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ABSTRACT

One frequently utilized method in recommendation systems is collaborative filtering (CF).
Fine-tuning the hyperparameters of CF algorithms remains a difficult task even with developments
in modeling consumers and products/services. This work explores an alternative approach for this
aim by means of Bayesian optimization using Gaussian processes during hyperparameter alteration.
This method reduces the time and effort usually needed for manual tuning by autonomously adjusting
hyperparameters for two basic and simple CF algorithms on three popular datasets, yielding
competitive results: Netflix Prize, Movielens IM, and Movielens 10M. Therefore, it could enable
practitioners to improve the performance of their recommendation systems whilst greatly shortening
the time and effort spent on tuning their systems.
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1. Introduction
1.1. Background

Customers have numerous options across various digital retail and multimedia
platforms. The abundance of options hinders products’ capacity to meet specific consumer
preferences. Businesses like Amazon, Google, and Netflix rely heavily on tailored
recommendation systems. These technologies enable item customization to align with
consumer preferences, thereby improving customer satisfaction and loyalty (Adomavicius
& Tuzhilin, 2005). The primary method for building recommendation systems today is
collaborative filtering (CF). CF relies solely on previous user activity, such as ratings or
purchases, rather than explicit user profiles. This method enables CF to provide
recommendations using minimal data collection and without the need for domain-specific
knowledge (Yan, 2014). Additionally, user behavior may allow CF to uncover patterns and
preferences not evident in traditional methods. Amazon and Netflix have shown
effectiveness in commercial applications (Zhang et al., 2014).
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1.2. Problem Statement

While modeling approaches have evolved, hyperparameter tuning in CF systems has
stayed mostly human work (Rendle et al., 2019). Usually labor-intensive and maybe
inconsistent, this approach is not always the best one. To attain the best performance, for
instance, the winning solution from the Netflix Prize competition required a complete hand-
off of hyperparameters (Koren, 2008, 2009).

1.3. Objective and Contributions

Using Bayesian optimization with Gaussian priors, several beneficial applications for
hyperparameter optimization have shown success (Imani et al., 2022; Morita et al., 2022;
Snoek et al., 2012). Still, its capacity to improve CF methods on well-known datasets has
not been discovered. This work uses Bayesian optimization with Gaussian processes to
optimize the hyperparameters in two simple CF algorithms, hence bridging this gap.
Therefore, our research work aims to:

a) automate hyperparameter adjustment, reducing dependence on user interaction,
b) boosting the performance of CF algorithms on extensively used datasets.

Our findings on the Netflix Prize, Movielens 1M, and Movielens 10M datasets
illustrate the efficacy of our approach, getting competitive performance notwithstanding not
being at the top (our source code for these tests is published at
https://github.com/anhnt1/netflix). As far as we know, there are no research results on
applying Bayesian optimization with Gaussian priors to the two testing CF algorithms on all
three datasets.

1.4. Paper Outline

The rest of this paper will be organized as follows: The second part will go over our
research objects and research methodology. The current research, with a particular focus on
hand hyperparameter tweaking, is also presented in the second section. The next section will
then present our research results with two basic and simple CF algorithms applied to the
three datasets: Netflix Prize, Movielens 1M, and Movielens 10M. This paper then concludes
with a conclusion section.

2.  Research objects and methodology
2.1. Literature Review

Research on recommender systems has been remarkable, with an emphasis on
modeling people, objects, and their interactions. CF has been a pillar in this field with major
research on several strategies to raise its efficiency. Early CF publications include Koren et
al. (Koren, 2008, 2009) and others concentrating on matrix factorization techniques for user-
item interactions. These techniques split the user-item interaction matrix into latent
components reflecting people and objects, and then apply them to forecast user preferences.
Further research has proposed more intricate models, including hybrid methods combining
content-based filtering with CF to leverage both user behavior and item attributes (Z. Li et
al., 2017). Horasan et al. (2023) argue that although typical matrix decomposition methods
utilized in CF, including Singular Value Decomposition (SVD) and Non-negative Matrix
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Factorization (NMF), have great computational complexity, they are outstanding in
managing scalability. This motivates the computationally efficient substitute for the
scalability method, so the Truncated—ULV decomposition technique (T-ULVD) has been
proposed. Including knowledge graphs (KGs) in CF systems allows the authors of (Chen et
al., 2021) to overcome data sparsity. Including user and item characteristics from KGs
improves the simulation of user-item interactions. By means of trust linkages between users
in CF models, the authors of (Khaledian & Mardukhi, 2022) can also overcome data sparsity.
The performance of CF systems has been increasingly enhanced by deep learning
applications. Complex user-item interactions and latent characteristics may now be learned
using methods including multi-model deep learning and collaborative deep forest learning
(CDFL). These approaches combine deep neural networks with traditional CF techniques to
offer better control of data sparsity and higher recommendation accuracy (Aljunid &
Doddaghatta Huchaiah, 2020; Molaei et al., 2021). Furthermore, attention structures and
recurrent neural networks have captured information from long-distance interactions,
thereby improving the depth of feature representation (Xia et al., 2021). Using Bayesian
statistics for matrix factorization, Previous studies (Rendle, 2012; Rendle et al., 2019;
Salakhutdinov & Mnih, 2008) estimate missing values in a matrix so that their models may
better anticipate users’ preferences. Their primary goal is thus the same as that of other
research works, which concentrate just on more accurate parameter estimation of CF models.

Although during the past two decades, advanced CF models have made great progress,
hyperparameter tuning is still vital to improve these systems. Usually requiring manual
adjustment, traditional approaches are not only time-consuming but also prone to producing
worse results due to the broad search area and complicated interactions between parameters.
Their effects on generalizing, computing efficiency, and model accuracy complicate the
tuning process (Bardenet et al., 2013; Rendle et al., 2019; Szabo & Genge, 2020). For
practitioners just entering the industry and requiring great topic knowledge, this manual
technique could be very difficult.

Like Bayesian optimization, automated approaches have benefits in tackling the
challenges of hyperparameter tweaking, hence improving the correctness of the model and
lowering the modeling time needed (Hoos, 2012). The success of such automatic tuning
methods has been demonstrated in several real-world scenarios (Imani et al., 2022; Morita
etal., 2022; Snoek et al., 2012), thereby stressing a possible path of research in recommender
systems. We want to investigate a new, useful, and practical approach to adjust
hyperparameters in CF systems with the potential to get good performance. In this sense, the
dependency on human labor will be lessened, and the performance of the CF algorithm might
be improved. This might help to hasten innovation in this field by letting more practitioners
create and apply successful recommender systems.

2.2. The Datasets

The Netflix Prize competition used more than 100 million movie evaluations for

training, and the quiz and test sets each has 1.4 million contemporary ratings for assessment.
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We utilize the same datasets for training, testing, and validation, unlike other studies (Kim
& Suh, 2019; Steck, 2019) that employ a modified methodology involving the binarization
of ratings and user filtering, or by randomly dividing the original training set to create
additional datasets (Shenbin et al., 2020). The Movielens IM and 10M datasets are
extensively used for evaluating the effectiveness of recommender systems. We randomly
divided these two datasets in a 90:10 ratio for training and testing, a commonly used
proportion in research, as cited in (Rendle et al., 2019).
2.3. Two CF Algorithms

The two fundamental collaborative filtering algorithms from Koren (2008) presented
in this section provide the foundation for more sophisticated models. The first method
embeds individuals as well as objects into a common latent factor space. The objective is to
ascertain underlying preferences by representing users and items on related vectors. Each
user u is associated with a vector p,, € R™, referred to as the user-factor vector, whereas each
item i is linked to a vector gq; € R™, known as the item-factor vector. The anticipated ratings,
represented as 7,,;, are computed as the inner product of these vectors, namely 7,,; = pXq;.
The optimization of latent components seeks to reduce the discrepancy between anticipated
ratings and actual ratings r;,; throughout the procedure:

minimize ) (g = pha)” + AUpul + lall?)
(u,i)ex
K is a set defined as K = {(u, i)|ry; is known}, A is a regularization parameter that has to
be tuned. Thus, the prediction error for any estimate can be given as e,;; = 1,,; — 7y,;. We take
each training instance and pass through all ratings included in the set K. For every rating ry,;,
we make changes to model parameters counter to the gradients given by:

Py < Pyt lr(euiqi - Apu)r qi < q;i t lr(euipu - ACIL‘)
where [, is the learning rate.

The second CF method enhances the first by including baseline estimation to address
the inherent user and item biases in CF data. Baseline estimations are used to address these
issues: u is the overall mean rating, while b,, and b; signify the departures of the user and
item, respectively, from the unbiased component u + plq;. The forecast may then be
calculated as follows:

fui = W+ by + b; + pjq;

The associated loss is minimized to estimate parameters:

minimize 2 (ryi — = by — by — pa)* + Allpull? + llqill* + b + b7)
(u,i)ex
Analogous to the first approach, we iterate over all known ratings in the dataset K.
Model parameters are adjusted for each rating r,,; as follows:
b, < by + lr(eui - Abu); b; < b; + lr(eui - Abi)
Pu < Put L(ewiqi — ), qi < q; + L (eyipy — 4q;)
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The algorithms repeat K times and finish when the loss does not considerably decrease

after many iterations.

2.4. Bayesian Optimization with Gaussian Processes
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Figure 1. Bayesian Optimization Process for CFs.

Figure 1 depicts the iterative nature of Bayesian optimization using a loop that covers
the entire process. When convergence is not achieved, the dashed arrow from the
convergence check indicates the iterative nature of the procedure.

1. Initial Sampling: First, the approach selects beginning hyperparameters from the
hyperparameter space.

2. Gaussian Process Model: Second, the given data fits the Gaussian Process model. New
data updates the model in subsequent rounds. In this stage, we employ Bayesian statistics,
which takes into account every previous function evaluation to update our beliefs and
generate a posterior distribution and uncertainty estimates.

3. Acquisition Function: Third, the current GP model is utilized to develop an acquisition
function. This helps balance exploitation and exploration.

4. New Sample: Fourth, the acquisition function is adjusted to choose the next set of
hyperparameters to test.

5. Evaluation: Fifth, the recommender system’s performance is evaluated using the
hyperparameters that were selected.

6. Convergence Check: Sixth, the technique checks whether the halting requirements
(performance criterion or maximum iterations) have been reached.

7. Outcome: Seventh, if converged, the process yields the best hyperparameters
identified. This should not be the case; it returns to step 2.

A comprehensive elucidation of the fundamental concepts of Bayesian optimization is
available in (Frazier, 2018). The primary benefit of Bayesian optimization is its ability to
use all available data effectively, which incorporates all prior function evaluations when
selecting the subsequent exploratory point, hence enhancing its efficiency and effectiveness
in optimization.
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2.5. Evaluation Metrics

This study uses Root Mean Square Error (RMSE) as the assessment measure. It is
mathematically defined as the square root of the mean of the squared deviations between the
expected and actual values:

n
RMSE = 32 (P, — 0,)?
n -

i=1
where P; is the predicted value for the i-th observation, O; is the actual value for the i-th
observation, and n is the total number of observations. A lower RMSE value indicates that
the model’s predictions are closer to the actual values, meaning the model has better
accuracy.
3.  Results and discussion
3.1. Empirical Findings

In our trials, we used scikit-optimize (Tim et al.,, 2021) for hyperparameter
optimization, which employs Bayesian optimization. Specifically, we use the gp_minimize
function of the library with all the possible default values (including the default acquisition
function, number of iterations, number of initial random iterations, and kernel). Based on
our experiences when optimizing hyperparameters (the search space should be wide enough
to capture the potential variations in model performance, while also being manageable to
ensure efficient computation during training and evaluation phases), we set the initial
learning rate L, is established at 5e-3, the regularization parameter A varies from le-4 to 1.0,
and the dimension n ranges from 50 to 500. If the loss reduction is below le-4 after two
rounds, the learning rate is reduced by a factor of 10. The parameter optimization procedure,
which refines by, b;, p,, q;, terminates if the loss reduction is less than le-4 after five
iterations (stopping criterion).

At each stage, two primary tasks delineate the complexity of Bayesian optimization
using Gaussian processes: adjusting the hyperparameters of the Gaussian process and
optimizing the acquisition function to choose a new set of hyperparameters. The
complexities of each of these tasks are O(N3) and O(N?), respectively, where N denotes
the number of data points (Garnett, 2023; Snoek et al., 2012). Our findings and experience
demonstrate that a single iteration of Bayesian optimization requires significantly less time
than optimizing parameters in one iteration; consequently, the time needed to search for a
new set of hyperparameters (a new exploration point) is nearly negligible compared to the
time necessary to optimize the parameters of a CF algorithm. Figure 2 illustrates the duration
required for Bayesian optimization using Gaussian processes in our experiment, which
involves two hyperparameters and 100 iterations. Note that this time consumption is
unaffected by CF algorithms since they operate as a black box inside the Bayesian
optimization framework. In contrast to alternative methods, Grid Search (Bergstra & Bengio,
2012) exhibits exponential complexity O(k%), where k represents values per parameter and
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d denotes dimensions, rendering it unfeasible for high-dimensional spaces. Conversely,
Random Search (Bergstra & Bengio, 2012) scales linearly with the number of iterations
0(k), but it may be less sample-efficient. Evolutionary Algorithms (Guido et al., 2023)
frequently exhibit significant complexity based on population size and the number of
generations, but techniques such as Hyperband (L. Li et al., 2017) (O(k * log k)) provide
efficiency improvements through adaptive resource allocation. Despite the elevated per-
iteration cost of Bayesian optimization with Gaussian processes due to the cubic term, its
efficacy is evident in its demand for substantially fewer costly function evaluations (N) to
identify optimal hyperparameters, in contrast to Grid or Random Search, rendering it
particularly advantageous when the evaluation of the objective function constitutes the
principal constraint.

In our experiment, the two algorithms attain RMSE values of 0.8103 (1 = 3.36E-02
and n = 90) and 0.8107 (1 = 0.026905275 and n = 87) on the Test set of the Netflix Prize
datasets, respectively. A recent study (Steck, 2019) uses a modified approach to datasets by
binarizing ratings and filtering users, or by randomly partitioning the original training set to
generate supplementary datasets (Shenbin et al., 2020). This hinders our ability to compare
the findings; nonetheless, the top-performing algorithm in the Netflix Prize competition
attained an RMSE score of 0.8567 on the Test set (Koren, 2009).

Tables 1 and 2 show the outcomes of the two CF methods on the Movielens 1M and
Movielens 10M datasets. The outcomes for the Movielens 1M dataset from other techniques
are derived from (Han et al., 2021), whilst those for the Movielens 10M dataset are from
Rendle et al. (2019).

0 20 40 60 80 100
Number of Calls

Figure 2. Bayesian optimization time: time for finding evaluation points

3.2. Analysis

The findings indicate that Bayesian optimization using Gaussian priors is beneficial
for hyperparameter adjustment in the two CF models. This approach achieves competent
performance based on findings from the three popular datasets, and practitioners can always
opt to use more complicated CF algorithms to get better results. While not yielding the most
optimal results relative to other advanced methodologies, the hyperparameter-tuned
algorithms demonstrated commendable performance, highlighting the capacity of Bayesian
optimization to improve recommender systems in this context. Therefore, this method’s
pragmatic merits include time efficiency and a much-reduced need for human adaptation.
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Table 1. Performance comparison of various algorithms on the Movielens 1M dataset

Algorithm RMSE (Movielens 1M)
LLORMA 0.833
CF-NADE 0.829
GC-MC 0.832
GraphRec 0.843
GraphRec+Extra 0.842
SparseFC 0.824
IGMC 0.857
GLocal-K 0.822
Our approach (first algo.) 0.8410
Our approach (second algo.) 0.8459
Table 2. Performance comparison of various algorithms on the Movielens 10M dataset
Algorithm RMSE (Movielens 10M)
RSVD 0.8256
GSMF 0.8012
I-AutoRec 0.7820
LLORMA 0.7815
AdaError 0.7644
SGD MF 0.7720
Bayesian SVD++ 0.7563
Bayesian timeSVD-++ 0.7523
Bayesian timeSVD++ flipped 0.7485
Our approach (first algo.) 0.7757
Our approach (second algo.) 0.7787

3.3. Strengths and Limitations

This study demonstrated that Gaussian processes can be used in Bayesian optimization
to automate hyperparameter tuning, minimizing the need for human intervention due to the
labor-intensive and the error-prone nature of manual tuning. This approach significantly
reduces time and effort while achieving competitive performance across various neural
networks and datasets, including Netflix Prize, Movielens 1M, and 10M. This approach may
enhance primary collaborative filtering performance due to its simplicity and practicality for
those without manual tuning skills. This approach can be applied in various optimization
algorithms or domains requiring hyperparameter optimization, extending its applicability
beyond recommender systems. In the hyperparameter search campaign, this is insufficient,
leading to unequal benchmark results. It has focused on basic collaborative filtering
algorithms. While simple implementations serve as test cases, results may not fully represent
the optimization potential in more complex models. The framework was assessed on only
three datasets, potentially restricting its applicability to real-world scenarios.
4. Conclusion
4.1. Summary of Findings

The evaluation of the method was performed using the three most prominent datasets
for the collaborative filtering systems, namely the Netflix Prize, Movielens 1M, and
Movielens 10M. The results revealed that this technique massively reduces, if not almost
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eliminates, model tuning while still ensuring the competitiveness of the model. Although the
strategy does not score the best RMSE relative to that of the state-of-the-art models, it seems
to still achieve good results without the need to use very many complicated collaborative
filtering algorithms. This research presents a novel, effective, and pragmatic method for
hyperparameter adjustment in CF systems, with the potential to enhance performance. This
methodology has not been explicitly examined for CF and recommender systems.

4.2. Implications

This study presents an automated Bayesian hyperparameter tuning framework with
some significant implications for dynamic recommender systems, which require continuous
updates to recommendations in response to evolving user behavior and catalog content.

Ongoing self-improvement: replacing manual grid search with Bayesian optimization
allows the model to re-tune autonomously on a rolling basis, such as nightly or in response
to drift alerts, requiring minimal human intervention. This reduces operational costs and
decreases the adaptation loop from days to hours, enabling the recommender to monitor swift
changes in user preferences or item catalogs.

Accelerated deployment and testing: the reduction in tuning time (around 50% in our
experiments) enables business teams to deploy new features or data signals into production,
receive immediate feedback, and perform rollbacks or iterations without enduring a
prolonged retraining backlog. In dynamic environments such as news, e-commerce flash
sales, and streaming content launches, the speed of operations directly influences user
engagement and revenue generation.

Facilitating democratization for teams with limited resources: small and mid-sized
companies frequently do not have specialized machine learning engineers. An auto-tuning
layer simplifies the deployment of advanced collaborative filtering, allowing teams to utilize
state-of-the-art techniques with minimal MLOps infrastructure.

Robustness in real-time under non-stationary conditions: dynamic recommenders
encounter concept drift and seasonal variations. Bayesian optimization employs a
probabilistic surrogate, specifically a Gaussian Process, to quantify uncertainty, enabling it
to prioritize hyperparameter regions that are likely to maintain stability under drift.

4.3. Future Work

Future possible studies might investigate more complex applications of Bayesian
optimization to other, more sophisticated CF algorithms that use deep learning or hybrid
algorithm designs. Also, an increased number of datasets, such as those showing distinct
user behavior patterns or varying levels of sparsity from other sources, would give a broader
understanding of the method's implementation.
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TOM TAT

Mét phuwong phdp thuong diege sik dung trong hé thong dé xudt la loc céng tac (Collaborative
Filtering - CF). Tinh chinh cdc siéu tham sé (hyperparameters) cia cdc thudt toan CF van la mot
cong viéc kho khan ngay ca voi nhitng kham pha moi trong viéc mé hinh hoa nguoi dung va cdc san
pham/dich vu. Nghién cieu nay dé xuat mét phicong phap thay thé cho céng viéc nay théng qua toi
wu héa Bayesian sir dung qud trinh ngau nhién Gaussian trong qud trinh thay doi cdc siéu tham so.
Phwong phdp nay gidm thoi gian va céng sikc can thiét cho viéc tinh chinh thii céng bang cdch tw
dong diéu chinh cdc siéu tham sé cho hai thudt todn loc cong tac co ban (va don gian) trén ba tdp
dit liéu phé bién: Netflix Prize, Movielens 1M va Movielens 10M. Do dé, né c6 thé gitip céc nha thuc
hanh cdi thién hiéu sudt ciia hé thong dé xudt, dong thoi rit ngdn dang ké thoi gian va céng sirc danh
cho viéc tinh chinh hé lhéng cua ho.

Tir khéa: t6i wu hoa Bayesian; loc cong tac; Movielens; Netflix Prize
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