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ABSTRACT

The distributional inequality recently introduced by Tran and Nguyen has been used to
investigate gradient estimates for solutions to partial differential equations. In particular, the
authors established several sufficient conditions under which two measurable functions can be
compared via their norms in general Lebesgue spaces. The results are then applied to some classes
of p-Laplace type problems. This paper extends this inequality to make it applicable to a broader
range of equations. Specifically, we propose a generalized distributional inequality that can be
applied to the p(x)-Laplace equation, the typical version of quasi-linear elliptic equations with
variable exponents.

Keywords: Generalized distributional inequality; Lorentz spaces; p(x)-Laplace equation;
Quasi-linear elliptic problems; Regularity theory; Variable exponents

1. Motivation and introduction

Let Q be an open bounded domain in R" and F, G be two Lebesgue measurable
functions defined in Q. In recent papers, Nguyen et al. (2021) and Nguyen and Tran (2021)
proved the following distribution inequality.

dg (67*4) <Cedf (4)+d5 (e°4), (L.1)
forall 2 >0 and ¢ > 0 small enough, under some sufficient conditions of Fand G. Here,
a and b are two positive constants, and the distribution function d; is considered as the
Lebesgue measure of level sets corresponding to the fractional maximal operators M,, .
More precisely, di* is defined by d (1):= |{er:Mah(x)> /1}| for 2 >0, where h is
measurable in Q and M, is the fractional maximal operator (see Definition 2.2). The most

interesting point is that the distribution inequality (1.1) implies the following statement
M, FeX=M,GeY, (1.2)
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in several function spaces X and Y, such as Lebesgue space, Lorentz space, or Orlicz space.
The statement in (1.2) has many meanings about the fractional maximal operator, which is
closely related to the fractional order derivative and Riesz potential (Muckenhoupt &
Wheeden, 1974). On the other hand, using the boundedness property of maximal operators
M, one can obtain that F e X =G €Y.

If we present 7 and G as the terms of data and solutions of partial differential
equations, respectively, then we can obtain a regularity result for solutions. This type of
result has been studied in many works (Acerbi & Mingione, 2005, 2007; Byun & Ok, 2016).
By (1.2), Nguyen and Tran (2021) presented some applications to obtain the regularity
results for some classes of quasi-linear elliptic equations, such as the p-Laplace equation and
the obstacle problems associated with the p-Laplace operator. The method can be applied to
many other problems (Nguyen et al., 2023; Tran & Nguyen, 2022a, 2022b, 2023; Tran et al.,
2023). However, it cannot be applied to several cases of problems, such as the quasi-linear
elliptic systems, the non-linear problems with variable exponents, and the measure data
problems. Motivated by these works, this study aims to establish a new distribution inequality
that is more general than (1.1) for applying to larger classes of partial differential equations.

We now introduce some general notations. We write B, (x) to indicate the ball with
radius r >0 and centered at x e R" and Q_ (x) =B, (x)NQ. Next, notation |B| presents the

Lebesgue measure of the measurable subset B C R". For simplicity of notation, the set
{|h| > /1} will be used instead of {x cQ: ‘h (x)‘ > /1} . On the other hand, we always consider

the letter C as a general constant, and its value may change from different lines of estimates.
Let us consider two given vector-valued functions u and v:Q — R™ with m>1. Assume
that f, g:R™ —[0,00) and F :Q —[0,00) satisfy all the following assumptions. We will
write f (u) instead of f(u(z)) with zeQ.
Assumption 1.1. There exists a constant C > 0 not depending on u and v such that
f (u)gC[f (u—v)+ f (v)] and f (v)gC[f (u—v)+ f (u)] in Q.
Assumption 1.2. There exists a constant C >0 not dependingon f, g and F such that
fg f(u)dz < Cfg[g (u)+F (z)]dz.
Assumption 1.3. There exists a constant R, >0 and ® > 1 satisfying

1 o c B
mj‘gr%)[f (v)]° dz Smﬁzzf(xo)[“— f (v)]dz forall x, €Q and r € (O;R,].

Assumption 1.4. There exists a constant x>0 and C > 0 such that the following inequality

Lr<xo)f(U—V)dz§r1Lr<XO)f(u>dz+rzfgr(xo)g(u)dz+C(r1+72)7 fgr(xo)F(z)dz,
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holds for every z,, 7, €(0,1), r>0 and x, € Q. Let us now state our main results under

Assumptions 1.1-1.4. The results are studied in two steps. In the first step, we construct the
following distribution function inequality

a —a a a b a c
df(u)<8 /1) §C5df<u)(/1)+dF (8 Z)+dg(u)<6 /1),
for & small enough and A large enough. Using this inequality and the definition of norm in
Lorentz space L**(Q), we can show that
o)

for a suitable value of -, where P = f (u) and Q =g(u).

M..P

 <C(1+|M,F|

o) +M.Qlles

L9 (@ L9 (

In the next section, we recall some well-known definitions of Lorentz spaces and
fractional maximal operators, and we present key results concerning the boundedness of the
maximal operator. In Section 3, we establish the general form of the level set inequality,
from which the distributional inequality is derived. Then we also obtain the norm estimates
in Lorentz space. These proofs are presented in Section 4. In the last section, we discuss
some applications to quasi-linear elliptic problems involving variable exponents.

2. Lorentz spaces and maximal operators

In this section, let us recall the definitions of Lorentz spaces, fractional maximal
operators, and distribution functions associated with maximal operators. Moreover, we
present some useful boundedness properties of maximal operators.

Definition 2.1. (Lorentz spaces) For some ¢ € (0,00) and s €(0,00], the Lorentz space

L‘“(Q) is defined as the set of all Lebesgue measurable functions h on Q such that

o/ h

1
— itig)ﬂ‘{x cQ: ‘h(x)‘ > /1}‘“ < .

1

S

In xe (x> 21 2 <, 1)

L S

as s=o0o and |h|

L% ”“

Definition 2.2. For every a € [0, n], the fractional maximal operator M, is defined by

(y)dy, forxeR", hel]

loc

M, h(x)= supif (R").

r>0

If & =0, it coincides with the Hardy-Littlewood operator, i.e. M =M, . The two following
results (Propositions 2.3 and 2.4) can be found in Grafakos (2004).
Proposition 2.3. The Hardy-Littlewood operator M is bounded from L*(R") to L (R")

for all g >1. This means there exists a constant C > 0 such that

HXE]R”: h x)‘>/1}‘§% o h x)‘q dx, forallA>0and he L*(R").
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Proposition 2.4. Operator M is bounded in Lorentz space L*° (R") for all g>1 and

0 < s <oo. This means there exists a constant C > 0 such that
[Mh ) <Clh for all he L% (R“) .

Lq,s(Rn Lq,s(Rn) )

Let us now state the boundedness properties of fractional maximal operators (see Tran &
Nguyen, 2020 for the proofs).
Proposition 2.5. (Tran & Nguyen, 2020) For all & €[0,n), there holds

n—a

er]R” :Mah(x)>i}‘gc[%fw‘h(y)‘dy , forall 1>0and he !(R").

Corollary 2.6. Let 0<a <n, r>0 and x€R". Then exists a constant C > 0 satisfying

1
If B (4

Proposition 2.7. (Tran & Nguyen, 2020) Assume s >1 and « €

HMa (ZB,(x)h)>/1H§C h(y)‘dy]na, forall 2>0 and he L, (R").

. Then exists a positive

0
S

constant C =C(n,s,a)> 0 such that

‘{Mah>/1}‘§C[%fRn‘h(y)sdy ", forall A>0and he L°(R").

Definition 2.8. Let & €[0,n) and h be a measurable function in Q. We define by d; the

distribution function of h as d;’ (1):= Hx €Q:M,h(x)> 4}, 1>0.

3. Main results
3.1. Generalized level-set inequality
We first prove a generalized level-set inequality, which can be obtained by the
following covering lemma.
Lemma 3.1. (Covering & Peral, 1998) Let R, >0 and V C W be two measurable subsets

of Q. Assume that ¢ €(0,1) satisfying |V|§g‘BR0 (O)‘ Moreover, xeQ and re(0,R,],
‘Vﬂ B, (x)‘ >¢
such that |V| <Ce|W|.

B, (x)|=(QNB, (x))CW. Then, there exists a constant C=C(n)>0

From now on, for simplicity of notation, let us denote P = f (u) and Q=g |(u).

Theorem 3.2. We assume that all Assumptions 1.1-1.4 are satisfied. For every « €

o,ﬂ]
)

. . D
< there exist positive constants 4,, &,, b, ¢ and C :C(n,a,s,R—]>0
0

n—oe
ne

and a>

427



HCMUE Journal of Science

Le Khanh Huy

such that the distribution inequality [)),| < Ce|W,|holds for all &€(0,5,) and 4> 4.

Here V. ,, W, are defined by

V., ={M,P>c"AM,F<&£AM,Q<s2} and W, ={M,P>21}.

Proof. The proof will be divided into two steps. In the first step, let us prove that for all

&> 0 small enough and A > 4, there holds

‘Vm‘ < g‘BRO (O)‘

(3.1)

We assume V) , = @, since (3.1) is valid if V) , = @. Then there exists x, € Q such that

M F(x)<&4evn>0: 1 F(x)dx < &°A,
JF(x)<e"revn> 5, (x) fw (x)dx<e
¢ .o ¢
M <&l eVn>0: dx < £°4.
Q%) <& e V> 5 () Sy QX)ox<e

(3.2)

Let us set D = 2diam(Q) and B =B, (x, ), where diam(Q) denotes the diameter of Q. By

Proposition 2.7 for s =1, we can see that

C e
7 fQP(x)dx] :

Using Assumption 1.2, we observe that

fQ P(x)dx < CfQ[Q(x)+ F (x)]dx.

Substituting (3.4) into (3.3), we can rewrite (3.3) as

| <ffm.p> o2 <

&

From (3.2), and choosing 77 = D = 2diam (), we have
D“ b D“ c
HfBF(X)dXSE A, and HIBQ(x)dxgg A
It follows that
fB F(x)dx<C(n)D"“&"4, and fBQ(x)dx <C(n)D"“&°A.
Replacing (3.5) by (3.6), we obtain

(a+b)n 1 (a+c)n
& n—a +g n—a

V.

LS <

Let us choose positive constants b, ¢ and ¢, satisfying conditions

428
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x)dx)] “. (35)
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n (atb)n (atch
<a+b)n_l>o’ M_1>O, C[R] [gl"a —{—6‘1”7& <1. (3.7)

n—a n—a

It allows us to conclude (3.1) for every ¢ €(0,¢,).

Let us consider the second step of the proof. For all xeQ and r€(0,R], assume that
QN B, (x)Z W,, we need to prove that

B, (x)|. (3.8)
Inequality (3.8) holds if V., N B, (x)=2, so let us suppose V., N B, (x)=a. Then there

V. ,NB,(x)

exist X, € QN B, (X)W, and x, €V, NB, (x), which means
M,P(X,) <A, M,F(%)<e&°4, and M, Q(x;) < &°A. (3.9)
We now prove that the operator M_P can be replaced by the cut-off operator M| P when
¢ is small enough. Indeed, for all y € Q, it is easy to check that
MaP(y):max{M;P(y);T;P(y)}, (3.10)

where the cut-off operators M!, and T are defined by

MP(s)= ol o P TiP(y)=sume T Pl
We have |V , NB, x‘gHyeB (x): . (y)>g*a1}‘ which by (3.10) yields that

V., NB, () <[{yeB (x):M[P(y)> "2} +[{y€B,(x):TiP(y)>&72}| (1Y)

Getting y € B, (x), forall n>r and zeB, (y), B, (y)CB;, (X,). Hence, one has
T.P(y)<3m sup(BU)QﬁfB P(z)dz <3"“M_P(x,).
n>r 3 37\ X2

Using inequality (3.9), we have T!P(y)<3"“1, VyeB, (x). Forall &> 0 satisfying

n—a

53" o g<g, =3 @, itiseasy to see that

{yeB, (x):TiP(y)>¢e A} =2 (3.12)
Combining (3.11) and (3.12), we obtain
1, NB, ()| <[{y € B, (x):M[P(y) >z 4} (3.13)

Further, forall yc B (x) and 77 €(0,r), itis clearly to see that B, (y)C B,, (x) and

M!P(y)= sup

0<q<r

Substituting (3.14) into (3.13), there holds

‘f Zs,, P(2)dz =M, (ZB ()P)(y)- (3.14)
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V., NB, (x| < HM (Ze.00P)> g%}‘. (3.15)
forall e (O,gz). Next, we apply Assumptions 1.3 and 1.4 to prove inequality (3.8). We

consider two cases. In the first case, let us assume that B,, (x) C Q. Using Assumption 1.4,
we have C >0 and x> 0 such that

fwx) fu-vjde< TleW) fu)dz +Tzfs4r(x> g(u)dz+C(r,+7,) " |

By (%)
forall 7,, 7, €(0,1). Since x, € B, (x), we can check that B,, (X) C By, (X,). It leads to

F(z)dz,

1 B,, (X f n fsr . P(z)dz
fmx) ‘ S \B5r \ S[Z] i

.04 B ()
< {%] (5r) “M,P(x,) < [%] (r)“A=Cra. (3.16)

Similarly, we have B, (x)C B, (X;). Using inequality (3.9), it is easily seen that

1

‘B ‘ o Q(z)dzé[%]n (Sr)“MOCQ(XS)S[%]n (5r) “e"A=Cre°A.  (3.17)

Performlng the same proof we also have

\BM ‘fB z)dz <Cr“sA. (3.18)

Combining all estimates in (3.16), (3.17), and (3.18), we obtain that

T+, +(n+1,) &

r=1(1,7,)>0

r“i=Crr A (3.19)

‘j; u vdz<C

Using Assumption 1.3, there exists ® >1 such that

1
(o ool ]dZ] a1 -

From Assumption 1.1, we have f(v)_C[f (u=v)+ f (u ] Using (3.16) and (3.19), we

obtain

‘B ‘fBA —m[fm u v dz+f ] SCr’“l(r-i—l).(&Zl)
Substltutlng (3.21) into (3 20), we get that
‘fB V)" dz<clrea(r+1)+1. (3.22)
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Using Assumption 1.1 again, we get f (u) < C[f (u—v)+f (v)] and

M}, (%6, P < c/[M; (2o, ) (U=V))+ M (7, f (v))}. (3.23)
On the other hand, from (3.15), we obtain that
1, NB, (x) < HM; (2o, 0 F (u=))> c’g—%}‘ +HM; (2o, 0 F (V) > c’g—%}‘. (3.24)

Applying Proposition 2.7 for s=1 and s = ® > 1respectively, we have

n—a

1

C’g*a/lj; mf(u—v)dz (3.25)

HM; (;(Bzr(x) f (u —v)) > C’ga;tH <C

n
n—Oa

1 fszr(x)[ f(v)° dz] - (3.26)

(cea)’

and HM; (2o, F ()] > C’g‘al}‘ <C

It is seen that [B,, () ~|B,, (x)|~r", and we get
fsz,(x) f(u—v)dz < or .fBA,(x) f(u—v)dz 3 Cophe
C'e?®r  ~&'a B,.(x) T &°
which will be substituted into (3.25). On the other hand, we have
[©] (©]
fsz,m[f Wdz o f52r<x>[f (v)|” dz _crne®

(C’g*a/l)e = (gfa/1>® ' B, (x)‘ - a°

=Crs?r" 7,

[rea(z+1)+1

(€]

<Cr"g® [r“ (r —|—1)+%] <Crhg® ((r + 2) r )®

<C (T + 2>® ["-0a 02 <C (‘L'@ +1> rn—@agea’
which will be substituted into (3.26). We need A satisfying condition
%gr"‘ sa>r (3.27)
Choosing 4, =r;” >0, then inequality (3.27) holds for all A > 4, because A > A, =r;" > r”.
Finally, from (3.24), (3.25), and (3.26), we have

n

(rgar”*“ )é + (<T® +1) 0 g )m

v, NB, (x)|<C

n na n ®na

pragna +(70 10w gn-o J&“Br (x))- (3.28)

<C

Choosing 7, and 7, , which are satisfied
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0,6t =(r,+71,) " € s

c -k p Tl - 2—28 L= ng
T, =1,6=(1,+71,) & & e R
_ <l—|—£°> Lix gltx

We need &> 0 small enough to ensure that 7, and 7, in (0,1), which is equivalent to

k be b

=(14&°) et <t <land 7, = 1,6 <1.
For b>c, it is possible to find &>0 small enough to imply that 7, and 7, in (0,1).

Subsequently, we obtain that
b-c b-+cx b
t=1,+7,6 +(r,+71,) & =3r,6° <3’ <Ce v <Cel*r. (3.29)

Combining (3.28) and (3.29), we can rewrite

n
nb ®na

v, NB, (x)] <Cle e gne” +[3®€®b N 1]n_®a e
Y <1

B, ()

n[b+(1-+x)a] ona

g(n—a)(l+r<)7 4 gn-0a 1]8‘Br (X)‘

<C

n[b+(1+lc)a]
(n—a)(1+x)

such that (3.8) holds for all & €(0,&,). In the remaining case, when B, (x)N0Q = &, there

. n—
Since a> @ , we may choose b such that

>1. One can find & >0

exists x, € 0Q, satisfying |x —x,|=d (x,0Q) < 4r. Since B,, (x)C B, (X,), we get that

V., NB,(x) < HM ( ;(%(XA)P) > g—u}‘.

Using Assumption 1.4, we have x>0 satisfying forall 7z, 7, € (0,1) , we have

f f u v f
‘le ‘ Qup(%4) ‘ Qip(%4)

+2 ‘le “j;lz (%) dz +C Tl +T2 E ‘ me (%)

By Assumption 1.3, we have ® >1 such that

©

‘Qs:lel )‘ fQGr(X4)[ : (V)]e ) =C ‘le:txél )‘ leZr(X4)[1+ f <V)]d2.
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Finally, the proof of inequality (3.8) can be performed similarly to the first case. Hence, two
conditions of the covering lemma are valid for all 2>4 =r7 and e€(0,&,) with

& =min{e, &,,&,}. The proof is completed. C

3.2. Distributional inequality and Lorentz estimates

a . -
Theorem 3.3. Forevery a € , there exists positive constants 4,, &,,

o,ﬂ] and a>—
®

b, ¢ and C > 0 such that the following distribution inequality
de (67°4) <Cedg (A)+df (£°2)+dg (£°4), (3.30)
holds for all 2> 4, and £ €(0,¢,).

. n— : .
Proof. Applying Theorem 3.2, for each a > i , there exists positive constants 4,, &,

b, ¢ and C >0 such that [V} ,| < Ce|W,]| holds for all 2> 4, and & €(0,z,).We have
V., =Nnyny, with Y ={M_ P>z}, ={M,F <s°2},), ={M,Q < &4},

For every subset V c Q2, we denote V¢ by the complement of V, i.e. V°*=Q\V. Using
several simple decompositions, we obtain that

M =pnef<pn[mnuumny)] <

Vs

)<

W+

1}20

+V3.

Therefore, we can rewrite the above inequality as follows
(M, P> 22} <Cal|{M,P> 2} +[{M,F > "2}|+[{M,Q > &2},
which is the same as distributional inequality (3.30) by presenting the notion in (2.2).

and 0 < s < oo, there holds

Theorem 3.4. For every a €

O,ﬂ],0<q<
® n—0«

M, P

<CL+|M,Fl,.

ey ML Qs ) (331)

Proof of Theorem 3.4. First of all, using the definition of quasi-norm in Lorentz space and
changing variables from A to &*4, we get that

()

M Pl =0, 2 {MaP>}LH:d7/1: [ [ (o) O
Thanks to (3.30), it implies that
M Pl =06 [ 20 (724 d%qqg [ o (o) dj

f #los(e i)

qe f:ﬁ (Cedg (4)+dg (£°2)+d§ (g%))z d%
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It follows that

S R

f:zsg:[ q—+f 22 ( ] dj+ A dg (e°a)|f df

By performing some variable changes, it follows that
L‘“(Q)]

M. Pl

+Cqge

1
M., P[; §C|Q|E/1§+C [ ] M, P[] g *° M, Q

LqS(Q)] :

It is noted that it is possible to choose 4, =(diam(©))". Hence, we can conclude that

—(a+b)s "M F

qu

L@ ) (e )

<C 1+gq ||M P| M, F

—a—c "MaQ

(@ o)

1

M., P <c(1+g M., P|

&7 M,F|

ey 7€ MLQ)

L9*(Q L5

y (Q)]. (3.32)

1
o0’ one can choose a such that =—a > 0. It allows us to choose
n—Oa q

&> 0 small enough in (3.32) to obtain (3.31). The proof is now completed. =
4.  Applications

In this section, we discuss how to apply the previous results to regularity theory for
quasi-linear elliptic problems with variable exponents. For simplicity, we will consider a
typical version of these classes of problems. Specifically, we study following p(x)-Laplace
equation

—A u=—div(g|"™?g)in Q, u=00nQ,

where Q is an open bounded domain in R" for n>2 and g is a data function. Here, we

For every 0<qg<

denote by Ap(x)u:div(|Vu|p<x>‘2 Vu) the p(x)-Laplace operator of u. Moreover, the
variable exponent p() is assumed to be continuous and satisfies the following condition
1<p <p(x)<p,<oo, forall xeQ.

Tran et al. (2023) proved that for every x, € Q and r >0, one can find a function v and a
constant ® >1 such that

1 op(x) 1 p(x)
—‘fgr(xo)|VV| dXSC 1+ mfgzr(y)|VV| dx

\Q

and |Vu—Vv|p<x) dngj; ( )|Vu|p(*> dX+CTfQ ( )|g|p(x) i

er(x0>
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for every 7 € (0,1) and for a suitable assumption on the boundary of Q. In particular, we

obtain the global estimate fQ|Vu|p(X) dx gcﬁ)|g|p(x) dx. Therefore, it is possible to check
that Assumptions 1.1-1.4 are valid for the functions
f(u)= |Vu|p<x), g(u):=0and F(x):= |g|p(x). From Theorem 3.4, it can be concluded that

ne®

M, f(u) for ac

and 0<s<oo.

gC(1+||MaF|

n
Lq,S(Q)) O’@J' 0<g<

Using a similar technique, our distribution inequality can also be applied for non-uniformly
elliptic problems with variable exponents (Tran et al., 2022, 2024).

195 ()
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DANG TONG QUAT CUA BAT PANG THUC HAM PHAN PHOI VA UNG DUNG
Lé Khanh Huy
Truong Pai hoc Su pham Thanh phé Ho Chi Minh, Viét Nam
Tac gia lién h¢: L& Khanh Huy— Email: huytpthcs@gmail.com
Ngay nhdn bai: 13-10-2023; ngay nhdn bai sira: 30-3-2024; ngay duyés dang: 05-6-2024

TOM TAT

Bdt ddng thizc ham phan phéi gan day duroe dé xudt bai c&c tac gia Tran & Nguyén c6 thé si
dung dé khdo sdt cdc danh gida gradient cho nghiém ciia phirong trinh dao ham riéng. Pac biét hon,
Cac tac gia da dé xuat mot sé dieu kién dii cho hai ham do dwroc nham thu lai danh gid so sanh giira
hai chudn cua hai ham trén khong gian Lebesgue téong quét. Cac két qud tiép tuc duwoc ing dung
trong mét sé I6p bai toan dang p-Laplace. Trong bai bao nay, chdng toi me réng bdt dang thizc nay
dé img dung duoc trong nhiéu 16p phuwong trinh khac. Mét cdach chinh xdc hon, bdt dang thirc ham
phan phéi chiing t6i dé xudt c6 thé ap dung dwoc cho phirong trinh dang p(X)-Laplace, dwot biét dén
nhu la dang phirong trinh tra tuyén tinh véi so mii bién.

Tir khod: bat dang thizc ham phan phdi; bai toan elliptic tua tuyén tinh; khéng gian Lorentz;
Ii thuyét chinh quy; phwong trinh p(x)-Laplace; s6 mii bién
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