 12 4

1 1d 1 d .
Ω Ωr rx x

f v z C f v z
x x
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Finally, the proof of inequality (3.8) can be performed similarly to the first case. Hence, two 
conditions of the covering lemma are valid for all 0 0r

αλ λ   and  00,ε ε  with 

 0 1 2 3min , ,ε ε ε ε . The proof is completed.         ■ 

3.2. Distributional inequality and Lorentz estimates 

Theorem 3.3. For every 0,
Θ
nα

   
  and Θ

Θ
na

n
α

 , there exists positive constants 0λ , 0 ,ε  

b , c  and 0C   such that the following distribution inequality 
        ,a b c

P P F Qd C d d dα α α αε λ ε λ ε λ ε λ      (3.30) 

holds for all 0λ λ  and  00,ε ε . 

Proof. Applying Theorem 3.2, for each Θ
Θ

na
n

α
 , there exists positive constants 0λ , 0ε , 

b , c  and 0C   such that , Cε λ λε   holds for all 0λ λ  and  00, .ε ε We have 

      , 1 2 3 1 2 3, with , , .a b cP F Qε λ α α αε λ ε λ ε λ        Μ Μ Μ        

For every subset Ω , we denote c  by the complement of  , i.e. \ .c Ω   Using 
several simple decompositions, we obtain that 

     1 1 1 2 3 2 3 , 2 3 2 3 .c c c cCε λ λεΩ                
              

Therefore, we can rewrite the above inequality as follows 

        ,a b cP C P F Qα α α αε λ ε λ ε λ ε λ      Μ Μ Μ Μ  

which is the same as distributional inequality (3.30) by presenting the notion in (2.2). 

Theorem 3.4. For every 0,
Θ
nα

   
, Θ0

Θ
nq

n α
 


 and 0 s  , there holds 

      , , ,1 .q s q s q sL L L
P C F Qα α αΩ Ω Ω

  Μ Μ Μ   (3.31) 

Proof of Theorem 3.4. First of all, using the definition of quasi-norm in Lorentz space and 
changing variables from λ  to aε λ− , we get that 

     ,
0 0

d d .q s
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Thanks to (3.30), it implies that 
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It follows that 

   

     
0

,

0

0

0

0Ω

d

d d d .

q s

s
s as s a q

PL

s s ss
as s s b s cq q qq

P F Q

P q d

Cq d d d

α
α

α α α

λ

λ

λλ

λε λ ε λ
λ

λ λ λε λ ε λ λ ε λ λ ε λ
λ λ λ

 

  


    
                     
 





Μ

 

By performing some variable changes, it follows that 
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It is noted that it is possible to choose   0 diam
α

λ Ω . Hence, we can conclude that 
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− − − −

Ω Ω Ω Ω

 
≤ + + +  

 
Μ Μ Μ Μ     (3.32) 

For every Θ0
Θ

nq
n α

 


, one can choose a  such that 1 0a
q
  . It allows us to choose 

0ε   small enough in (3.32) to obtain (3.31). The proof is now completed.  ■ 
4. Applications  

In this section, we discuss how to apply the previous results to regularity theory for 
quasi-linear elliptic problems with variable exponents. For simplicity, we will consider a 
typical version of these classes of problems. Specifically, we study following p(x)-Laplace 
equation 

 
  2div( ) in , 0 n| o| ,p x

p x u u∆ Ω Ωg g      

where Ω  is an open bounded domain in n  for 2n  and g  is a data function. Here, we 

denote by  
  2Δ div( | | )p x

p x u u u    the p(x)-Laplace operator of u . Moreover, the 

variable exponent  p   is assumed to be continuous and satisfies the following condition 

 1 21 , for all .p p x p x Ω      

Tran et al. (2023) proved that for every 0x Ω  and 0r  , one can find a function v  and a 
constant 1Θ  such that 
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for every  0,1τ   and for a suitable assumption on the boundary of Ω . In particular, we 

obtain the global estimate    d d .p x p xu x C x
Ω Ω
   g  Therefore, it is possible to check 

that Assumptions 1.1–1.4 are valid for the functions 

         : , : 0 and : .p x p xf u u g u F x g     From Theorem 3.4, it can be concluded that  

 
    ,, 1 q sq s LL

f u C Fα α ΩΩ
 Μ Μ  for 0,

Θ
nα

   
, Θ0

Θ
nq

n α
 


 and 0 s  . 

Using a similar technique, our distribution inequality can also be applied for non-uniformly 
elliptic problems with variable exponents (Tran et al., 2022, 2024).  
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TÓM TẮT 
Bất đẳng thức hàm phân phối gần đây được đề xuất bởi các tác giả Trần & Nguyễn có thể sử 

dụng để khảo sát các đánh giá gradient cho nghiệm của phương trình đạo hàm riêng. Đặc biệt hơn, 
các tác giả đã đề xuất một số điều kiện đủ cho hai hàm đo được nhằm thu lại đánh giá so sánh giữa 
hai chuẩn của hai hàm trên không gian Lebesgue tổng quát. Các kết quả tiếp tục được ứng dụng 
trong một số lớp bài toán dạng p-Laplace. Trong bài báo này, chúng tôi mở rộng bất đẳng thức này 
để ứng dụng được trong nhiều lớp phương trình khác. Một cách chính xác hơn, bất đẳng thức hàm 
phân phối chúng tôi đề xuất có thể áp dụng được cho phương trình dạng p(x)-Laplace, được biết đến 
như là dạng phương trình tựa tuyến tính với số mũ biến.  

Từ khoá: bất đẳng thức hàm phân phối; bài toán elliptic tựa tuyến tính; không gian Lorentz; 
lí thuyết chính quy; phương trình p(x)-Laplace; số mũ biến 
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