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ABSTRACT
We prove a Hardy-type inequalities in Dunkl setting, integrated with an Hl-potential. Our

approach utilizes the h-harmonic expansion of functions f & LZ(WIk) and integrating techniques

such as integral transformations, spherical coordinate formulas, and separation of variables, we
derive the main result presented in Theorem 1. These outcomes build upon and extend the
foundational work of Ghoussoub and Moradifam (2013), which addressed Hardy-type inequalities
involving the Laplace operator and the Lebesgue measure in conjunction with an Hl-potential.
Consequently, our findings advance the generalization of Hardy inequality within broader context
of Dunkl theory. Moreover, this research carries substantial implications for analyzing differential
equations and partial differential equations that exhibit singularities, thereby providing enhanced
understanding of the qualitative properties and behaviors of solutions in these equation classes. This
extension not only refines existing inequalities but also opens avenues for applications in
mathematical physics and functional analysis.
Keywords: best constant; Hardy inequality; HI-potential

1. Introduction

Functional inequalities play a crucial role in mathematical fields such as partial
differential equations functional analysis, and mathematical physics, providing critical
insights into the behavior of solutions near singularities. Many mathematicians have
explored these inequalities from diverse perspectives. The primary focus of this article is the
renowned Hardy inequality, which holds significant importance across various domains,
including mathematical analysis, probability theory, and partial differential equations.
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A particular equality, as derived in Barbatis et al. (2004) and Dolbeault and Volzone
(2012), delineates the configuration of the remainder terms that vanish, thus affording a
precise elucidation of Hardy inequalities and the absence of non-trivial maximizers:
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X
RN

N2
inequality admits a virtual optimizer of the form ‘x ‘ 2.
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Note that, the sharp constant (NTz) unattainable by any non-zero function in the
space, necessitating enhancements via the inclusion of non-negative component on the right-
hand expression. On the whole space R” , Ghoussoub et al (2011) demonstrated that no

strictly positive function 4 & C'(0,¥ ) such that
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Nevertheless, on bounded domains, supplementary terms can be included. For

example, let Wi RY,N 3 3 with 04 W and W bounded domain in R" . Brezis and
Viézquez (1997) established that
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where V), = mes(B) and z, = 2.4048... is the first term of the Bessel function K, (z ) In
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case W is a ball, we have zgV',} ‘W‘ N is sharp.
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The constants (%) and ;—02 are sharp with equality achieved only in the trivial case
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2 -2
respectively. Since the optimal constant zéV]\’,V ‘M Vis unattained on the whole space

WOL2 (W), it is plausible to propose that the first term functions simply as the starting point

of an endless series of supplementary terms that could be added to the right-hand expression
of the Hardy inequality. This topic has been examined by various scholars, featuring standard
references such as Adimurthi et al. (2002), Barbatis et al. (2003, 2004), Cazacu and Zuazua
(2013), Davies (1999), Evans and Lewis (2007), and Ghoussoub and Moradifam (2011,
2013). Notably, Filippas and Tertikas (2002) introduced an infinite series expansion for the
Hardy inequality, deemed optimal in a specific sense. Additionally, it is noteworthy that,
aiming to enhance, broaden, and consolidate various outcomes in this area, Ghoussoub et al
(2013) proposed the concept HI-potentials (HIP) and examined their associations with Hardy
inequalities. A prominent result from their work is presented below:

Theorem A. (Ghoussoub et al., 2013) Ler K 1 C'! (O,R ) be a nonnegative function that is

monotonically decreasing.. The ensuing statements hold interchangeably:
(1) K is HIP on (O,R) , thatis $s(r)> 0:s5"(r)+ rls '(r)y+ K(r)s(r) = 0 has a solution

on (O,R).
2 @V - 20 f‘z 2
2) & [Ns[ dx - ; = O —yde QK (X[ dx,"w d w2 (By).
BR 0 BR |x| BR

Here are a few immediate examples of such functions:
- K° 0 is a HIP on (O,R). Indeed, z"(r)+ rlz'(r)Z Ohas positive solution

z(r) = - ln(R%r) on (O,R)
-K ° lisaHIPon (0,z,) where z, = 2.4048...... is the first term of the Bessel function
K, (Z ) Indeed, the latter is a positive solution of s "(r) + rls '(r) + s(r) = 0 until it reaches

its first zero at z

Dunkl setting
Dunkl theory, essential tools in generalized harmonic analysis and representation
theory, find broad applications ranging from theoretical physics to probability and statistics.
We will now briefly introduce Dunkl's theory. For more details on Dunkl's theory, the
interested reader is invited to consult, for example, Rosler (2003).

For a vector b 4 RY [] {0 }, The reflection operation s, is specified relative to the

A

hyperplane perpendicular to a nonzero vector <b >
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sb(y)Z y - 2<b,y>%, y i RV,

Consider a finite collection R I RY [1{0} satisfying R N R, = {* b } forevery p €

R; such a set constitutes a root system within the framework of Dunkl setting.
A multiplicity function h: R — C is termed B-invariant if h(g,(f)) = h(B) whenever

op € G acts on § € R. The root system R is partitioned as R = R, E (— R ) wherein the
subset R, and - R, are demarcated by a flat surface cutting through the center point. It is
apparent that this partitioning lacks uniqueness. Nonetheless, owing to the invariance of the
multiplicity function k under the group B, the precise election of R, exerts no influence on
the ensuing definition of the Dunkl weight.

In this article, we consider the Dunkl weight m, (x ), we have m, (x ) be a B-invariant with

degree 2g, = & 2k(b) :
biR

me()= O [(bur)[*".
biR,

This weight m (x ) has a important role in Dunkl setting. Hereinafter, the assumption
k(a)?* 0 is maintained and d, = N + 2g, and denote m, (x )dx = dm(x)
For j 4 {1,2,...,N} The Dunkl operators is defined by

Tf() = %f s g kb, f—(z)<_b f(; =2

J biR, 2

with b = (b,,b,,..,b, ). These Dunkl operators extend the classical partial derivatives in
standard analysis.

Analogously, the Dunkl gradient is formulated as N, = (T',T,,..,T,) while the

Dunkl Laplacian is given by D, = & jf: A jz_

For any A,k 4 C'(RY) at least one of for g is G-invariant and for every 1 £ j £ N, we
have T',(hk) = hT k + kT ;h .

Regarding the Dunkl weight, an integration-by-parts formula is available, facilitating
the handling of boundary terms and symmetry properties in associated integrals

(‘)Tj(h)kdmk(x) = - (‘)Tj(k)hdmk(x)
RV RV

Spherical k-harmonic
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Next, a concise overview of k-harmonics is provided; this discussion draws from the
work of Rosler (2003), and readers seeking further elaboration are encouraged to consult the
original source for comprehensive details. An k-harmonic polynomial is a degree-k

homogeneous polynomial associated with the h-harmonic operator D, p = 0
Spherical k-harmonic with m degree are defined to be restrictions of k-harmonic
polynomials of degree m to the sphere SV~ !. Let P, the space of k-harmonic of degree.
Denote dim(m) the dimension of P, ,. Moreover, with n = 1,2,3,... the space
LZ(SN' l,drr%(x)) = APn, let Z", i = 1,..,dim(n) serve as an orthonormal basis for the
space P,. With x = rx forr & (0,+¥ ) and x & SV 1 we have
b - TP N+t2-19

ko ﬂrz r 9

Where D, is Dunkl Laplacian and D, , serves as a form of Laplace-Beltrami operator on

+—D
7’

SV- 1 We have
Dk,OY =-Ill+N+2g- 2y =

Let /1 Lz(n@c(x)) we have the k-harmonic expansion of function f:

¥ dn)

frx)y=§ § £, (W, (x)

n=0i=1
where

Ju, ;) = . JrOF " (0 (x)ds (x)

and s is the measure on SV~ !
2.  Main results

The objective of this study is to develop an enhanced formulation of the preceding
outcome within the Dunkl theoretical context.

Theorem 1. Let N, > 2 Suppose K is a normalized HIP on (O,R), meaning that
z"(r)+ %z 'r)+ K(r)z(r) = 0 possesses a solution z(r)> 0 on (0,R), the following

inequality applies to every function fa C, (W

N 2 &Ng - OI N |f |2 3 2
O N[ dm(x) - E 1o, ~dm(x)* OP(| x Nf2(0)dm,(x).
w & wl x [ w
where N,=N+2g
Proof

Let f & Lz(n@() we have
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where
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Using the orthogonality of the h-harmonic {Y" }
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2 (N,- 2 0
- ( g2 ) lj”‘;':f dr as follows.

We estimate ) gN o
0
Ng— 2

Define g(r) = f, (r)r > wehave
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Finally
. 5 2 0
(‘)gNkf| Lt Wm, (x)
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P(lx|) = PACHER/A(EI)
[x1fQxD

3. Conclusion
Main result. Let Ng > 2 If Kis a normalized HIP on (O,R ), we have

~ P &N, - 292 f? 2
O Nuf Fam)- ¥4 & Lsdm)* oP(x I (oHdm (o).
W 2 5yl W
foranyu @ Cc¥ W anng = N + 2g.
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BAT PANG THUC HARDY CHUA TOAN TU DUNKL
LIEN KET VOI DANG HI-POTENTIAL
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TOM TAT
Nghién cieu thiét lgp bat dang thirc dang Hardy lién quan dén cac toan tir Dunkl va dé do
Dunkl lién két véi mot HI-Potential. Bang cdach sir dung khai trién h-harmonic ciia ham f Lz(m{)
¥ d(n)

thanh f(x) = frx) = § § J,. ("W (x)trongdo Y la ham riéng ciia toan tr D véi gid
n=0i=1
tri riéng | twong ung. Két hop cdc phép bién doi tich phan, cdc cong thire toa do cau, cong thirc
tach bién, két qua trong bai bdo dwrge thé hién & dinh i 1. Két qua nay la sw tong qudt héa két qua
da dwoc thiét lap boi Ghoussoub va Moradifam (2013) vé HIP. Két qua ndy ciia ching t6i da tong
quat héa bat dang thirc dang Hardy trong Ii thuyét vé todn tir Dunkl.
Tir khéa: hang s6 tot nhat; bt dang thirc Hardy; HI-Potential

1618


https://doi.org/10.1007/978-1-4614-6348-1_3
https://doi.org/10.1007/978-1-4614-6348-1_3
https://doi.org/10.1007/978-3-0348-8672-7_5
https://doi.org/10.1016/j.na.2012.05.008
https://files.ele-math.com/articles/jmi-01-40.pdf
https://doi.org/10.1006/jfan.2001.3900
https://doi.org/10.1007/s00208-010-0510-x
https://doi.org/10.1007/s00208-010-0510-x
https://doi.org/10.1090/surv/187
https://doi.org/10.1142/5129
https://doi.org/10.1007/3-540-44945-0_3

