e TAP CHI KHOA HOC HO CHI MINH CITY UNIVERSITY OF EDUCATION

g e P = TRUONG DAI HOC SU PHAM TP HO CHi MINH JOURNAL OF SCIENCE

_'J Tap 21, S6 3 (2024): 468-475 Vol. 21, No. 3 (2024): 468-475

ISSN: Website: https://journal.hcmue.edu.vn https://doi.org/10.54607/hcmue.js.21.3.4123(2024)
2734-9918

Research Article
THE NUMBER OF SOLUTIONS OF CONGRUENCE

OF HOMOGENEOUS QUADRATIC POLYNOMIALS

WITH PRIME MODULUS

Le Van Manh
Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
Corresponding author: Le Van Manh — Email: 4601101084 @student.hcmue.edu.vn
Received: February 01, 2024; Revised: March 04, 2024; Accepted: March 06, 2024

ABSTRACT

This research focuses on the proofs of the formula to calculate the number of solutions of the
congruence f(x,...,x,)=a (mod p), where f(x,,...,x,) is a homogeneous quadratic polynomial
with integer coefficients and p is a prime (referred to as congruence of a homogeneous quadratic
polynomial with prime modulus). The study studies the problem naturally through relatively
elementary results, including those from number theory and quadratic forms, to construct the
formula to calculate the number of solutions of the aforementioned congruence. Unlike other proofs
using advanced knowledge, the research results not only provide the formula to calculate the number
of solutions but also demonstrate that all solutions of a congruence of a homogeneous quadratic
polynomial with prime modulus are entirely determined by applying algebraic transformations to
quadratic forms.
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1.  Introduction

Congruences is a major research direction of modern number theory. According to the
fundamental theorem of number theory, every number greater than 1 is the product of some
prime numbers. Therefore, studying the congruences to a modulus m can be reduced to
studying the congruences to a prime modulus. The existence of a solution and the formula
to calculate the number of solutions of congruence of a homogeneous quadratic polynomial
with prime modulus can be derived by combining well-known results from number theory
such as Chevalley’s Theorem, Warning’s theorem, Gauss’s sum (Borevich & Shafarevich,
1966). In this paper, we present a new method for the proof. This method only relies on
elementary knowledge at the undergraduate level including knowledge of quadratic forms
(Bowers, 2000) and number theory (Davenport, 2008).
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2.  Quadratic forms
This section introduces some results on quadratic forms necessary for the subsequent
proofs. From now on, p is an odd prime.

Definition 2.1. A homogeneous quadratic polynomial over the ring Z is a polynomial in
some variables with coefficients in Z and each term is of degree 2.

For a homogeneous quadratic polynomial f(xl,...,xn) over Z, if we consider its
coefficients as elements of the field Z ;, we get a quadratic form over the field Z ; and we
also denote it by f(x,,...x,). In this case, the number of solutions to the congruence

f(X,....,)=a(mod p) is equal to the number of solutions of the equation f (x,,...x,)=a

ey A sy A\

over the field Zp.

Note that a quadratic form in n variables over the field Z | can be written as the form

f(xi""’xn)= Z ;XX @,

1<i<n
I<j<n

where & €Z,, & =a,Vi, j. The matrix A=|a | is the matrix of the quadratic form f.

The form f in (1) canalso be written as the form f = X" AX where X is the column vector
of n variables and X denoted the transpose matrix of X . The determinant of A is called
the determinant of the form f . From now on, we only consider quadratic forms over Z,

with nonzero determinants (these quadratic forms are called nonsingular).
Definition 2.2. (Equivalent quadratic forms). Two quadratic forms f =XTAX and

g =Y'BY are called equivalent if there is a nonsingular transformation in variables which
takes f to g. That means there exists a matrix C whose determinant is nonzero such that
X =CY.

Follows from that, we have C" AC =B . Therefore, if f and g are equivalent, their
determinants differ by a square element of Z . Moreover, the number of solutions of the
equations f =0 and g =0 is the same.

We say that the quadratic form f represents an element o of Z if the equation

f =a has a nonzero solution. It is clear that if f and g are equivalent, f represents «,
then g also does. We have the following results.
Proposition 2.3. (Representations of a quadratic form). If the quadratic form f (in n
variables) represents an element =0 of Z , then f is equivalent to a form of the
following form

ay’+9 (2),
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where g isalso a formin n—1 variables.

Proof. We may write f as f =XTAX, where A is a symmetric matrix. Because f
represents « , there exists X = (X,,..., X, )" #0 such that x” Ax = & . We can find a nonsingular
matrix C whose first column is x. We apply to f the linear substitution whose matrix is C
and obtain an equivalent form f'=X" A'X"' of f whose matrix has « as its very first
element. Now, let D be a matrix whose first columnis (1,0,...,0) and n—1 last columns are
column vectors which are a base of the subspace generated by the linear equation A 1l]x=0
, where A'[1] is the first row of A'. Apply to f' the linear substitution whose matrix is D,
we obtain a form of the form (2) which is equivalentto f .

With this proposition, we easily get the following result.
Corollary 2.4. Every quadratic form can be put in diagonal form by some nonsingular linear
substitution.

Proposition 2.5. If the quadratic form f represents zero, then it represents every element of
Z

.
Proof. Two equivalent quadratic forms share the same set of representations. Therefore, it

suffices to consider f in diagonal form f =ax’+..+a,x,>. Suppose that there is
(t,...t,) =0 such that f(t,...t )=0 or at’+at’+..+at’=0, we can assume that
t #0. We may write n variables X,...,X, in the new variables t as x =t (t+1) and
X, =t (t—1) vl<i<n. So that we get
ft) =a,(t(t-1)) +a,(t, (t+1)) +..+a, (t, (t+1))’

=at? (1 -2t +1)+at,’ (1 +2t+1)..+at’ (t* + 2t +1)

=(at? +a,t,” +..+at?)(t +1)+ (at’ —a,t, —..—at,)2

=4at’t.
Consequently, the equation f(x,,..,x,)=a (a=0) has at least a solution, that is
x, =t (t"+1) and x, =t (t"-1) Vi<i<n, where t’ :a(4a1t12)71.

3. Main results
To prove the main results, firstly, we have the following lemmas.
Lemma 3.1. The quadratic form f (in n variables) represents a #0 if and only if

—ay? + f represents zero. In this case, the number of solutions of the equation f =a is
1 . . i
equal to —1(k —1) with k, I are the numbers of solutions of equations —ay* + f =0 and
p_

f =0, respectively.
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Proof. Left implies right is clear, it suffices to show that if —ay® + f represents 0, then f
represents « . Indeed, let (y,, x,,...,x,) = 0 suchthat —ay,’ + f (x,..,x,)=0.1f y, =0, then
f represents 0, so that it represents « . Otherwise, if y, =0, then f(xy, ™ ,...X,Y, ) =a.

Furthermore, for each nonzero solution (ai,...,an) of the equation f =a, we get exactly
p —1 distinct nonzero solutions of the equation —ay’+ f =0, that are (yo, Yooy yoan)

where y, €Z \{O}, which are not solutions of the equation f =0. Therefore, the number

of solutions of the equation f =a is equal to Ll(k—l) with k, | are the numbers of
p_

solutions of equations —ay”+ f =0 and f =0, respectively.
Lemma 3.2. If the form f (in n>2 variables) represents zero, then it is equivalent to the
form of the following type
VY. +9 (3),
where g isalso a formin n—2 variables.
Proof. Because f represents zero, f also represents 1 (by Proposition 2.5). So, f isequivalent
to a form of the type y? + f '. Therefore f' represents —1 and that f is equivalent to the form
of the type y*-z°+g (by Lemma3.1). Set y,=y+z and y, =y—z, we get f equivalent
to the form of the type (3).
Lemma 3.3. The equation f (x,,...,x,)=0, where f isa quadratic form over the field Z ,
has a nonzero solution if n>3.
Proof. It suffices to prove the statement for the case n=3 and f =x*+x,°—ux,’. The
equation X +X,” —ux,” =0 is equivalent to x* +x,> = ux,”. Consider the set
S={I"+b’|0<b< p}.
If S contains a multiplicity of p, say 1+b,”, then (1, bO,O) is a nonzero solution of

f. Assume that S does not contain any multiplicity of p, we have |S|= p. Consequently,

if S only contains square numbers modulo p, then by pigeonhole principle, there exists at

least {%H} =3 elements of S, which is in the same residue class modulo p (itis
p_

not true). Using similar reasoning, if S only contain non-square numbers modulo p, we
obtain that there are square and non-square numbers modulo p in S. With this remark, we

can find by € Z )\ {0} such that
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)

so (1+ boz)u‘l =h* for some b, € Z . We get a nonzero solution of f, thatis (1,by,b).

Lemma 3.4. The number of nonzero solutions of the equation f =0 when n=2 is

p—1+(ij(p—1),where d isthe determinant of f .
p

Proof. By Corollary 2.4, f is equivalent to the form ax® +by?, noting that [iJ = (—_abj
P p

and the number of solutions of f =0 and ax® +by* =0 are the same. If ax’+by* =0 has a

nonzero solution, says x=x,,y =Y,, then —ab™ = (x"'y)?. It follows that if (—%) =-1,

then f does not have any nonzero solution, the statement is true. For the case (—%) =1.

We write —ab™ =u? for some u e Z, and
ax’ +by’ =0 < Ux* = y* & y=Uxv y = —UX.
So the statement still holds for this case.

Now, we can state and prove our main results.
Theorem 3.5. The number of nonzero solutions of the congruence

f (X, X,)=0(mod p),

where f is a homogeneous quadratic polynomial (in n variables) over Z, is equal to
__1\n/2
p”‘1—1+(p—1)(—( L) d]p”/“ for n even,
p

p"t-1 for n odd,
where d denotes the determinant of f .
Proof. We may consider the equation f (x1 xn) =0 over the field Z ,. We shall prove the

case n even by induction on n as follows.
For n=2, by Lemma 3.4, the statement is true. For an arbitrary even number n> 2,
by Lemma 3.3, the equation f =0 has at least a nonzero solution. Using Lemma 3.2, f is

equivalent to some form y,y,+g. By that, we have d =(-1/4)d,, where d_ is the

g )
. d —d : .
determinant of g, so A = g D . Consider the equation y,y, + g(Ys,...,¥,) =0 (4),

we have three following cases.
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For each nonzero value of y,, for each set of values (ys,,...,y,), there uniquely exists
avalue y, which satisfies (4), thatis y, =—g(y,...,Y,)/y,. Therefore, we get (p—21)p"~?
nonzero solutions of (4) in this case.

Let y, =0, for each nonzero value a, the number of nonzero solutions of (4) for
which y, =0 and y, = a is equal to the number of solutions of g =0. Therefore, the number

of nonzero solutions of (4) inthe case y, =0,y, =0 is equal to

(p _1)( pn—3 +((_1)(n—2)/2 dg / p) p(n—2)/2—1) '
In the last case, when y, =y, =0, the number of nonzero solutions of (4) is equal
to the number of nonzero solutions of g =0 and that is equal to
pn—3 _1+((_1)(n—2)/2 dg / p) p(n—Z)IZ—l.

Combining these above cases, the number of nonzero solutions of (4) shall be equal to

_\(-2)2 n/2
p 1+ p—l)(( 1) d%} p2t = pnt _1+( p_l)((—l) %j p"2 1,

For the case n odd, we use similar reasoning by induction n.
For n=1, the statement is true. For an arbitrary odd number n>2, by Lemma 3.3,
the equation f =0 has at least a nonzero solution. Using Lemma 3.2, f is equivalent to

some form y,y,+g. Consider the equation VY, +9(Ys..Y,)=0 (4), we have three
following cases.

For each nonzero value of y,, for each set of values (Y,,...,Y,), there uniquely exists
avalue y, which satisfies (4), that is ¥, =—g(Y,...,y,)/y,. Therefore, we get (p—1)p"?
nonzero solutions of (4) in this case.

Let y, =0, for each nonzero value a, the number of nonzero solutions of (4) for

which y, =0 and y, = a is equal to the number of solutions of g = 0. Therefore, the number

of nonzero solutions of (4) inthe case y,=0,y, #0 isequal to (p-1)p""°.

In the last case, when y, =y, =0, the number of nonzero solutions of (4) is equal to
the number of nonzero solutions of g =0 and that is equal to p"°-1.

Combining these above cases, the number of nonzero solutions of (4) shall be equal
to

p"t-1.

The statement is proven.
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Theorem 3.6. Let a be an integer which is not divisible by p, then the number of solutions
of the congruence

f(X,...x,)=a(mod p),
where f is a homogeneous quadratic polynomial (in n variables) over Z, is equal to

_1 n/2d
p“-{—( ) Jp”’z‘l for n even,
p

1 (n+1)/2 d
pn—l _[( ) p a p(n+1)/2—1 fOr n Odd,

where d denotes the determinant of f .

Proof. We may consider the equation f (x1 xn) =a over the field Z .

Considering the case n even, by Theorem 3.5, the number of solutions of the equation

n/2
f =0 isequal to p"* —1+((_1) %j p"** and the number of solutions of the equation

—ay’+f =0 is equal to p"-1. By Lemma 3.1, the number of solutions of the equation
f =a shall be equal to

ﬁ[ p"~1-p"*+1-(p —1)((_1)m2%j p“’“j
= ﬁ( p"—p" —(p —1)((_1)m2%j p”’“]
= p”—l_((—l)n/z%j pn/2—1_

Considering the case n odd, with similar reasoning, the number of solutions of the
equation f =0 isequal to p"* -1 and the number of solutions of the equation

_1\(n+)/2
—ay’+f =0 isequal to p" —1+(p—1)(( V7 (zayd j p21 By Lemma 3.1, the
P

number of solutions of the equation f =a shall be equal to

(D2
1 [pn _1+(p_1)(( 1) . ( a)de(m-l)/Z—l_ pn—1+1j

p-1
_1 p"—p"l—(p-1) ( (-1"P?ad J p(m2-L
p-1 p
_ pn—l _( (_1)(n+l)/2 ad j p(n+1)/2,1.
p

The statement is proven.
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4.  Conclusion
With elementary knowledge at the undergraduate level, we stated and proved the

formula to calculate the number of solutions of the congruence f (x,...X,)=a (mod p),

where f is a homogeneous quadratic polynomial and p is a prime. Furthermore, the

research results also demonstrate that all these solutions are entirely determined by applying
algebraic transformations to quadratic forms.
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TOM TAT

Ngi dung chinh cza bai bao 1a chizng minh cong thitc vé sé nghiém ciia phicong trinh dong dw

f(X,...X,)=a (mod p), trong @ f(X,,...,X,) la da thirc thudn nhdt bac 2 véi hé sé nguyén va p

1a s6 nguyén t6 (goi tat la phwong trinh dong diw thuan nhat bac 2 theo modulo nguyén t3). Nghién
citu tiép cdn van dé mgt cach tir nhién thdng qua cac két qud firong doi so cdp, bao gom cac két qua
ciia 6 hoc va dang toan phirong, dé xay ding cong thic tinh s nghiém ciia phuong trinh dong die
noi trén. Khac véi cac chieng minh khac bang kién thitc cao cap, két qua cia nghién cizu khong chi
diea ra cong thirc tinh sé nghiém ma con chi ra rang cac nghiém cia phuong trinh hoan toan dioc
xde dinh théng qua viéc ap dung cac bién doi dai so cho cac dang toan phirong.

Tir khoa: phuong trinh ddng du; dang toan phuong bac hai; modulo nguyén té
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