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ABSTRACT
We consider the following logistic system

-Au=2f(x,u,v)—-g,(x,u) in Q,
—Apv=/1f2(x,v,u)—gz(x,v) in Q,
u=0,v=0 on oQ.
Assuming that the nonlinearities f, and g, satisfy certain growth conditions. We use the fixed

point index theory and monotone minorants techniques to prove the existence of solutions for the
system. This extends some known results.
Keywords: fixed point index; logistic system; (p-1) — sublinear

1. Introduction
In this paper, we study the system

—Au=2f(x,u,v)-g,(x,u) inQ,
—Av=21,(X,v,u)—g,(xVv) inQ, 1)
u=v=0 on 0Q,
where u,v are non-trivial, non-negative unknown functions, Q < R" (N >2) represents a
bounded domain with a smooth boundary 0Q, A u=div(Vu [”> Vu) denotes the p -

Laplacian with 1< p<N, 2>0 is a real parameter, and f,,g,,i=12 are appropriately

chosen functions.
Our objective is to identify a solution (u,v) that satisfies the condition of

uv=0,u=0,v=0.
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Based on the growth rate of the functions concerning their second variable, we classify
the system of equations (1) into three categories: (p—1)-sublinear, (p—1)-linear, and

(p—1)- superlinear.

The system (1) extends the symbiotic model that describes the coexistence of two
species within the same habitat. Specific forms of this model have been studied (Delgado et
al., 2000; Yang & Wang, 2007). According to the aforementioned classification, Delgado et

al., (2000) and Yang and Wang (2007) focused on the (p—l)-linear case. In a previous
work, we investigated problem (1) in the (p—l)- sublinear case (Nguyen & Bui, 2017). In

this paper, we explore the (p—1)-linear, and (p—1)- superlinear growth cases for the
second variable in the functions f,,i=1,2.

Our research approach aligns with earlier studies. First, we reduce problem (1) to a
fixed-point problem. Then, by determining the degree of the solution operator, we establish
the existence of solutions for the system.

2.  Eigenfunction and eigenvalue
Proposition 2.1. Assume that A, is the principal eigenvalue of the problem

A u=Am(x)|ul’?uinQ,
{u :pO on agi, " @
and v, e CJ(Q),V, > 0,v, 6.
Then, the problem
{—Apu =Am(X) [u|P? u+v, inQ, )
u=0onoQ,

Has no non- negative solutionu > @ if 4> 4,.
Proof. By contradiction, we assume that w € K is a solution to the problem (3). Since 4 > 4,
and v, > @ then w is an upper solution of the following problem:
—Au=AmX)|ulP?u+v, inQ,
u=0on oQ.

It is easy to see that u=4@is a lower solution of (4). Therefore, problem (4) has a
solution u (Drabek & Hernandez, 2001) satisfying 6 <u <w. According to the theorem on

(4)

nonlinear regularity (Papageorgiou et al., 2009), we deduce that u e C(Q). According to
Vazquez's strong maximum principle (Vazquez, 1984), we have u €int(C, ). Let u, be the
eigenfunction corresponding to the principal eigenvalue A, of the problem (2). Applying the
Diaz-Saa-Brezis inequality (Diaz et al., 1987), we obtain
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v, b1 1) —A,u —Ap(tuo) o1 o1
F(u —(tuy) )—{ = ()" (u —(tu,) )20.
Letting t tend to infinity, we obtain \:f’_l =6, which contradicts the assumption about v, .
u

3. Arreduction to the fixed point equations
Let Q< R" be a bounded domain with a smooth boundary 1< p < N . We denote the
norms in the spaces W, °(Q) and L'(Q2) by |l lland |l || respectively. In these spaces, we

consider the order cone of nonnegative functions.
In this paper, we make the following assumptions on the functions f, and g,, i=1,2.

- (91) g;(x,0) =0, and g;(x,u) is an increasing function with respect to u for almost
every xe Q.

- (92) There exist constants a, >0, 0< < p -1, and functions b e LYY (Q) such
that

lg,(x,u)[<a [ulf +hb(x), V(x,u)eQxR.

- () | f.(xu,v)|<m (x) [ul® +n(X) [v], where a,7 < p”—1 and m e LY(Q),n, € L'(Q)

with q >(1Ea)"r>(1iy)"

Then, Nguyen and Bui (2017) established that (u,v) e W,;"? (€2) xW,; " (€) is a solution
to problem (1) if and only if (u,v)=PoAN(u,v), where PoN :=(PoN,P,oN,) and
N, (u,v)(x) = f (x,u(x),v(x)), Yu,veW,"(Q).

4.  The main results
Theorem 4.1. (The case (p —1) — linear) Suppose that the Caratheodory functions

g,:QxR" 5> R", . :QxR"xR" - R", i=1,2satisfy the condition (g1) and
(H1) (@) az’-b(x)<g,(x,2)<ez’+b(x) where a,e >0 and p-1<pB<p -1,

b (X) € L’ (Q), s = max {(ﬂ+1)',%},i =12;

(b) Iimwzo uniformly in Q, i=1,2.

-0t 7
(H2)(a) 0< f(x,z,t)<m (X)2° " +n (X)t", V(X,2,t) e Qx R* x R* where
: ) Bhp ) . _
m. € L (Q),q{ ) j , N el (Q)’r>((p—l)p+l+,3j =12

(b) f.(x,z,t)>0,V(x,z,t) e QxR" xR",(z,t) # (0,0).
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(H3) There exist the functions p, >89, p, # 6, p, € L°(Q2) where s >F and the

constant numbers e; such that for every consequence satisfying £, >0, z, >z, t —t
then

. f(x, &z, &t _ a4

lim (X, L éula) _ p.(x)z"* +et?, =12,

n—oo é:np

Let A,i=12 be the eigenvalues corresponding to the following problems:

—Au=Ap,(X)[ul"?uinQ,u=00noQ.
Then, for every A >max{4,,4,}, problem (1) has at least a solution (u,v) such that

u,v=6,u=6,v=0.
Proof. We will still denote N(u,v)=(AN, (u,v), AN, (u,v)) and still split the proof into

three steps.
Step 1. We will show that there exists a sufficiently large positive number R such that

(u,v) = P[tN (u,v)], vt €[0,1], Vu,v > 6,| (u,v)| = R.

Assume the contrary that there exist sequences {t}c[0,1], and

u,v.>8, li(u,,v,) Il>o suchthat (u,,v,)="P[t N(u,,v,)], or equivalently, one has

(AU )+ [ 6,(% U)o = [, Fi (XU, v, )
" " V. €Wy (Q). 2

<Avn’¢>+Ig2(X’Vn)¢:Itn fZ(X!Vn'un)¢
Choosing ¢ =u,,¢ =V, in (7) and using (H2)(a), we obtain

lu, P +] g, 06U, )u, <[ m,Gou? + [, ()v! 2,
) o °

v, [P +I g,(x,V, )vngj m, (X)v; + _[ n, (X)u? v, . ©)
Adding sides bstides of the i;:equalities i;2 (3), we have
C. liu,,v,) IP< J‘ml(x)uﬁ“” + j m, (X)v} + I n, (X)vyu, + I n, (X)upv,. 4)
By Holder's inequalityg,2 Young's ineZuaIity, andiome simple czmputations, we obtain
[ v + € vl < C (me], +m . Yl vl + 5

+ [ I, 0OV, + 1, 00U v, 1+ [ 1B, (U, +b, (v, ]

Applying the Holder and Young’s inequalities, we get
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I, 00v? u, +n,00u2 v, 1<, +||nz||r][8ll<un’vn>||§' ~C@ln vl } ©)

where t = (p—1)r'(%j =%<1+ p.

From (5), (6), we have

||(un ’Vn)”p + ||(un ! Vn)

t
<l vl +1) o

Since r >( (B+1)p ]then t < B +1. Therefore, (6) follows

(pP-Dp+1+p
[ vl 0 vl < C v, (8)
If pg'< pg+1 then |(u,,v,)|’ +||(un,vn)||’;:i <C|l(u,.v,),. - 9)

From (9) we get ||(un,vn)||ﬂ+1 — oo This contradicts p < £ +1.

If pq’'>p+1, it follows from the hypothesis (H4), we obtain pg’ < p’. Applying the
interpolation inequality, we obtain

(uqov,)

o = 0l Wl < © (h o5+ )

< C (e +vally” oIl

g g (10)
sC|(un,vn) p*.|(un,vn) o

0 1-6
SC|(un1Vn) p*'|(un’vn)ﬂ+l

where @ €(0;1) is defined by

11 _9( 1 _i]
B+l py B+l P
It follows from (9), we get

[(uove) = € (unova) (Un: V)

6+(1-6)—L—
Combined with (10), we obtain |u,[ . <Clu,| . 7.

P
p+1 ,
pq’

sc.|

cand |

< (Unvs)

,B+l_|

Pq

Note that p <1+ then 6+ (1—0)ﬁ<1. Therefore, in the above inequality, we have a
+

(u“’V”) pq

contradiction with |

| —> .
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Step 2. Choosing arbitrarily, ¢,,, € C; (5) \ {9} , We prove that there exists a small enough

positive number r > 0so that
(uv)=P[N(uVv)+t(¢, )] vt>0,Yuz0,[ul=r.

Assume the above statement is not true, then we can find sequences

t, >0,u,,v, 26,)|(u,.v, )| =0 such that (u,,v,)=P[N(u,.v,)+t,(.¢,)]. It means that
<Aun,¢>=j[ﬂf1(x, NV, )=, (X.U,)+te o, Vo eW, P (Q) (11)
Q
and
(Av,,0) = I[ﬂ £, (X V.V, )= 9, (X, ) +t,0 Jo, Vo e WP (Q) (12)
Q
Divide both sides of equation (11) by |(un,vn) " we have
<Azn,(p>:J'[/‘Lfl(x,un,vn)—gl(x,un)+tn¢1]%, (13)
Q |(un’vn)

(Un: V)

Since {z,} is abounded sequence in a reflexive space W,"" (©2), we can assume without loss

u
where z, = |—“

of generality that z, — z weakly in W,"?(Q) and z, -z in L” (Q) (note that 5'< p”).

We prove the following statements:

The sequence {W} is bounded; (14)
un’vn
f1 (X’ un ’Vn) H H 5
The sequence W is bounded in L (Q); (15)
un'vn

X, U _ . :

Iim.[|£21(—;)p(p1 =0 uniformly with respect to ¢ in all bounded subsets of W;"* (Q). (16)
Q unlvn

Indeed, statement (15) follows from

- fL(xu,,V,)

y Y
_| p-1

(Un, V)
v
where W, = ——"—— and themap (z,w) > m,(x)z"" +n,(x)wP™ transforms a bounded
n |(U v ) p-1 1 1
n!n

set in W,P (©)xW,"" (Q) into a bounded set in L” (Q2) ().

In order to prove (21), let £ >0 be a fixed positive number, choosing ¢ >0 so that

<m(X)zP ™t +n (X)W, (17)
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g,(x,u) <eu®*, where u<,xeQ.
Pose that O, ={xeQ:u,(x)> 65}, we have
SN2, [ gpigf<of ool <Celo] )
Q

Q0 |(un'vn) " 0,

and

jgl(x,un)lq_olI SI elu“ﬁ|¢|p_1+f by ||
(U, v, ) & [(uqov,) (Uy,V, )

(u,,v,) 'Bipﬂfzf ||+
Q

v ol 163 | I
|g0| +C I b, ST
Q,
s N

In the above inequalities, we have used ¢e L” (Q), 20" el (Q),b e LP (Q) and
1* + p—*1+£ =1. On the other hand, from
p p N

5" meas(Q,) < J. u? < C||un||p* ,
o,

p-1

A a
1

< ei| ort

[ b Jo|z2 (19)
Q,

<g|

(Un: V)

Implies that meas((%) — 0. Combining (18) and (19) with the absolute continuity of the

integral, we have (16). Hence, from (11), it is implied that the sequence {#} is
u,,V,

bounded, and we can assume that it converges to some t, .
Chossing ¢ =z, -z in (11) and applying (15), (16), and z, -z —> 6 in L‘Y'(Q), we have
lim(Az,,z,—z)=0. Hence, z, -z in W,”(Q).

- : v :
By similar reasoning, we also have w, = —"— —w in W, (Q).

(ugv,)

Since ||z||+||w||:1, then (z,w)#(6,0). Assume that z # 6.

Because of z, — z,w, »> w in L" (Q), we may assume thatz, — z,w, > w a.e.in Q and

|2,|< 2, € LP \Jw,|<w, € L” . Then,
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Vo)

ﬂ,f(x un,vn lim ( || )(0

n—oo
n’ I']

:ﬂ,( pl(x)z”’1+elwp’1)(p, a.e. in Q,

and
;tf(xu v,)

'~ n?n

T A(m 0022+ (we ™)
n? n

<A(m ()25 +n () e L < 1
This implies that
Af (x Uy V)

|
n—
Uy, Vy

It follows from (11), (15), (16), and (19), we have
(Az,p) = I(ﬂ p,(X)z" +ewh +to(p1)(p, Vo eWsP (Q). (21)

Q

If ewP*+tp, =6, we have a contradiction with A>4 and z>6,z#6. Else,

)e_ [4(p00z" +en ), (20)

e, WP +t,p, = 0, assertion (21) contradicts Proposition 2.1.
Step 3. From Steps 1 and 2, we get
i(PoN, B((8,0),R),K) =1, for large R,
and
i(PoN,B((8,0),r),K)=0, asr is small.
Therefore, there exists (u,v) > (6,6) such that r< Il(u,v) Il <R and (u,v)=PoN(u,v).
This means that problem (1) has a non-negative solution.
We further prove u =68 va v # 6. Suppose that the solution (u,v) of problem (1) has
u= 6. By conditions g(x,0)=0 and (H4) (b), we have
O=Au+g(xu)=Af(x0v)=0.
The above contradiction implies the statement to be proved.
Theorem 3.2. (The (p — 1) — super-linear) Assume that the following conditions hold.
(H4) The functions g, :QxR* - R*,i =12 are continuous, satisfy the condition (gl)

and the following conditions:

1. There exists a number S e ( p-1p —1) such that [im 2% (%1)

lim=-5 =a >0 uniformly with

xe Q..
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2. For each ¢; >0, there exists o, >0 such that t oit” —g;(x,t) is increasing on

[0.¢,].i=12.
3. lim g‘t(pxi)_l <o uniformly with xeQ, and the functions ts 222 9 (X t) are
t—0" uP

increasing with a.e. xe Q.
(H5) The functions f, :QxR*xR* — R* are continuous and

muu” +dv? < £ (x,u,v) <muu” +cu’,
where ¢;,d;,m;,m,, >0, p-1<y< p%, p-l<a<p,n>0,i=12.
+
Then, there exists 2 such that if >4 then problem (1) admits at least two non-
negative, non-trivial solutions.

Proof. In space C;(Q)xC;(Q)wi consider the

o=

ct + ”V

Cl!

cone
K= {(u,v) eC, (ﬁ)xCé (5) u(X),v(x) > O} ,
and the interior of the cone

intK :{(u,v)eCé(ﬁ)xCé(ﬁ):u(x),v(x)>0in Q, and Z—E(x)<0,%(x)<0 on 0Q}.

Then, the operator PoN is compact from C} (5)xC§ (5) within itself.

From assumption (H4) (i), it follows that there exist positive numbers a,,a,,,b,i =12 such
that

at’ —b <g(x,t)<a,t’ +b,V(xt)e QxR"i=12.
Step 1. Fix (U, v, ) € K\{(6,6)}. We prove that for sufficiently large R, we have

PLAN (u,v)]—(u,v) =t(u—u,v—v,), vt =R. (22)

Assume the contrary P[ AN (u,.v,)]-(u,.v,)=t,(u, —U,,V, —V,) satisfies the sequences

t>0,u,,v, 26,|(u

Voo = -

We consider the following three cases.

o oo,{||vn Cl} is bounded. Letz =z,=u,+t, (u, —U,) we obtain
1 t,
z, =P, (AN, (u,,v,)) and u”_HZ”+tn+1u°' (23)
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From (22), we deduce ||z, ..

1988), then |z, = 2

z,(x)| > and |z,| > oo.
From (22) and the definition of the operator P, then
||zn||pzjgl(x,z ﬂj (X,u,,V,)
Q

This implies that
ol =l A s clvszn}blj !
Q

<Cllz, + | +C (&)l ) + 2l +C (24)
since {|V,}.. is bounded, then {||vn||i ,3:1-} is also bounded. From (24), we get

[zl +laallys < S (Jaal;s +1) < (2[5 +2).

p+1 a+l B+l

The final inequality leads to ||Zn||ﬁ+l—>°01 and this, also due to the final inequality,
contradicts « < 3.
Case 2. {(un) }Cl [

we obtain a contradiction.
Case 3. |u,|.—

0, ”Vn ct

(U —ug), W, =v, +t, (v, —V,). By
reasoning similar to Case 1, we obtain ||z, — o and |jw,||— .

Using simple calculations and reasoning similar to Case 1, it is easy to see that

e A (IIZ o

a+l

J2a] + 1w + 2z,

a+l
+ [, v | )

a+l a+l

C(&)(Junll (. +vall o )+ 2 (Jzalls + Il ) €.
We again have |u, || <Cly, I': 7By <C|u,| (5 <C|z,|f " gor sufficiently large n.

B+1)

Similarly, we also have ||v || < Clw, [’ )" for sufficiently large n . From this and from

(30), we deduce

(2 w,)|" (Z”’Wn)ZESC(KZn’Wn)Zj‘f‘ (zn,wn)y(m#l)
<[z )l s+ Iz ) 1), (26)
The final inequality leads to ((z,,w,) Piidat This contradicts o < g and (S +1)'<

Step 2. We prove that for sufficiently small r, we have
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(u,v) = P[tAN (u,v) ], vt e[O,l],Vu,VZO,”(u,v)

=r.

Cl

Assume the contrary, then (u,v):P[tﬂN(u,v)] holds for some sequences
(Un,Vn) C, :”u”

Jun|” < mu, | +ijﬁun . (27)
Q

t,[0.1],u,,v, 20,|

= IV,

. . —0.Then, we have |ju,|— 0 and

1+a

Since {||vn ”cl} is bounded, we have

Ivgun £C||un|/;ﬁ.
Q

On the other hand, since 1+ a <1+ S < p then from (27), we get
JuI” <+ Jua 7).

This is not possible because of 1+« > p,1+ 4> p and |u,|—0.

Step 3. We consider the following problem as a special case of problem (1)
—Au=u"—-g,(xu) inQ,
~AV=AV"—-g,(x,u) inQ, (28)
u=v=0 on oQ.

With the functions g,, g, and the number « as above. From assumption (H4), we can prove

the existence of A. such that if 1 > 4., then problem (28) admits a solution (u,,v,)eint K

Ac-2%

mO

where

(lannizzotto &  Papageorgiou, 2011). Assume that A>A1:=

) Am ) .
m. =min{m. . i=12}. Since 0 > A., there exists (u,,v.)eint K such that
0 1i 0 0

a

Am
_ApuO :T,OUg _gl(X’UO)'

Am,
—A v, =2f~°v0 —d,(X,Uy).

Define the function ¢:Cj(Q)xC;(Q)—> R as follows

o(u,v)=sup{teR:(u,v)=t(uyV,)}.
The function ¢ defined above is continuous and convex (Nguyen et al., 2016).

Choose R > |(Y,.V,)

G :{(u,v)e K, |(u,v)

o SO that (27) is satisfied and set

1
o < R,go(u,v)>§}.
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We will prove that i(P(AN),G,K)=1 by applying Proposition 2.2 (Nguyen et al., 2016).
It is easy to see that it is sufficient to check if (p(u,v):% then (pI:PI:/lN (u,v)]]>%.

Indeed, let (z,w)=P[ AN (u,v)], then
—A,z+0,(x,2)=Af(x,u,v) > Amu“ > Amu“
S Ay

2 Ug = =AUy + g, (X,Up)

and
—A W+, (X, wW)=AF,(x,u,v)=Am,v" > Amyv*
> /IZTO Vo =—A Vo +0,(XUp).
Hence, we get z>uy, W=V, or ¢(z,w)>1.

On the other hand, by Steps 1 and 2, we have

i(Po(2N),B(0,R),K)=1 for sufficiently large R,

i(Po(2N),B(6:r),K) =1 for sufficiently small I .
From this, we get B(6,r)uG < B(6,R),B(6,r)nG =g and
i(Po(AN),B(6,r),K)+i(Po(AN),G,K)=i(Po(AN),B(6,R),K).
Therefore, for the operartor Po(AN), there is at least one fixed point in G and at least one
in B(0,R)\[B(0,r)uG].
Finally, we prove that if (u,,v,) is a non-negative solution of problem (1), then u, #0 and
v, # 0. Indeed, from condition (H5), assume u, =0, then
0 =—A U+ 09, (X,Uy) = AT (X, U,V ) 2 dyvg #0.

This is a contradiction. Thus, we have the proof.
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TOM TAT
Trong nghién cizu nay chung toi xét hé phuwong trinh cé dang logistic sau
—Au=Af(xu,v)-g,(x,u) trongQ,
—Av=21,(X,v,u)—g,(xv) trong Q,
u=v=0 trén 0Q,

Véi gid thiét vé théa man diéu kién vé bdc ting (cua an ham) dwoc chi ra sau cia cac ham phi
tuyén f.,g,,i=1,2 . Chang tdi chi ra su ton tai nghiém yéu khong &m cho hé bang phucong phap
béc t6 pd ket hop véi i ludn vé chén diedi don diéu. Pay la mét két qua mé réng cho cac nghién ciru
truoc day.

Tir khoa: bac td pd; hé phuong trinh logistic; (p-1)-tuyén tinh
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