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SEMICONTINUITY OF SOLUTIONS OF PARAMETRIC
SCALAR QUASIVARIATIONAL INEQUALITY PROBLEMS
OF THE MINTY TYPE

NGUYEN VAN HUNG', HUYNH THI KIM LOAN’

ABSTRACT
In this paper, we study two kinds of parametric scalar quasivariational inequality
problems of the Minty type (in short, (MQIP,) and (MQIP,)). After then, we discuss the

the upper semicontinuity, the lower semicontinuity, the Hausdorff lower semicontinuity the
continuity and H-continuity for these problems. The results presented in this paper are
improve and extend some main results of Lalitha and Bhatia [J. Optim. Theory. Appl. 148,
281--300 (2011)]. Some examples are given to illustrate our results.
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TOM TAT
Tinh chdt nika lién tuc ciia cdc nghiém ciia cdc bai toan
twa bat ding thirc bién phéin vé hwdng phu thugc tham sé \oai Minty

Trong bai b4o nay, ching toi nghién citu hai logi bai toan bdt ddng thirc twa bién
phan phu thugc tham sé loai Minty (viét tit, (MQIP,) va (MQIP,)). Sau do, ching téi
thao ludn tinh nika li€n tuc trén, nika lién tuc dwdi, mira 1ién tuc dudi Hausdorff, lién tuc va
tinh lién tuc Hausdorff cho cdc bai todn nay. Két qud hién tai trong bai bao 1a cdi thién va
M& réng mot sé két qua chinh ciia Lalitha va Bhatia [J. Optim. Theory. Appl. 148, 281--
300 (2011)]. M6t 56 vi du duwoe dua ra dé minh chitng cho cdc két qua ciia chiing t6i.

Tir khéa: céc bai todn tya bat dang thic bién phan loai Minty phu thudc tham so,
tinh nira lién tuc trén, tinh nira lién tuc dudi, tinh nira lién tuc dudi Hausdorft, tinh lién tuc,
lién tuc Hausdorff.

1. Introduction and Preliminaries

A vector variational inequality problem was first introduced and studied by
Giannessi [4] in the setting of finite-dimensional Euclidean spaces. Since then, many
authors have investigated vector variational inequality problems in abstract spaces, see
[1, 3] and the references therein. Recently, Lalitha and Bhatia [6] have considered a
parametric scalar quasivariational inequality problem of the Minty type, and kinds of
the semicontinuity are also obtained. Motivated by research works mentioned above, in
this paper, we introduce two kinds of parametric quasivariational inequality problems
of the Minty type in Hausdorff topological vector spaces.
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Let X, Y be two Hausdorff topological vector spaces and I', A be two topological
vector spaces. Let L(X,Y) be the space of all linear continuous operators from X into
Y, and Ac X be a nonempty subset. Let K, :AxI'—»2*K,:AxI'—>2* and
T:AxT — 2" are set-valued mappings. And let v :Ax AxA — A be continuous
single-valued mapping. Denoted (z,x) by the value of a linear operator ze L(X;Y) at
x e X , we always assume that (.,.) is continuous.

We consider the following parametric quasivariational inequality problems of the
Minty type (in short, (MQIP ) and (MQIP,)), respectively.

(MQIP,) Find x € K/(X,y) such that 3zeT(y,y) and

(z,y(y,X,4)) 20,vy e K,(X,7).

(MQIP,) Find X e K (X,y) suchthat vzeT(y,y) and

(z,y(y,X,4)) 20,vy e K,(X,7).

For each yeT',Ae A, and let E(y)={xe A:xeK,(x,7)}. We denote S, (y,1)
and S,(y,A) are solution sets of (MQIP,) and (MQIP,), respectively. By the
definition, the following relation is clear: S,(y,4) < S,(y,1).

Throughout the article, we assume that S;(y,4) =< and S,(y,4) =< for each
(y,4) inthe neighborhoods (y,,4,) e 'xA.

Now we recall some notions (see, [1-5]). Let X and Z be as above and
G: X — 2% be a multifunction. G is said to be lower semicontinuous (Isc) at x, if

G(x,) NU = for some open set U c Z implies the existence of a neighborhood N of
X, such that, for all xe N,G(x)nU = . An equivalent formulation is that: G is Isc at
%, If Vx, > X,, Vz,€G(x,),3z, €G(x,),z, > z,. G is called upper semicontinuous
(usc) at x, if for each open set U o G(x,), there is a neighborhood N of x, such that
U oG(N). G issaid to be Hausdorff upper semicontinuous (H-usc in short; Hausdorff
lower semicontinuous, H-lIsc, respectively) at x, if for each neighborhood B of the
origin in Z, there exists a neighborhood N of x; such that, G(x) = G(x,)+B,VxeN
(G(x,) =G(x)+B,vxe N). G is said to be continuous at x, if it is both Isc and usc at
X, and to be H-continuous at x, if it is both H-Isc and H-usc at x,. G is called closed
at x, if for each net {(x_,z,)}< graphG ={(x,2) |z e G(X)},(X,,2,) = (X, Z,) » Z, mMust
belong to G(x,). The closedness is closely related to the upper (and Hausdorff upper)
semicontinuity.

93



TAP CHi KHOA HOC BHSP TPHCM S6 2(67) nim 2015

Lenmma 1.1. ([2])

Let X and Z be two topological vector spaces and G:X —2° be a
multifunction.
(i) If Z iscompact and G is closed at x,, then G is usc at x,;

(i) If G isuscat x, and G(x,) is closed, then G is closed at x,;

(iii) If G isusc at x, then G is H-usc at x,. Conversely if G is H -usc at x, and if
G(x,) compact, then G usc at x,;

iv) If G is H-Isc at x, then G is Isc. The converse is true if G(x,) is compact;

2. Upper semicontinuity of solution sets
In this section, we discuss the upper semicontinuity of the solution sets for the
problems (MQIP ) and (MQIP,).

Theorem 2.1.
Assume for the problem (MQIP)that

(i) E isusc at y, and E(y,) compact set;
(i) in K (AT)x{y,}, K, isIsc;
@iii) in K, (K (AI),I)x{y,}, T isusc and compact-valued.
Then, S, is usc at (y,,4,). Moreover, S (y,,4,) is compact and S, is closed at
(Y01 0) -

Proof.
We first prove that S, is upper semicontinuous at (y,,4,). Indeed, we suppose to

the contrary the existence of an open subset U of S,(y,,4,) such that for all {(y,,4,)}
convergent to {(y,,4,)}, thereis x, €S,(y,.4,), x,¢U, foral n. Since E is usc and
compact-valued at y,, we can assume that x, tends to x;, for some x,E(y,). If
Xo €S, (70, 40) Y, € Ky (%5,%0), VZy €T (Y,,7,) such that

(20,0 (Yo X1 7)) 20.

By the lower semicontinuity of K, at (x,,y,), there exists y, e K,(x,,7,) such
that y, > y,. Since x, € S,(7,.4,), 3z, € T(y,,7,) such that

(Z,,w (Y, %, A,)) = 0. (2.1)

Since T is usc and compact-valued at (y,,7,). there exists z,eT(y,,y,) such
that z, — z, (can take a subnet if necessary). On the other hand, by the continuity of
w and (.,.), hence it follows from (2.1) that

(2o, (Vo1 %51 40)) 2 0,
it is impossible. Hence, x, belongs to S,(y,,4,) cU, which is again a contradiction,
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since x, ¢U , for all n. Therefore, S, isuscat (y,,4,) .
Now we prove that S (y,.4,) is compact by checking its closedness. Let
X, €S,(7:4,) cOnvergeto x,. If x; ¢S,(y,,4,), there exists y, € K,(x,,7,) such that
(20, (Yo, X9 ) 2 0. (2.2)
Proceeding similarly as before, we arrive at a contradiction to (2.2). Hence
X, € S,(¥y,4) . Therefore, S (y,,4,) is closed. The compactness of E(y,) derives that

of
S, (¥, 4,) - By the condition (ii) of Lemma 1.1, it follows that S, is closed at

(70, 4,) - And so we complete the proof. 0
The following example shows that the upper semicontinuity and the compactness
of E are essential.
Example 2.1.
Let A=B=X=Y=0,T=A=[01],7,=0, K,K,: AxT' > 2", T:AxT — 2-*")
and v : Ax AxI' > A be defined by

K.(x7) =y =L71, w(y, x7)={y’ +r+2},

1 2,
Ty =tz K,(x.7)=[0,e""],
Then, we have E(0)=(-10] and E(y)=(-y-Ly],Vy €(0,1]. We show that
assumptions (ii) and (iii) of Theorem 2.1 are fulfilled. But S, is neither usc nor closed

at (0,0). The reason is that E is notusc at 0 and E(0) is not compact.
In fact,

oy [ODifa=0
s )_{(—1—/1,/1) otherwise.

The following example shows that the lower semicontinuity of K, in Theorem

2.1 is essential.
Example 2.2.
Let A=B=X=Y=0, I'=A=[01], 7,=0, K;: AxT —2*,

Ki: AxT —2% T:AxT—2"") and y: A xA x ' - A be defined by

{-6,0,6) if y=0
KZ(X’y):{ {0,6) if 0.
vy, % 7) = {x+y+r},
T(y.r)={L

K,(x,7)=[0,6].
Then E(y)=[0, 6],Vy €[0,1]. Hence E is usc at 0 and E(0) is compact, assumption
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(i) is satisfied. We have

s (M):{{b‘} -|f y=0

[0,6] if ye(0,1].

Therefore, S, is notuscat (0,0). The reason is that K, is not Isc at (x,0).

The following example shows that the all assumptions of Theorem 2.1 are
satisfied.
Example 2.3.

Let X=Y=0, A=B=[03,I=A=[0,1],5,=0, K,K,:AxTI —2* and

w: A xA xI' - A be defined by
Kl(X,y):KZ(X,}/):[O,l],
v(y.xy)={r"+7},

1
T(y, y)= - ——————— 1.
(y.7) {e“’” +sin2y+2}
We see that the all assumptions of Theorem 2.1 are satisfied. So, S, is both usc
and closed at (0,0). In fact, S (y 1) =[01],vy €[0,1].

Theorem 2.2.
Assume for the problem (MQIP,) that

(i) Eisuscat y, and E(y,) compact set;
(ii) in K (AT)x{y,}.K, islsc;
(iii) in K,(K,(AT),T)x{y,}.T islsc.
Then, S, is usc at (y,,4,). Moreover, S,(y,,4,) is compact and S, is closed at

(7004)

Proof. We omit the proof since the technique is similar as that for Theorem 2.1 with
suitable modifications. il
Remark 2.1.

(i) In the special case, if let A=Tand w(y,x,7)=y-xK(x7)=
K(x,7)nA K, (x7)=K(xy) with K:AxI'—2". Then, the problems
(MQIP,) becomes (MVI (y)) is studied in [6].
(i) In cases as above. Then, Theorem 3.1 in [6] is a particular case of Theorem 2.2.
Moreover , the following example 2.4 shows a case where the assumed compactness in
Theorems 3.1 and 3.2 of [6] is violated but the assumptions of Theorem 2.2 are ulfilled.

Example 2.4.
Let X =Y =0, A=T=[0,1],A=B=[0,3),7,=0, K, =K, =K: A xI' > 2",

T:AxI > 2% and y:Ax AxT'— A be defined by
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Kl(x,y):Kz(x,y):K(x,y):[%,ﬂ,
w(y, xy) = {x-vy},

T(yr)={1} -
We show that the assumptions of Theorem 2.2 are easily seen to be fulfilled and
so S, is usc and closed at(0,0). However, Theorems 3.1 and 3.2 in [6] does not work.

The reason is that A is not compact. In fact, S,(y,2)={3},vy €[0].

3. Lower semicontinuity of solution sets
In this section, we discuss the lower semicontinuity and the Hausdorff lower
semicontinuity of the exact solution for the problems (MQIP ) and (MQIP ).

Theorem 3.1.
Assume for the problem (MQIP ) that

(i) E islscat y,, K, isuscand compact-valued in K,(A T)x{y,};
(i) in K,(K (A T),T)x{y,}, T islsc.
Then S, islsc at (y,.4,) .

Proof.
Suppose to the contrary the existences of x,eS;(y,.4,) and net {(y,.4,)}

converging to (y,.4,) such that, for all x €S,(7,.4,), the net {x } does not converge
to x,. Since (i), there is x, e E(y,), X! — X,. By the above contradiction assumption,
there must be a subnet {x;} of {x'} such that x, ¢S (y.4), for all k, i.e,
Y, € Ky (X, 7,32 € T (Vi 1)
(i) (Z,w (Yo X, 4)) <O. (3.1)
By the upper semicontinuity and the compactness of K, and T, there exists
Yo € K, (%y,7,) and z, €T (y,.7,) such that y, -y, and z, — z, (can take subnets if
necessary). By the continuity of y and (.,.), and since (3.1) we have
(20, (Yo X1 A0)) < O,
which is impossible since x, € S,(y,,4,). Therefore, S, islscat (y,,4,)- 0

The following example shows that the lower semicontinuity of E is essential.
Example 3.1.

Let X=Y=0,A=B=[0,1,T=A=[01],7,=0, K, K, :AxT — 2%,
T:AxIT = 2% and y : Ax AxA — A be defined by
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1 1 .
2020 if y=0
{ 3 3} g

1 .
0,= if y=0.
{ 3} :

w(y,x A) =y +sin®(y) +sin’(y),

T(y.)={5",

K, (47) =[0. )

Then, we shows that K, is usc and compact-valued in Ax{y,} and the

assumptions (ii) and (iii) of Theorem 3.1 are fulfilled. But S, is not Isc at (0,0). The
reason isthat E isnotlscat 0. In fact,

K, (X,y):

{0,1} if ye(0,1]

S, (27)={ ¢+ ©

o {—EOE} if y=0
3773 '

The following example shows that the all assumptions of Theorem 3.1 are
satisfied.
Example 3.2.

Let A=B=X=Y=0,T=A=[01],7,=0, K,K,: AxT' > 2", T:AxT — 2"

and y : Ax AxA — A be defined by

[0.3] if y=0
Ko (x7)= 122
[—E,E] if }/?50
w(y, % 7) ={y +sin*(y) +cos’(»)},
1
T ) Ayt
(1) =4 5)

K,(x,7)=[0.1].

We have E(y)=[-1,2] for all y €(0,1] and E(0)=[0,1]. It is not hard to see that
(i)-(iii) in Theorem 3.1 are satisfied and, according to Theorem 3.1, S, isIsc at (0,0).

In fact, sl(y,x):[—%é] for all y e (0,1] and 51(0,0):[0,%]).

Theorem 3.2. Assume for the problem (MQIP, ) that
(i) E islscat y,, K, is usc and compact-valued in K (A T)x{y,};
(i) in K,(K (A T),T)x{y,}, T isuscand compact-valued.
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Then S, islsc at (y,,4,) -

Proof.
We omit the proof since the technique is similar as that for Theorem 3.1 with
suitable modifications. 0

Next, we study the Hausdorff lower semicontinuity of the exact solution sets for
the problems (MQIP,) and (MQIP ).
Theorem 3.3.
Impose the assumption of Theorem 3.1 and the following additional conditions:
(i) K, (., 7,) i1slscin K (AT) and E(y,) is compact;
(iv) in K,(K,(AT),T), T(.7,) isuscand compact-valued.
Then S, is H-Isc at (y,,4,) .

Proof.
We first prove that S,(y,,4,) is closed. Suppose to the contrary the existence of

X, €S,(70:40) + X, = X;, such that x, ¢S,(7,,4,), 3y, € K,(X,,7,) and vz, €T (y,,7,)
such that
(2o, (Yo, %51 4)) <O, (3.2)
By the lower semicontinuity of K,(.,y,) and T(.y,) is Isc at x, and y,, there
exists y, eK,(x,,7,) and z eT(y,y,) such that y —vy, and z, —>z,. As
X, €S,(y,4) , then we have

(23 (Yo X A ) Z 0, (3.3)
By the continuity of v and (.,.). So, since (3.3) yields that
(Z:¥ (Yo o1 A )) Z O, (3.4)

we see a contradiction between (3.2) and (3.4). Thus, S,(y,,4,) is closed, and hence it
is compact. Theorem 3.1 implies the lower semicontinuity of S,. The Hausdoff lower
semicontinuity of S, is direct from condition (ii) of Lemma 1.1. 0

The following shows that the compactness of E in Theorem 3.3 is essential.
Example 3.3.

Let A=B=X=0%Y=0,[=A=[01],7,=0, K, K, :AxT — 2%,
T:AxI - 2% and v : Ax Ax A — A be defined by

Ky(%,7) = Ky (%,7) ={0x, AX)} X = (%, ;) €0 %,

v (y, % y) ={2y° +cos® ()},

T(y,7) ={2"7 "}

We have E(0)={xell®|x, =0} and E(y)={xel?|x, =yx)},Vy €(0,1].

We shows that the all assumptions of Theorem 3.3 are satisfied, but the
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compactness of E(0) is not satisfied. Direct computations give
5,(0,0)={(x,%,)el?|x,=0rand  S,(y,4)={xeR?*|x,=yx")},Vy€(0,1] is not
Hausdorff lower semicontinuous at (0,0).
Theorem 3.4.
Impose the assumption of Theorem 3.2 and the following additional conditions:
(i) K, (.,7,) islscin K, (A T) and E(y,) is compact;
(iv) in K,(K (A T),I), T(.,y,) islsc.
Then S, is H-Isc at (y,,4,) .
Remark 3.1.
Theorem 3.2 extends Theorem 4.1 in [6], Theorem 3.4 extends Corollary 4.1 in [6].
Theorem 3.5.
Suppose that all conditions in Theorems 2.1 and 3.1 (Theorems 3.3, respectively)
are satisfied. Then, we have S, is both continuous (H-continuous, respectively) and

closed at (y,,4,).

Theorem 3.6.
Suppose that all conditions in Theorems 2.2 and 3.2 (Theorems 3.4, respectively)
are satisfied. Then, we have S, is both continuous (H-continuous, respectively) and

closed at (y,,4,) -
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