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ABSTRACT
This paper is devoted to studying the finite-time blow-up in high initial energy for the solution
of the nonlinear viscoelastic wave equation.

Au+j g(t—s)Au(s)ds — Au, =|u

|p(><) -2

in a bounded domain Q < R". Our result improves the blow-up result in the previous work that was
obtained by Le et al. (2023).

Keywords: Blow-up; Nonlinear wave equation; Strong damping; Variable exponent sources;
Viscoelasticity

1. Introduction

The aim of this paper is to improve the blow-up result studied by Le et al. (2023)
concerning the nonlinear viscoelastic wave equation with firm damping and variable
exponents

u, —Au+j;g(t—s)Au(s)ds+h(ut): f(u), in Qx(0T),
u=0 on 0Qx(0,T), (1.1
u(x,0) =u,(x),u,(x,0) =u,(x) in Q,

where T>0 and Q< R"(n>2) is a bounded domain with smooth boundary 09,
f(u)=|u"”?u, h(u)=-Au,u, and u, are given initial data, gis a C' positive
nonincreasing function, the exponents p(Xx) is continuous on Q with the logarithmic

module of continuity:

2<p |nf p(x) < p(x) < p’ =sup p(x) < (n 1), n>3,

xeQ

(1.2)
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VX, y e Q,|x—y| <L|p(x) - p(Y)| < o(|x-Y]), (1.3)

where limsup@(7)In(l/7) =C < 4.

r—0"
The problems related to (1.1) arise in many contemporary physical and engineering
models, such as electrorheological fluids (smart fluids), fluids with temperature-dependent
viscosity, nonlinear viscoelasticity, filtration processes through a porous media and image
processing. Please refer to Antontsev et al. (2020), Berrimi et al. (2006), Chen et al. (2006),
Diening et al. (2011), Messaoudi (2003, 2006), Le et al. (2023), Park et al. (2019), Song et
al. (2010, 2014) for more information and applications on the topic.
"

In case f(u) :|u 2u, the problem (1.1) has been widely studied in recent decades,

and many authors have discussed results on the existence, nonexistence, and decay of
solutions (Messaoudi, 2003, 2006; Song et al., 2010, 2014). When h(Ut)=|ut|m_2 u,

Messaoudi (2003) considered (1.1) and obtained the finite-time blow-up of solution with
negative initial energy. After that, Messaoudi (2006) continued to examine that problem and
got the finite-time blow-up of solutions with positive initial energy. When h(u,) = -Au,,

Song et al. (2010) studied the problem (1.1) and obtained the finite-time blow-up of solutions
with positive initial energy. After that, Song et al. (2014) also studied the above problem
with high arbitrary initial energy and obtained the finite-time blow-up of solutions.

Recently, Le et al. (2023) considered (1.1) with f(u) =[u/"”“u, h(u,)=-Au,,and

obtained the blow-up result for local solutions starting in the potential wells. More precisely,
under the conditions of the relaxation g as follows:

(H1) the relaxation g € C*(R*,R*) and satisfies
9(0)>0,1-[ "g(s)ds=¢>0, g'(t) <0, forall t=0,
p(p -2
(p -1’

the authors obtained the following theorem.
Theorem 1.1. [Le et al. (2023), Theorem 2.7] Assume that (1.2)-(1.3) and g satisfies (H1),

(H2). Assume further that (Uy,u;) € Ho(Q)x L*(Q) with u, e, and E(0) < E, . where

(H2) Tg(s)ds <

1
E, = P
d 1
p

N

d.. Then solution u(t) to (1.1) blows up in finite time.

K

N

+

K

Here U, :{u eHy(Q):J, () <E, | (u)<0}, J., 1., and d_ as in section 2.1.

Our aim in this paper is to improve the blow-up result of Le et al. (2023) to the blow-
up result with high initial energy.
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This paper is organised as follows. In the next section, we will give some preliminaries.
In Section 3, we state and prove our main results.
2. Preliminaries
2.1. Modified potential wells

Throughout this paper, we define the functionals J;, I; (for 0<d</)asin Leetal.

(2023) and Nguyen et al. (2023)
o 2 |U|p(X) 2 p(x)
J(S(u):E”Vu” —J'dex, and I,(u)=6 |Vul —Ig|u| dx,

the Nehari manifold
N,y ={ueHg(Q)\{0}: 1,(u) =(J;(u),u) =0},
the potential well-depth
dgzuigAl;de(u), (2.1)
and the modified unstable set as in Le et al. (2023) and Nguyen et al. (2023)
Uy ={ueHy(Q):J,(u) <d,,1,(u)<0}.
2.2. Definition and preparing results

Let us now define weak solutions to (1.1).
Definition 2.2. Let 0<T <o, a function u be called a weak solution of problem (1.1) on

Qx(0,T) if
ueC([0,T); Hy (), u, € C([0,T); L*(€)) N L*([0,T); Hg(RQ)),
satisfies U(x,0) = U,(x) € H(Q), u,(x,0) =u,(x) € L*(Q) and the equality

<utt,¢>+(Vu,V¢>—I; g(t—s)(Vu(s), Ve)ds+(Vu,Ve) = <|u|p(')'2 u, (o>,

holds for a.e. te(0,T) and any ¢ € Hg(Q).

Define the energy function

1 2 1 t 2 1 1 P
£ = b O 5 (1~ [ o@ae | Fuof + 5(0=v0) O~ [, o ax

where (goVu)(t) :I;g(t—s)||Vu(t)—Vu(s)||2 ds. By testing (1.1) by u,, we have

d 1, , 1 2 2
aE(t)=5(g oVu)(t)—Eg(t)”Vu(t)” — [Vu.®| <0, (2.2)

which implies that E(t) is a non-creasing functional.

We now state the local existence of a solution to (1.1).
Theorem 2.3. (Local existence) [Le et al. (2023)] Assume that (1.2) — (1.3) and (H1) hold.

Then for given (u,,u;) € Hy (Q)x L*(Q) the problem (1.1) admits a unique local solution
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U € C([0, T ): Ho()), U, € C([0,T,,,); L (€)) N L ([0, T, ): Ho (),
where T__ >0 is the maximal existence time of u(t).

We ended this section with the following proposition, which is essential for proving
our main results.
Proposition 2.4. Let (1.2) - (1.3) and (H1) hold and 0 <& </. Let u(t):= u(x,t) bea local
solution to the problem (1.1). Then, if there exists a time t, €[0,T,..) such that u(t,) € U
and E(t,) <d,, then u(t) remains inside the set U/ for any te[t;, T, ..)-
Proof. By contradiction, we assume that u(t) leaves U attime t=t., then there exists a
sequence {t.},t —t. such that I(u(t)))<0. By the lower semicontinuity, we get

1, (u(e)) < liminf 1, (u(t,)) <O.

Since u(t.) ¢ U;, we obtain I,(u(t.)) =0. By variational definition of d;, this leads
to a contradiction.
Lemma 2.5. [Kalantarov et al. (1978)] Suppose that ®(t) e C*[0,) is a positive function
satisfying the following inequality

D)D" (1) - (L+7)(P'(t))* >0,
where y >0 are constants. If ®(0) >0, ®'(0) >0, then ®(t) > fort >t <t = %

3. Blow-Up

First, we state a theorem about the finite-time blow-up of the solution, whose proof is
similar to the proof of Theorem 2.7 in Le et al. (2023) with slightly different, so we omit it here.
Theorem 3.1. Assume that (1.2)-(1.3) hold and g satisfies (H1) and (H2). Assume further

that (u,,u;) € Hg (Q)x L*(Q) with u, e U, and E(0) <d,, where
1 -
O<i=r——>["g(s)ds.
P (p —2)‘[0

Then solution u(t) to (1.1) blows up in finite time; that is, the maximum existence time

T" of u is finite and
. 2 t 2
tim (Ju@[ + [J[vu()f ds) =+

We can now provide a crucial lemma that supports our main results. The following is
the important lemma:
Lemma 3.2. Let (1.2)-(1.3) and (H1), (H2) hold. Assume that the initial data
(Up,u;) € Hy () x L*(Q) and satisfies
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C
0<E(0) <p—jQ U,u,dx. (3.1)
Then the weak solution U to problem (1.1) satisfies
I uu dx—£E(t)> J. u udx—EE(O) e“ >0 (3.2)
ot C =1 Jo ot C ) .

for all t €[0,T), where

2p + 4 33)

Proof. Using the first equation of (1.1) and integral by parts, we have
d
EJ.Q uu,dx = IQ ugudx +|u, ()
~Ju @ —(1— [0 g(s)ds)”Vu(t)”Z + [ u P de
- (Vut (1), Vu(t)> - j; g(t-s) (Vu(t) —vu(s), Vu(t)) ds. (3.4)
By using Young inequality, we get

C=min{2+p,”{p(p‘2)‘("‘1) (1—6)]}

C 2 p 2
(VU (0,7u0) > = VU] —%”Vut(t)” , (3.5)

-[, 9t=9){Vu() - Vu(s), vu(v) ds

1 t 2 -
> _ﬁ( ) g(s)ds)||Vu(t)|| —p?(g o VU)(1).

Combining (3.5) and (3.6) with (3.4), and using the definition of E(t), and the condition
(H1), (H2), we obtain

d 2 t 1 ,t C 2
m jQ uudx > Ju, (©)| —{1— jo g(s)ds TS jo g(s)ds —H} [Vu@)|

(3.6)

# [ O P de= e Off 2@ ovu

- » [(p - 1) C )
> (1+p7]||ut ®)| {(%_1}(%_“5] [ 9(s)ds —E}”wa)”

p7 2 - p7 p(x
—F”Vut(t)” -p E(t)+fg(l—mj|u(t)| % gx

B 2 B B 1 C 2
2[1+p7j||ut(t)|| {(p?‘l}(p?‘“ﬁja‘”‘H}”V“m”

- EQ -2 |vu . (3.7)

Recalling (3.3), then
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24P (P =2)—(p -1*(L-1)]
2p +4
Therefore, it implies from (3.7) that

C< <2[p (P -2)-(p -1’(-0)]

d p- 2 p- p 1 C 2
EJ.Q uu,dx > (1+7J||ut o) + [[7—1] —(7—1+$j 1-10) —H}ﬂl Jluc)
- EO -2 Vo[ (38)
Here we used the inequality /11||u||2 < ||Vu||2.
Put
H(t) = _[Quutdx—% E(t).
Combining (3.8) with (2.2), we obtain

d - 2
FHO= (1+ p?]”ut o

SR U NP S P N o2 2_ o
+H7 1} (2 1+2p_j(1 ) 4IO_}11||u(t)|| p E(t)

1 2 1 2 -
2C(E||ut(t)|| + o] —%E(t)]ZCH(t) (3.9)

according to (3.3). Furthermore, it follows from (3.1) that
H(0) = IQ u,u,dx —% E(0) > 0.

By Gronwall’s inequality, we deduce from (3.9) that

H(t) >e“H(0) > 0.
The proof is complete.

We then provide and validate the finite-time blow-up results for solutions with high
initial energy and estimate and provide an upper bound on the blow-up time.
Theorem 3.3. (Finite time blow-up for high initial energy) Let all the assumptions in Lemma
3.2 be fulfilled. Then the solution u for problem (1.1) blows up in finite time.
Proof. By contradiction, we assume that u(t) exists globally.

First, by using Holder's inequality and (2.2), we get
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Ju®] = [u, O+ [, u. (27 < u |+ [

<[]+ 51 Ivu. @ de <[y, ||+ (I [vu@f de)

<|u, ||+— (EQQ)-E(t))", (3.10)

JA

for all t€[0,o). Since U is a global solution of problem (1.1), then E(t)>0, for all
t €[0,0). Otherwise, there exists t, [0,0) so that E(t,) < 0. By virtue of the definition of

E(t), J,, I, and

1 1 2 1
Jg(u)ZLE—FJﬂWu” LW,
we obtain

E®) >~ Ju O +,u) + (V)
o of [__p_ja v +_| ) e, 31

Since p~ >2 and the assumption (H1), we get that E(t,) <0 implies 1;(u(x,t,)) <0 due
to (3.11). By choosing u(x,t,) as the new initial data, Theorem 3.1 indicates that U blows
up in finite time, which is a contradiction. Thus, due to (2.2), we get 0<E(t) <E(0).
Therefore, we deduce from (3.10) that for all t €[0, ),

N

oo < o + - (E©)”. (312)

7

On the other hand, by using (3.2) one gets
%”u(t)”z =2 jﬂu(t)ut (t)dx > 2H (0)e® +2C—p E(t) > 2H (0)e > 0. (3.13)
Integrating (3.13) from O to t, we obtain
Ju®[" =Jus| +2]; [ u(2)u, (r)dxdz
t . 2
> ||+ 2] H (@)™ d7 = u| +E(e‘>t ~1)H(0), (3.14)

which contradicts (3.12) for t sufficiently large. Thus, the solution u for the problem (1.1)
blows up in finite time.
Theorem 3.4. (Upper bound of the blow-up time) Let all the assumptions in Lemma 3.2 be
fulfilled. In addition, if

C
E(0) < EHUOHZ , (3.15)
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then the solution u for the problem (1.1) blows up at some finite time T~ in the sense of
. 2 t 2
tim (Ju@[ + [}[vu(©)f ds) =+
Moreover, the upper bound for blow-up time T is given by
T < 25T + 2]ug|
(p -2) (_[Quouldx + T, ) ~2|[Vu, |

(3.16)

. y | _ 20 E©@+Clug[
where C is the positive constant given by (3.3), S =

, and T, is chosen

2p
large enough such that
(p~=2)( [ ugudx+ AT, | 2|V, | > 0. (3.17)
Proof. First, Theorem 3.3 indicates that the solution u for the problem (1.1) blows up

in finite time. Suppose that the blow-up time is T". We now give an estimate for the upper
bound of T".
Define the auxiliary functional

0t = Juf + [} [Vu@)| ds+ T =0)[Vu|* + A(t+T, ), te[0T).  (3.18)
Then we have
o'(t) =2 J.Qu(t)ut @dx+[Vu®)|* ~[Vu,| +28t+T,)
= 2{u, (), u(t)) + j;%MVu(s)”Z ds+28(t+T,)
= 2(u,(t),ut))+2 j; (VU (s), Vu(s)) ds + 28(t +T,). (3.19)
It follows from (3.19) that
%(9'(0)2 —o()+ (||ut O + [ [vu )] ds+ ,B)(||u(t)||2 + [ VU ds+ Bt +T0)2),
where O(t) is given by
o) = ({ut (t),u(t))+ j; (Vu,(s),Vu(s))ds + Bt +TO))
~(Ju OF + [ 70O ds-+.8) Ju[ + [;[vu)f ds+ pe+T,)?)

By virtue of the Cauchy-Schwarz inequality, it is not difficult to see that ®(t) <0 for
t [0, T*) Hence, we have

49(t) (|u O + [} [vu, )] ds+ ,B)(|u(t)|| + [ VU ds+ pE+T,)? )
Se(t)(|ut(t)|| [ Ivu ) ds+ ,b’). (3.20)
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On the other hand, it implies from (3.19) that
6" (1) =2|u, @[ +2(u, (©),u())+2(Vu, ), Vu(t)) + 23,
which in turn, by multiplying (1.1) by u(t) and integrating over €, yields

0" (t) = 2|Ju, )" —Z(a— jot g(s)ols)||w(t)||2 +2[ ()" dx
—2j; g(t—s)(Vu(t) - vu(s), Vu(t)) ds +25.
It follows from (3.18), (3.20) and (3.21) that
(0'(t))" 2 0L (), (3.22)
where ¢ :[0,T") — R is the function defined by
cO=-p Ju @ -(p +2[Vu ()| ds- 2(a— [, g(s)ds)”Vu(t)”z
+2jQ|u(t) PO dx—zj;g(t—s)<Vu(t)—Vu(s),Vu(t)>ds— P p.
On the other hand, by using the Cauchy-Schwartz inequality, we have
2 j; g(t—s)(Vu(t) - vu(s), Vu(t))ds <5 (g o Vu) t) +%( j; g(s)ds)||Vu(t)||2
which implies
cO=-p Ju @ -n7(govu)®)-(p +2) [Vu () ds
- 2{1—[1—%} [ g(s)ds}lqu(ollz +2[ O dx-pp,

(3.21)

o' (0)o(t) - 22

(3.23)

for any 77 > 0. By the definition of E(t) we have
Ju, ] = 2E¢t) —(1— [. g(s)ds)“Vu(t)”z ~(goVu)(t)+2 jgﬁ| u(t)dx.  (3.24)
Combining (3.23)-(3.24) with the energy inequality (2.2), one has
£ 2-2p EQ)+(p -2 [Vu,(s)| ds
¥ {( p -2) —[ p -2 +%j [ a(s)ds [[Vu[f
+(p~ —n)(goVu)(t) +2 L{l-% u(®)|"” dx—p 4. (3.25)

Since p~ > 2, by choosing = p~, it follows from (3.25) that
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£()>-2p E(0) +[(p ) —[ p - 2+%j ) g(s)ds}MVu(t)nz .
> 2 pE(O){(p —2)—(13 —2+pij (1—6)}|IVU(t)||2 -pp

> -2 pE(O){(p —2)—(p —2+pij (1—£)}11||u(t)||2 -p B (3.26)
Notice that (3.13) implies
Ju@®|* > uo|, for te[0,T"). (3.27)
From (3.15), (3.22), (3.26) and (3.27), we obtain

"0 -2 2 (o))’

> 0(0{—2 p‘E(O){(p‘ —Z)a—( P —2+piJ(a—€)}ﬂqlluo||2 - p‘ﬁ}
> 9(t)[—2 P E(0)+C|u, - p’ﬂ} >0, for t[0,T7), (3.28)

~2p E(0) +C|u, |’
2p
By the definition of 6(t), it is obviously that #(0) >0 for any T, > 0. In addition, if T, is

here we used S = and (3.15) in the last step.

chosen large enough in (3.17) then 6'(0) = ZIQ u,u,dx + 24T, > 0. Applying Lemma 2.5 with
y=(p —2)/4 we have that 8(t) > o for t > T", where T~ holds
T 400 2fuf +2T Vo[ + 25T
(P =20'0) (p -2)8T,+(p -2, uoudx
which in turn implies that
> 272+ 2|Ju || |
(p - 2)(]Q U,U,dx + ﬂTO)— 2|V, |

T

(3.29)
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TOM TAT
Bai bao nay tdp trung nghién cizu sir bung né trong thoi gian hizu han cia nghiém véi nang
legng ban dau cao cho mét phuwong trinh séng dan hoi nhét phi tuyén

U, — AU+ _[; g(t—s)Au(s)ds - Au, =[u[*™u,
trén mién bj chgn Q < R". Céc két qua cua chlng toi cai thién két qua bang né trong cong trinh
trude ddy duoc thut hién bai Nhan va cac cong su (2023).
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