CALCULATION OF SCALAR SCATTERING ON A PROLATE SPHEROID

Lê Hải Lương , Hoàng Thanh Trang Vũ , Alexander Alexandrovich Gusev

Main Article Content

Abstract

 

Method of separation of variables plays an important role in mathematical physics problems, especially in the scattering problem containing hyperbolic equations with the survey domain limited by coordinate surfaces of arbitrary shapes. In this paper, the method of separation of variables in the spherical coordinate system is developed for calculating the scalar stationary scattering problem on a prolate spheroid with an arbitrary ratio between wavelength and size of the spheroid.

 

Article Details

References

King, B. J., & Van Buren, A. L. (1972). Acoustic radiation from two spheroids. J. Acoust. Soc. Amer. 52(1), 364-372.
Bowman, J. J. et al. (1969). Electromagnetic and Acoustic Scattering by Simple Shapes. North-Holland, Amsterdam.
Handelman, G. H., & Sidman, R. D. (1972). Motion of a spherical obstacle generated by plane or spherical acoustic waves. J. Acoust. Soc. Amer, 52(3), 923-927.
Acho, T. M. (1992). Scalar wave scattering of a prolate spheroid as a parameter expansion of that of a sphere, Quarterly of applied mathematics, l(3), 451-468.
Меiхnег, J., & Wе1ls, С. P. (1959). Improving of the convergence in an expansion of spheroidal wave functions. Quart. Appl. Math, 17(3), 263-269.
Flammer, K. (1962). Spheroidal wave function tables. Moscow, Computing Center of the Academy of Sciences of the USSR.
Sеniоr, Т. В. A. (1960). Scalar diffraction by a prolate spheroid at low frequencies. Canad. J. Phys. 38(12), 1632-1641.
Barlow, С. А., & Einspruсh, N. G. (1961). Scattering of a compressional wave by a prolate spheroid. Quart. Appl. Math, 19(3), 253-258.
Wallander, S.V. (1963). Aerodynamics of thin gases. Sat 1. Ed. L., Ed. LSU.