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ABSTRACT 

One frequently utilized method in recommendation systems is collaborative filtering (CF). 

Fine-tuning the hyperparameters of CF algorithms remains a difficult task even with developments 

in modeling consumers and products/services. This work explores an alternative approach for this 

aim by means of Bayesian optimization using Gaussian processes during hyperparameter alteration. 

This method reduces the time and effort usually needed for manual tuning by autonomously adjusting 

hyperparameters for two basic and simple CF algorithms on three popular datasets, yielding 

competitive results: Netflix Prize, Movielens 1M, and Movielens 10M. Therefore, it could enable 

practitioners to improve the performance of their recommendation systems whilst greatly shortening 

the time and effort spent on tuning their systems. 

Keywords: Bayesian optimization; collaborative filtering; Movielens; Netflix Prize 

 

1. Introduction 

1.1. Background 

Customers have numerous options across various digital retail and multimedia 

platforms. The abundance of options hinders products’ capacity to meet specific consumer 

preferences. Businesses like Amazon, Google, and Netflix rely heavily on tailored 

recommendation systems. These technologies enable item customization to align with 

consumer preferences, thereby improving customer satisfaction and loyalty (Adomavicius 

& Tuzhilin, 2005). The primary method for building recommendation systems today is 

collaborative filtering (CF). CF relies solely on previous user activity, such as ratings or 

purchases, rather than explicit user profiles. This method enables CF to provide 

recommendations using minimal data collection and without the need for domain-specific 

knowledge (Yan, 2014). Additionally, user behavior may allow CF to uncover patterns and 

preferences not evident in traditional methods. Amazon and Netflix have shown 

effectiveness in commercial applications (Zhang et al., 2014). 
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1.2. Problem Statement 

While modeling approaches have evolved, hyperparameter tuning in CF systems has 

stayed mostly human work (Rendle et al., 2019). Usually labor-intensive and maybe 

inconsistent, this approach is not always the best one. To attain the best performance, for 

instance, the winning solution from the Netflix Prize competition required a complete hand-

off of hyperparameters (Koren, 2008, 2009). 

1.3. Objective and Contributions 

Using Bayesian optimization with Gaussian priors, several beneficial applications for 

hyperparameter optimization have shown success (Imani et al., 2022; Morita et al., 2022; 

Snoek et al., 2012). Still, its capacity to improve CF methods on well-known datasets has 

not been discovered. This work uses Bayesian optimization with Gaussian processes to 

optimize the hyperparameters in two simple CF algorithms, hence bridging this gap. 

Therefore, our research work aims to: 

a) automate hyperparameter adjustment, reducing dependence on user interaction, 

b) boosting the performance of CF algorithms on extensively used datasets.  

Our findings on the Netflix Prize, Movielens 1M, and Movielens 10M datasets 

illustrate the efficacy of our approach, getting competitive performance notwithstanding not 

being at the top (our source code for these tests is published at 

https://github.com/anhnt1/netflix). As far as we know, there are no research results on 

applying Bayesian optimization with Gaussian priors to the two testing CF algorithms on all 

three datasets.  

1.4. Paper Outline 

The rest of this paper will be organized as follows: The second part will go over our 

research objects and research methodology. The current research, with a particular focus on 

hand hyperparameter tweaking, is also presented in the second section. The next section will 

then present our research results with two basic and simple CF algorithms applied to the 

three datasets: Netflix Prize, Movielens 1M, and Movielens 10M. This paper then concludes 

with a conclusion section. 

2. Research objects and methodology 

2.1. Literature Review 

Research on recommender systems has been remarkable, with an emphasis on 

modeling people, objects, and their interactions. CF has been a pillar in this field with major 

research on several strategies to raise its efficiency. Early CF publications include Koren et 

al. (Koren, 2008, 2009) and others concentrating on matrix factorization techniques for user-

item interactions. These techniques split the user-item interaction matrix into latent 

components reflecting people and objects, and then apply them to forecast user preferences. 

Further research has proposed more intricate models, including hybrid methods combining 

content-based filtering with CF to leverage both user behavior and item attributes (Z. Li et 

al., 2017). Horasan et al. (2023) argue that although typical matrix decomposition methods 

utilized in CF, including Singular Value Decomposition (SVD) and Non-negative Matrix 

https://github.com/anhnt1/netflix
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Factorization (NMF), have great computational complexity, they are outstanding in 

managing scalability. This motivates the computationally efficient substitute for the 

scalability method, so the Truncated–ULV decomposition technique (T–ULVD) has been 

proposed. Including knowledge graphs (KGs) in CF systems allows the authors of (Chen et 

al., 2021) to overcome data sparsity. Including user and item characteristics from KGs 

improves the simulation of user-item interactions. By means of trust linkages between users 

in CF models, the authors of (Khaledian & Mardukhi, 2022) can also overcome data sparsity. 

The performance of CF systems has been increasingly enhanced by deep learning 

applications. Complex user-item interactions and latent characteristics may now be learned 

using methods including multi-model deep learning and collaborative deep forest learning 

(CDFL). These approaches combine deep neural networks with traditional CF techniques to 

offer better control of data sparsity and higher recommendation accuracy (Aljunid & 

Doddaghatta Huchaiah, 2020; Molaei et al., 2021). Furthermore, attention structures and 

recurrent neural networks have captured information from long-distance interactions, 

thereby improving the depth of feature representation (Xia et al., 2021). Using Bayesian 

statistics for matrix factorization, Previous studies (Rendle, 2012; Rendle et al., 2019; 

Salakhutdinov & Mnih, 2008) estimate missing values in a matrix so that their models may 

better anticipate users’ preferences. Their primary goal is thus the same as that of other 

research works, which concentrate just on more accurate parameter estimation of CF models. 

Although during the past two decades, advanced CF models have made great progress, 

hyperparameter tuning is still vital to improve these systems. Usually requiring manual 

adjustment, traditional approaches are not only time-consuming but also prone to producing 

worse results due to the broad search area and complicated interactions between parameters. 

Their effects on generalizing, computing efficiency, and model accuracy complicate the 

tuning process (Bardenet et al., 2013; Rendle et al., 2019; Szabó & Genge, 2020). For 

practitioners just entering the industry and requiring great topic knowledge, this manual 

technique could be very difficult. 

Like Bayesian optimization, automated approaches have benefits in tackling the 

challenges of hyperparameter tweaking, hence improving the correctness of the model and 

lowering the modeling time needed (Hoos, 2012). The success of such automatic tuning 

methods has been demonstrated in several real-world scenarios (Imani et al., 2022; Morita 

et al., 2022; Snoek et al., 2012), thereby stressing a possible path of research in recommender 

systems. We want to investigate a new, useful, and practical approach to adjust 

hyperparameters in CF systems with the potential to get good performance. In this sense, the 

dependency on human labor will be lessened, and the performance of the CF algorithm might 

be improved. This might help to hasten innovation in this field by letting more practitioners 

create and apply successful recommender systems. 

2.2. The Datasets 

The Netflix Prize competition used more than 100 million movie evaluations for 

training, and the quiz and test sets each has 1.4 million contemporary ratings for assessment. 
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We utilize the same datasets for training, testing, and validation, unlike other studies (Kim 

& Suh, 2019; Steck, 2019) that employ a modified methodology involving the binarization 

of ratings and user filtering, or by randomly dividing the original training set to create 

additional datasets (Shenbin et al., 2020). The Movielens 1M and 10M datasets are 

extensively used for evaluating the effectiveness of recommender systems. We randomly 

divided these two datasets in a 90:10 ratio for training and testing, a commonly used 

proportion in research, as cited in (Rendle et al., 2019). 

2.3. Two CF Algorithms  

The two fundamental collaborative filtering algorithms from Koren (2008) presented 

in this section provide the foundation for more sophisticated models. The first method 

embeds individuals as well as objects into a common latent factor space. The objective is to 

ascertain underlying preferences by representing users and items on related vectors. Each 

user 𝑢 is associated with a vector 𝑝𝑢 ∈ 𝑅𝑛, referred to as the user-factor vector, whereas each 

item 𝑖 is linked to a vector 𝑞𝑖 ∈ 𝑅𝑛, known as the item-factor vector. The anticipated ratings, 

represented as 𝑟̂𝑢𝑖, are computed as the inner product of these vectors, namely 𝑟̂𝑢𝑖 = 𝑝𝑢
𝑇𝑞𝑖. 

The optimization of latent components seeks to reduce the discrepancy between anticipated 

ratings and actual ratings 𝑟𝑢𝑖 throughout the procedure: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑
(𝑢,𝑖)∈𝐾

(𝑟𝑢𝑖 − 𝑝𝑢
𝑇𝑞𝑖)2 + 𝜆(‖𝑝𝑢‖2 + ‖𝑞𝑖‖2) 

𝐾 is a set defined as 𝐾 = {(𝑢, 𝑖)|𝑟𝑢𝑖 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛}, 𝜆 is a regularization parameter that has to 

be tuned. Thus, the prediction error for any estimate can be given as 𝑒𝑢𝑖 = 𝑟𝑢𝑖 − 𝑟̂𝑢𝑖. We take 

each training instance and pass through all ratings included in the set 𝐾. For every rating 𝑟𝑢𝑖, 

we make changes to model parameters counter to the gradients given by: 

𝑝𝑢 ← 𝑝𝑢 + 𝑙𝑟(𝑒𝑢𝑖𝑞𝑖 − 𝜆𝑝𝑢), 𝑞𝑖 ← 𝑞𝑖 + 𝑙𝑟(𝑒𝑢𝑖𝑝𝑢 − 𝜆𝑞𝑖) 

where 𝑙𝑟 is the learning rate. 

The second CF method enhances the first by including baseline estimation to address 

the inherent user and item biases in CF data. Baseline estimations are used to address these 

issues: 𝜇 is the overall mean rating, while 𝑏𝑢 and 𝑏𝑖 signify the departures of the user and 

item, respectively, from the unbiased component 𝜇 + 𝑝𝑢
𝑇𝑞𝑖. The forecast may then be 

calculated as follows: 

𝑟̂𝑢𝑖 = 𝜇 + 𝑏𝑢 + 𝑏𝑖 + 𝑝𝑢
𝑇𝑞𝑖 

The associated loss is minimized to estimate parameters: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑
(𝑢,𝑖)∈𝐾

(𝑟𝑢𝑖 − 𝜇 − 𝑏𝑢 − 𝑏𝑖 − 𝑝𝑢
𝑇𝑞𝑖)2 + 𝜆(‖𝑝𝑢‖2 + ‖𝑞𝑖‖2 + 𝑏𝑢

2 + 𝑏𝑖
2) 

Analogous to the first approach, we iterate over all known ratings in the dataset 𝐾. 

Model parameters are adjusted for each rating 𝑟𝑢𝑖 as follows: 

𝑏𝑢 ← 𝑏𝑢 + 𝑙𝑟(𝑒𝑢𝑖 − 𝜆𝑏𝑢), 𝑏𝑖 ← 𝑏𝑖 + 𝑙𝑟(𝑒𝑢𝑖 − 𝜆𝑏𝑖) 

𝑝𝑢 ← 𝑝𝑢 + 𝑙𝑟(𝑒𝑢𝑖𝑞𝑖 − 𝜆𝑝𝑢), 𝑞𝑖 ← 𝑞𝑖 + 𝑙𝑟(𝑒𝑢𝑖𝑝𝑢 − 𝜆𝑞𝑖) 
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The algorithms repeat 𝐾 times and finish when the loss does not considerably decrease 

after many iterations. 

2.4. Bayesian Optimization with Gaussian Processes 

 
Figure 1. Bayesian Optimization Process for CFs. 

Figure 1 depicts the iterative nature of Bayesian optimization using a loop that covers 

the entire process. When convergence is not achieved, the dashed arrow from the 

convergence check indicates the iterative nature of the procedure. 

1. Initial Sampling: First, the approach selects beginning hyperparameters from the 

hyperparameter space. 

2. Gaussian Process Model: Second, the given data fits the Gaussian Process model. New 

data updates the model in subsequent rounds. In this stage, we employ Bayesian statistics, 

which takes into account every previous function evaluation to update our beliefs and 

generate a posterior distribution and uncertainty estimates. 

3. Acquisition Function: Third, the current GP model is utilized to develop an acquisition 

function. This helps balance exploitation and exploration. 

4. New Sample: Fourth, the acquisition function is adjusted to choose the next set of 

hyperparameters to test. 

5. Evaluation: Fifth, the recommender system’s performance is evaluated using the 

hyperparameters that were selected. 

6. Convergence Check: Sixth, the technique checks whether the halting requirements 

(performance criterion or maximum iterations) have been reached. 

7. Outcome: Seventh, if converged, the process yields the best hyperparameters 

identified. This should not be the case; it returns to step 2. 

A comprehensive elucidation of the fundamental concepts of Bayesian optimization is 

available in (Frazier, 2018). The primary benefit of Bayesian optimization is its ability to 

use all available data effectively, which incorporates all prior function evaluations when 

selecting the subsequent exploratory point, hence enhancing its efficiency and effectiveness 

in optimization. 
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2.5. Evaluation Metrics 

This study uses Root Mean Square Error (RMSE) as the assessment measure. It is 

mathematically defined as the square root of the mean of the squared deviations between the 

expected and actual values: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑

𝑛

𝑖=1

(𝑃𝑖 − 𝑂𝑖)2 

where 𝑃𝑖 is the predicted value for the i-th observation, 𝑂𝑖 is the actual value for the i-th 

observation, and n is the total number of observations. A lower RMSE value indicates that 

the model’s predictions are closer to the actual values, meaning the model has better 

accuracy. 

3. Results and discussion 

3.1. Empirical Findings 

In our trials, we used scikit-optimize (Tim et al., 2021) for hyperparameter 

optimization, which employs Bayesian optimization. Specifically, we use the gp_minimize 

function of the library with all the possible default values (including the default acquisition 

function, number of iterations, number of initial random iterations, and kernel). Based on 

our experiences when optimizing hyperparameters (the search space should be wide enough 

to capture the potential variations in model performance, while also being manageable to 

ensure efficient computation during training and evaluation phases), we set the initial 

learning rate 𝑙𝑟 is established at 5e-3, the regularization parameter 𝜆 varies from 1e-4 to 1.0, 

and the dimension 𝑛 ranges from 50 to 500. If the loss reduction is below 1e-4 after two 

rounds, the learning rate is reduced by a factor of 10. The parameter optimization procedure, 

which refines 𝑏𝑢, 𝑏𝑖 , 𝑝𝑢, 𝑞𝑖, terminates if the loss reduction is less than 1e-4 after five 

iterations (stopping criterion). 

At each stage, two primary tasks delineate the complexity of Bayesian optimization 

using Gaussian processes: adjusting the hyperparameters of the Gaussian process and 

optimizing the acquisition function to choose a new set of hyperparameters. The 

complexities of each of these tasks are 𝑂(𝑁3) and 𝑂(𝑁2), respectively, where 𝑁 denotes 

the number of data points (Garnett, 2023; Snoek et al., 2012). Our findings and experience 

demonstrate that a single iteration of Bayesian optimization requires significantly less time 

than optimizing parameters in one iteration; consequently, the time needed to search for a 

new set of hyperparameters (a new exploration point) is nearly negligible compared to the 

time necessary to optimize the parameters of a CF algorithm. Figure 2 illustrates the duration 

required for Bayesian optimization using Gaussian processes in our experiment, which 

involves two hyperparameters and 100 iterations. Note that this time consumption is 

unaffected by CF algorithms since they operate as a black box inside the Bayesian 

optimization framework. In contrast to alternative methods, Grid Search (Bergstra & Bengio, 

2012) exhibits exponential complexity 𝑂(𝑘𝑑), where k represents values per parameter and 
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d denotes dimensions, rendering it unfeasible for high-dimensional spaces. Conversely, 

Random Search (Bergstra & Bengio, 2012) scales linearly with the number of iterations 

𝑂(𝑘), but it may be less sample-efficient. Evolutionary Algorithms (Guido et al., 2023) 

frequently exhibit significant complexity based on population size and the number of 

generations, but techniques such as Hyperband (L. Li et al., 2017) (𝑂(𝑘 ∗ 𝑙𝑜𝑔 𝑘)) provide 

efficiency improvements through adaptive resource allocation. Despite the elevated per-

iteration cost of Bayesian optimization with Gaussian processes due to the cubic term, its 

efficacy is evident in its demand for substantially fewer costly function evaluations (𝑁) to 

identify optimal hyperparameters, in contrast to Grid or Random Search, rendering it 

particularly advantageous when the evaluation of the objective function constitutes the 

principal constraint. 

In our experiment, the two algorithms attain RMSE values of 0.8103 (𝜆 = 3.36E-02 

and 𝑛 = 90) and 0.8107 (𝜆 = 0.026905275 and 𝑛 = 87) on the Test set of the Netflix Prize 

datasets, respectively. A recent study (Steck, 2019) uses a modified approach to datasets by 

binarizing ratings and filtering users, or by randomly partitioning the original training set to 

generate supplementary datasets (Shenbin et al., 2020). This hinders our ability to compare 

the findings; nonetheless, the top-performing algorithm in the Netflix Prize competition 

attained an RMSE score of 0.8567 on the Test set (Koren, 2009). 

Tables 1 and 2 show the outcomes of the two CF methods on the Movielens 1M and 

Movielens 10M datasets. The outcomes for the Movielens 1M dataset from other techniques 

are derived from (Han et al., 2021), whilst those for the Movielens 10M dataset are from 

Rendle et al. (2019).  

 

Figure 2. Bayesian optimization time: time for finding evaluation points 

3.2. Analysis 

The findings indicate that Bayesian optimization using Gaussian priors is beneficial 

for hyperparameter adjustment in the two CF models. This approach achieves competent 

performance based on findings from the three popular datasets, and practitioners can always 

opt to use more complicated CF algorithms to get better results. While not yielding the most 

optimal results relative to other advanced methodologies, the hyperparameter-tuned 

algorithms demonstrated commendable performance, highlighting the capacity of Bayesian 

optimization to improve recommender systems in this context. Therefore, this method’s 

pragmatic merits include time efficiency and a much-reduced need for human adaptation.  
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Table 1. Performance comparison of various algorithms on the Movielens 1M dataset 

Algorithm  RMSE (Movielens 1M) 

LLORMA  0.833 

CF-NADE  0.829 

GC-MC  0.832 

GraphRec  0.843 

GraphRec+Extra  0.842 

SparseFC  0.824 

IGMC  0.857 

GLocal-K  0.822 

Our approach (first algo.)  0.8410 

Our approach (second algo.)  0.8459 
 

Table 2. Performance comparison of various algorithms on the Movielens 10M dataset 

Algorithm  RMSE (Movielens 10M) 

RSVD  0.8256 

GSMF  0.8012 

I-AutoRec  0.7820 

LLORMA  0.7815 

AdaError  0.7644 

SGD MF  0.7720 

Bayesian SVD++  0.7563 

Bayesian timeSVD++  0.7523 

Bayesian timeSVD++ flipped  0.7485 

Our approach (first algo.)  0.7757 

Our approach (second algo.)  0.7787 

3.3. Strengths and Limitations 

This study demonstrated that Gaussian processes can be used in Bayesian optimization 

to automate hyperparameter tuning, minimizing the need for human intervention due to the 

labor-intensive and the error-prone nature of manual tuning. This approach significantly 

reduces time and effort while achieving competitive performance across various neural 

networks and datasets, including Netflix Prize, Movielens 1M, and 10M. This approach may 

enhance primary collaborative filtering performance due to its simplicity and practicality for 

those without manual tuning skills. This approach can be applied in various optimization 

algorithms or domains requiring hyperparameter optimization, extending its applicability 

beyond recommender systems. In the hyperparameter search campaign, this is insufficient, 

leading to unequal benchmark results. It has focused on basic collaborative filtering 

algorithms. While simple implementations serve as test cases, results may not fully represent 

the optimization potential in more complex models. The framework was assessed on only 

three datasets, potentially restricting its applicability to real-world scenarios. 

4. Conclusion 

4.1. Summary of Findings 

The evaluation of the method was performed using the three most prominent datasets 

for the collaborative filtering systems, namely the Netflix Prize, Movielens 1M, and 

Movielens 10M. The results revealed that this technique massively reduces, if not almost 
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eliminates, model tuning while still ensuring the competitiveness of the model. Although the 

strategy does not score the best RMSE relative to that of the state-of-the-art models, it seems 

to still achieve good results without the need to use very many complicated collaborative 

filtering algorithms. This research presents a novel, effective, and pragmatic method for 

hyperparameter adjustment in CF systems, with the potential to enhance performance. This 

methodology has not been explicitly examined for CF and recommender systems. 

4.2. Implications 

This study presents an automated Bayesian hyperparameter tuning framework with 

some significant implications for dynamic recommender systems, which require continuous 

updates to recommendations in response to evolving user behavior and catalog content.  

Ongoing self-improvement: replacing manual grid search with Bayesian optimization 

allows the model to re-tune autonomously on a rolling basis, such as nightly or in response 

to drift alerts, requiring minimal human intervention. This reduces operational costs and 

decreases the adaptation loop from days to hours, enabling the recommender to monitor swift 

changes in user preferences or item catalogs. 

Accelerated deployment and testing: the reduction in tuning time (around 50% in our 

experiments) enables business teams to deploy new features or data signals into production, 

receive immediate feedback, and perform rollbacks or iterations without enduring a 

prolonged retraining backlog. In dynamic environments such as news, e-commerce flash 

sales, and streaming content launches, the speed of operations directly influences user 

engagement and revenue generation.  

Facilitating democratization for teams with limited resources: small and mid-sized 

companies frequently do not have specialized machine learning engineers. An auto-tuning 

layer simplifies the deployment of advanced collaborative filtering, allowing teams to utilize 

state-of-the-art techniques with minimal MLOps infrastructure.  

Robustness in real-time under non-stationary conditions: dynamic recommenders 

encounter concept drift and seasonal variations. Bayesian optimization employs a 

probabilistic surrogate, specifically a Gaussian Process, to quantify uncertainty, enabling it 

to prioritize hyperparameter regions that are likely to maintain stability under drift.  

4.3. Future Work 

Future possible studies might investigate more complex applications of Bayesian 

optimization to other, more sophisticated CF algorithms that use deep learning or hybrid 

algorithm designs. Also, an increased number of datasets, such as those showing distinct 

user behavior patterns or varying levels of sparsity from other sources, would give a broader 

understanding of the method's implementation. 
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TÓM TẮT 

Một phương pháp thường được sử dụng trong hệ thống đề xuất là lọc cộng tác (Collaborative 

Filtering - CF). Tinh chỉnh các siêu tham số (hyperparameters) của các thuật toán CF vẫn là một 

công việc khó khăn ngay cả với những khám phá mới trong việc mô hình hóa người dùng và các sản 

phẩm/dịch vụ. Nghiên cứu này đề xuất một phương pháp thay thế cho công việc này thông qua tối 

ưu hóa Bayesian sử dụng quá trình ngẫu nhiên Gaussian trong quá trình thay đổi các siêu tham số. 

Phương pháp này giảm thời gian và công sức cần thiết cho việc tinh chỉnh thủ công bằng cách tự 

động điều chỉnh các siêu tham số cho hai thuật toán lọc cộng tác cơ bản (và đơn giản) trên ba tập 

dữ liệu phổ biến: Netflix Prize, Movielens 1M và Movielens 10M. Do đó, nó có thể giúp các nhà thực 

hành cải thiện hiệu suất của hệ thống đề xuất, đồng thời rút ngắn đáng kể thời gian và công sức dành 

cho việc tinh chỉnh hệ thống của họ. 

Từ khóa: tối ưu hóa Bayesian; lọc cộng tác; Movielens; Netflix Prize 

 


