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ABSTRACT 

This study has implemented an index-based approach for monitoring the droughts in the Vu 
Gia – Thu Bon river basin using remote sensing data and the Google Earth Engine cloud computing 
service. Landsat series remotely sensed data had been used effectively for the time-series calculation 
of the indices related to the drought hazard. In this study, we examined the performance of several 
remote sensing-based drought indices (RSDI) for monitoring droughts in the VuGia - ThuBon river 
basin (VGTB) from January 2010 to December 2020 using the cloud-based Google Earth Engine 
(GEE) computational platform. When tested again in-situ Potential Evapotranspiration (PET) and 
Soil temperature, a high agreement exists between our RSDI and PET. These results prove that 
remote sensing data can be an alternative solution for monitoring drought when remote sensing is 
the only available source. 

Keywords: drought; Google Earth Engine; Landsat; Remote Sensing; RSDI; VGTB  
 

1. Introduction 
Drought is a complex natural phenomenon that usually starts with a precipitation 

deficit (lower-than-average) and spreads to hydrological drought (Van Loon, 2015). The 
conventional research approaches have effectively monitored drought based on the in-situ 
data at meteorological stations (Newman & Oliver, 2005). However, these stations lack 
spatial continuity coverage, which is insufficient to monitor the regional spatial pattern of 
drought conditions in detail, especially in areas with sparse weather stations or high spatial 
variability. As a developing country, drought monitoring in Vietnam is even more difficult 
due to the lack of well-instrumented weather observation stations. Drought monitoring based 
on remote sensing data can overcome the challenges mentioned earlier in collecting ground 
observation data and can be used to continuously monitor the processes of and changes in 
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drought across both temporal and spatial (AghaKouchak et al., 2015). Moreover, drought is 
a common hydrometeorological hazard and second only to flooding in its influence on 
social-economic (Nagarajan, 2010). Therefore, monitoring drought over long periods is 
crucial for various applications. 

There have been numerous studies that focus on measuring droughts using different 
approaches. Drought can be monitored effectively using drought indices such as the Palmer 
Drought Severity Index (PDSI) (Palmer, 1965) or the Standardized Precipitation Index (SPI) 
(McKee et al., 1993) calculated with in-situ meteorological data from weather stations. 
However, these conventional methods require well-equipped instruments and a considerable 
number of observational stations which provide precise measurements of drought-related 
parameters like precipitation, temperature, and evapotranspiration. Moreover, insufficient 
survey data may cause uncertainties in the interpolation process. Recently, remote sensing 
data with flexible spatial and temporal resolutions has been widely applied in many 
applications, including drought monitoring (Abdourahamane et al., 2022; Amoli et al., 
2022). Several remote sensing-based drought indices, including Normalized Difference 
Vegetation Index (Rouse et al., 1973), Vegetation Condition Index (VCI), Temperature 
Condition Index (TCI), Vegetation Health Index (VHI) (Kogan, 1995), Temperature–
Vegetation Dryness Index (TVDI) (Sandholt et al., 2002), Temperature-soil moisture 
Dryness Index (Le & Liou, 2022) have been offered for monitoring drought. As drought is 
a complicated phenomenon, assessing its severity and environmental effects requires 
studying over large-scale areas and long periods. However, this process limits its application 
due to the requirement of high computational complexity. The cloud-based Google Earth 
Engine (GEE), characterized by high-performance computing and provides a geospatial data 
repository with a petabyte scale, is a potential solution to tackle this limitation (Gorelick et 
al., 2017; Sazib et al., 2018).  

The Vu Gia Thu Bon (VGTB) river basin is the most essential and major river basin 
in central Vietnam. Located in a tropical monsoon with uneven rainfall distributed region, 
VGTB is also among the most sensitive vulnerable basins to drought, which notably affect 
sustainable development (Du et al., 2018). Therefore, finer satellite imagery, such as the 
Landsat series, is more suitable for monitoring drought impacts. In Vietnam, Nguyen Thanh 
Son et al. (2012) used the TVDI index to observe drought in the lower Mekong from 2001-
2010. In his study, the efficiency of the TVDI index was verified by comparing it with the 
CWSI water pressure index. Hung et al. (2015) assessed the drought situation in an arid and 
semi-arid rural district of Binh Thuan province by employing the Landsat-8 image and TVDI 
index. However, these studies were conducted on individual images, and there is no 
consistency in the study period.  

Due to the complex propagation of drought and its monitoring relying on the 
availability of quality data, the efficiency of RSDI can vary from place to place (Jain et al., 
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2015). Therefore, this study attempts to identify the appropriate drought indices by 
examining the performance of multiple satellite-based indices for drought monitoring in the 
VGTB river basin. The study selected six leading indices, including NDVI, NDWI, VCI, 
TCI, VHI, and TVDI, which were widely used for monitoring droughts. The analysis of the 
Landsat series and the extraction of the RSDI has been accomplished using the Google Earth 
Engine cloud computing platform. This study also compared the performance of each 
drought index with a meteorological-based index PET and Soil temperature to expect a better 
understanding of the operation of these indicators.   
2. Methodology 
2.1. Study Area  

The study area is located in the VG-TB river basin formed by the Thu Bon River and 
the Vu Gia River, major river systems in Central Vietnam (Figure 1). Located in the tropical 
monsoon climate region, this area is characterized by the highest rainfall in the country. The 
rainy season spans from September to December. The average annual rainfall varies between 
2100 mm in the coastal area to about 4100 mm in the southern mountains (Ho & Umitsu, 
2011). Approximately 70% of the annual rainfall is received in the rainy season, while the 
drought happens in the driest months from Feb to May (Figure 2). The western part of the 
basin is mountainous and sparsely populated, while the flat delta area in the east is used for 
agriculture and urban development. Da Nang (about 1 million inhabitants) and Hoi An 
(about 150,000 inhabitants) are the main cities, while the entire basin houses about 2.5 
million people ( Statistical Handbook of Vietnam 2016). The river basin covers most of 
Quang Nam and Da Nang provinces and is approximately 10,350 square kilometers 
(Buurman et al., 2015). 

 
Figure 1. Vu Gia – Thu Bon river basin 
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Figure 2. Monthly precipitation and temperature of three ground meteorological stations, 

including Danang, Tamky, and Tramy, from 1990-2020 
2.2. Data Used 
2.2.1. Landsat Data 

Landsat series of satellites are provided by the United States Geological Survey 
(USGS) and are available in the GEE platform for Landsats 4–9. In this study, we use 
Landsat collection 2 which contains surface reflectance and surface temperature scene-based 
products for derived drought indices. The Surface Reflectance data are generated using the 
Land Surface Reflectance Code (LaSRC) and auxiliary climate data from MODIS to correct 
the varying scattering and absorbing effects of the atmosphere (Masek et al., 2006). While 
surface temperature products are generated using the Landsat surface temperature algorithm, 
developed in cooperation with the Rochester Institute of Technology and NASA Jet 
Propulsion Laboratory. Both surface reflectance and surface temperature have been 
resampled to 30 m spatial resolution using cubic convolution. The data are organized into 
tiers based on their quality, with the highest available data quality placed into Tier 1 while 
the remainder is assigned to Tier 2. In our study, the Tier 1 collection was employed. Then, 
we limited our collection by selecting images with a cloud cover of less than 30 percent. The 
QA band also is utilized to mask cloud and low-quality pixels. Finally, a total of 140 scenes 
of the Landsat series from 2010 to 2020 are retrieved to derive drought indices.  
2.2.2. Meteorological data 

The in-situ soil temperature was collected at two Hydrometeorological stations 
available in the VG-TB basin from January 2010 to 2020 (Tramy and Danang). These data 
were provided by the Vietnam Meteorological and Hydrological Administration 
(http://vnmha.gov.vn) and were used to calculate the Potential Evapotranspiration (PET).  

Potential evapotranspiration (PET) indicates the amount of water that has been lost 
through the plant’s transpiration and evaporation of water from the earth’s surface. PET is 
computed using Thornthwaite’s method (1948), which relies upon temperature and latitude 
values as input. 
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(1) 

Where: Ta is the mean daily air temperature in degrees Celsius;  
N is the number of days in the month being calculated; 
L is the mean day length, in hours, of the month being calculated. 
In our study, the monthly PET and Soil temperature were calculated from 

meteorological data to validate and compare with satellite-based drought indices.  
2.3. Remote sensing-based drought indices 

The six indices most widely used (i.e., NDVI, NDWI, VCI, TCI, VHI, and TVDI) 
were tested with PET and Soil temperature to examine the performance of multiple satellite-
based indices for drought monitoring in the VG-TB basin.  

Normalized difference vegetation index 
NDVI is one of the most widely used vegetation indices in remote sensing and is 

defined as follows (Tucker, 1979) 

𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼 =
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌𝑁𝑁𝑅𝑅𝑅𝑅
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝑁𝑁𝑅𝑅𝑅𝑅

 (2) 

Where ρNIR is the reflectance in the near-infrared band and ρRed is the reflectance in the red 
band. NDVI allows discrimination between healthy and stressed vegetation, thus 
determining the growth status of vegetation(AghaKouchak et al., 2015). Furthermore, NDVI 
also effectively indicate the vegetation moisture condition (Ji & Peters, 2003).  

Normalized Difference Water Index (NDWI) 
NDWI was proposed to estimate the moisture condition of vegetation from the Near-

Infrared (NIR) and Short Wave Infrared (SWIR) channels (Gao, 1996). The SWIR reflects 
changes in both water content and mesophyll in vegetation canopies, while NIR is influenced 
by internal leaf structure and leaf dry matter content. Combining the NIR with the SWIR 
removes variations generated by internal leaf structure and leaf dry matter content, 
improving the accuracy in retrieving the vegetation moisture condition. Moreover, NDWI 
consider had a quicker response to drought conditions than NDVI (Gu et al., 2008).  

𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼 =
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌𝑆𝑆𝑊𝑊𝑁𝑁𝑁𝑁

𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝑆𝑆𝑊𝑊𝑁𝑁𝑁𝑁
     (3) 

Where ρSWIR is the reflectance in the short wave near-infrared band 
Drought indices VCI, TCI, and VHI 
Since the change of NDVI is related to weather conditions, thus detecting drought 

impacts from NDVI data is challenging (Du et al., 2013). The VCI index was developed by 
Kogan (1995) to distinguish the meteorological component from the vegetation component 
in NDVI values. VCI is scaled from 0 to 100, corresponding to changes from extreme stress 
vegetation conditions to optimal conditions.  

𝑁𝑁𝑉𝑉𝐼𝐼 = 100 ∗
𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼𝑖𝑖 − 𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼𝑚𝑚𝑖𝑖𝑚𝑚

𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚 − 𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼𝑚𝑚𝑖𝑖𝑚𝑚
 

(4) 
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Where NDVImax and NDVImin are the corresponding multiyear absolute maximum and 
minimum NDVI of the study period (January 2010 until December 2020). 

For the region where vegetation stress is due to dryness or excessive wetness, the VCI 
is insufficient to interpret vegetation health conditions. Therefore, Kogan (1995) developed 
the Temperature Condition Index (TCI) to monitor the vegetation stress from the change in 
land surface temperature and quantified it according to the following formula:  

𝑃𝑃𝑉𝑉𝐼𝐼 = 100 ∗
𝐿𝐿𝐿𝐿𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚 − 𝐿𝐿𝐿𝐿𝑃𝑃𝑖𝑖
𝐿𝐿𝐿𝐿𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚 − 𝐿𝐿𝐿𝐿𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚

 
(5) 

Where LSTmax and LSTmin are the multiyear absolute maximum and minimum LST of 
the study period (January 2010 until December 2020). The TCI is also scaled from 0 to 100, 
corresponding to changes from extreme stress (high temperature) to optimal (low 
temperature) vegetation conditions.  

The Vegetation Health Index (VHI) retrieves information on vegetation conditions by 
combining VCI and TCI indexes. The reliability of VHI is based on the assumption that 
NDVI and LST at a given pixel will vary inversely over time (Karnieli et al., 2010). 

𝑁𝑁𝑉𝑉𝐼𝐼 = 𝛼𝛼 ∗ 𝑁𝑁𝑉𝑉𝐼𝐼 + (1 − 𝛼𝛼) ∗ 𝑃𝑃𝑉𝑉𝐼𝐼 (6) 
Where α determine the weight of VCI and TCI in the VHI, the value of “α” depends 

on different temperature and precipitation conditions. In unknown environmental conditions, 
the share of both indices was assumed to be equal (α = 0.5) (Gidey et al., 2018). The value 
range of the VHI is also from 0 (unfavorable conditions) to 100 (optimal vegetation 
conditions) 

Temperature Vegetation Dryness Index 

 
Figure 3. Definition of the TVDI (Petropoulos et al., 2009) 

Sandholt et al. (2002) proposed a technique for estimating surface soil moisture 
content by linking the relationship between LST and NDVI with an index named 
TemperatureVegetation-Dryness-Index (TVDI). The principle of this technique is based on 
the assumption that NDVI can monitor vegetation status and relate to water stress. At the 
same time, the land surface temperature (LST) will increase rapidly with water stress 
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(Goward et al., 2002). Hence, the potential for obtaining soil moisture through the LST/ 
NDVI plot. The TVDI is defined by the following formula: 

𝑃𝑃𝑁𝑁𝑁𝑁𝐼𝐼 =
𝐿𝐿𝐿𝐿𝑃𝑃 − 𝐿𝐿𝐿𝐿𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚

𝐿𝐿𝐿𝐿𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚 − 𝐿𝐿𝐿𝐿𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚
 

(7) 

Where LSTmin represents the wet edge of the triangle, and LSTmax represents the dry edge 
(Figure 3).  

LSTmin=a1+b1*NDVI 
LSTmax=a2+b2*NDVI 

Among them, a1, b1, and a2, b2 are the coefficients of the dry and wet edge equations 
determined by the least squares fit of actual data. The TVDI value ranges from 0 to 1, with 
a value closer to 1 meaning more drought. Due to its simplicity and clarity, TVDI is widely 
used for monitoring drought (He et al., 2020). The classified drought indices is shown in 
Table 1. 

Table 1. Classification of the drought indices compared in this study 
 TCI VCI VHI TVDI 
Extreme drought 0-0.1 0-0.1 0-0.1 0.86-1 
Severe drought 0.1-0.2 0.1-0.2 0.1-0.2 0.76-0.86 
Moderate drought 0.2-0.3 0.2-0.3 0.2-0.3 0.57-0.76 
Mild drought 0.3-0.4 0.3-0.4 0.3-0.4 0.46-0.57 
No drought 0.5-1 0.5-1 0.5-1 0-0.46 

2.4. Data Processing 
The study aims to derive monthly drought intensity from 2010 to 2020 in the VGTB 

basin by employing several RSDI (i.e., NDVI, NDWI, VCI, TCI, VHI, and TVDI) with the 
support of a cloud-based GEE computing platform. The workflow of this study is illustrated 
in Figure 4 

 
Figure 4. The processing chain for drought monitoring in the VGTB basin 
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(1) Collecting data: Landsat satellite images ( 5,7,8) in the VG-TB basin from 2010 to 
2020 were collected for drought monitoring. Meantime, the daily meteorological data 
was also used to obtain monthly precipitation and soil temperature average, which was 
utilized to validate and compare the performance of satellite-based drought indices.  
(2) Preprocessing: We filtered the Landsat series collection by selecting images with 
cloud cover <30%. Furthermore, cloud and cloud shadows were masked using the 
Quality Assessment Band, which was generated by the CFMask algorithm. Finally, to 
avoid excessive wetness, which often represents open water or high moisture content, 
we remove water bodies from all images.  
(3) Remote sensing-based drought indices: Firstly, we compare satellite land surface 
temperature with the ground temperature at meteorological stations to evaluate the 
quality of our Landsat collection. Then, the NDVI, NDWI, VCI, TCI, VHI, and TVDI 
were employed to monitor drought. The monthly time series of those variables were 
calculated at the corresponding locations of hydrometeorological stations available in 
the study site. Then, the results were compared with the ground-based index to 
examine the efficiency of each index. 
(4) The ground-based index calculation: the monthly PET and Soil temperature index 
were estimated from monthly weather data. 
(5) Examine the performance of satellite-based indices: The Pearson correlation 
between PET with corresponding RSDI for all weather stations has been analyzed. The 
correlation coefficients were used to assess the accuracy of each RSDI.  
(6) Generate the drought map: To monitor the drought over study period, drought maps 
were produced for yearly intervals. 

3. Results and discussion 
3.1. Examine RSDI 

The monthly drought map of all RSDI was first generated. Then the remote sensing-
based index values were directly extracted at point locations of the reference stations. In 
order to use the same number of samples for in-situ and remote sensing data pairs, data were 
excluded if any reference data or remote sensing drought index value for the station and year 
was missing. Before comparison, all RSDI values need to be normalized between 0 and 1 
(Rhee et al., 2010). The  

The scatter plot of monthly RSDI values and monthly average soil temperature in the 
Tramy station is illustrated in Figure 5. In each plot, a total of 73 points represent the 
available monthly value of RDSI.  
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Figure 5. Scatter plot of month RDSI and monthly Soil temperature in Tramy station 
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Table 2 represents the correlation of determination between RDSI and meteorological 
temperature (Table 1). According to Table 1, VHI indicated the highest agreement when 
compared with Soil temperature (0.82), PET (0.75) in Tramy station and Soil temperature 
(0.8), PET (0.8) in Danang station, respectively. However,  TCI could outperform the other 
RSDI compared to monthly soil temperature. On the other hand, the VCI and NDWI showed 
the weakest performances, respectively.  

Table 2. Validation results of RSDI 
 RDSI LST TCI VCI VHI NDVI NDWI TVDI 
Tramy Soil temperature 0.88 0.87 0.09 0.82 0.09 0.19 0.36 

PET 0.79 0.79 0.096 0.75 0.096 0.16 0.27 
Danang Soil temperature 0.82 0.82 0.39 0.8 0.39 0.3 0.52 

PET 0.78 0.78 0.49 0.8 0.49 0.42 0.57 

The temporal drought variation in VGTB using the RSDI during 2010-2020 was also 
calculated and shown in Figure 6. These charts help in understanding the overall drought 
trend in the study period. Based on the drought trendlines, we realize that drought happens 
regularly in the VG-TB basin.  
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Figure 6. The drought variation of VGTB in 2010-2020 
When combining VCI, TCI, VHI, and TVDI in Figure 7, we analyzed the long-term 

drought characteristics of VGTB. As Figure 7 shows, the VHI, TCI, and VCI  have good 
temporal consistency in the overall change trend over time, while TVDI has an inverse 
tendency with the others.  

 
Figure 7. Time series of various drought indices in the VGTB basin 
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3.2. Drought map  
As analyzed above, the VHI has shown the outperformance of all other indices. Thus, 

VHI was chosen to monitor the drought in the VG-TB basin. 
The spatial drought risk maps of the VGTB corresponding to the years 2010, 2015, 

and 2020 are respectively demonstrated in Figure 8. The classification ranges of VHI are 
used in Figure. 8 and is also provided in Table 1. 

  
Figure 8. The spatial drought risk map across the VG-TB basin in 2010 and 2020 
As a result, the drought maps for the VGTB river basin represent the high-risk regions 

correlating to the coastal lowland in the eastern of the study area. These areas are 
characterized by the low alluvial topography of the VGTB river system and sparse density 
of vegetation. These territories are also the home of residents and agricultural activities that 
are suffering the negative impacts from drought hazards. The western part of the study area, 
mainly mountainous and forest landscapes with high precipitation volume, is categorized as 
having no drought in the drought hazard map. Results from this study are an essential source 
for proposing sustainable economic activities in response to the drought hazard in the VGTB 
river basin.  
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4. Conclusions 
This study has experienced a remote sensing-based approach for assessing drought 

hazards in the VGTB basin, one of the largest river basins in Central Vietnam. Utilizing 
cloud computing GEE integrated with various RSDI indices, including TCI, VCI, VHI, 
NDVI, NDWI, and TVDI, could help effectively identify the optimal remote sensing-based 
indices for drought monitoring in the VGTB river basin. This empirical research shows that 
VHI is the most suitable index for monitoring the drought hazard in the VGTB river basin, 
with the best performance on the correlation to in-situ data. Results from this study could be 
valuable for assessing the drought risk using remote sensing and GEE from the data-scarce 
regions. 
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TÓM TẮT 

Nghiên cứu này được thực hiện nhằm áp dụng các chỉ số viễn thám để theo dõi tình trạng hạn 
hán ở lưu vực sông Vu Gia – Thu Bồn (VG-TB) bằng cách sử dụng dữ liệu vệ tinh và nền tảng điện 
toán Google Earth Engine. Dữ liệu viễn thám từ chuỗi vệ tinh Landsat đã chứng tỏ hiệu quả trong 
việc tính toán các chỉ số hạn hán theo chuỗi thời gian. Cũng trong nghiên cứu này, chúng tôi đã kiểm 
tra sự hiệu quả của một số chỉ số trong theo dõi hạn hán ở lưu vực sông VG-TB từ 01/2010 đến 
12/2020. Kết quả đã cho thấy, khi kiểm tra đối chiếu giữa các chỉ số hạn tại trạm như chỉ số thoát 
hơi nước tiềm năng, nhiệt độ của bề mặt đất tại trạm khí tượng và các chỉ số hạn hán tính từ dữ liệu 
vệ tinh có sự tương quan thống nhất tương đối cao. Kết quả này một lần nữa chứng minh dữ liệu 
viễn thám có thể là một giải pháp thay thế hiệu quả để theo dõi hạn hán khi viễn thám là nguồn dữ 
liệu khả dụng duy nhất. 

Từ khóa: hạn hán; Google Earth Engine; Landsat; viễn thám; RSDI; VGTB  
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