EFFECTS OF NPK CONCENTRATION ON PROTEIN CONTENT AND ANTIOXIDANT CAPACITY OF SPIRULINA SP. CULTURED BY PLASTIC BAG PHOTO – BIOREACTOR

Hồng Trung Võ , Mộng Thảo Uyên Nguyễn , Lương Anh Tuấn Phạm , Anh Thư Đỗ , Thị Hồng Phúc Nguyễn

Main Article Content

Abstract

Spirulina sp. is blue-green algae with spiral-shape. The protein content varies between 60 and 70% of its dry weight. It is usually used as a functional food to prevent aging and cancer. Nitrogen and phosphor as nutrients in a culture medium strongly influence the protein content and the antioxidant ability of Spirulina sp. This paper reports a study on the effect of three levels of concentration of NPK fertilizer (0.1g. L-1; 0.5g.L-1; 1g.L-1) on protein content, total phenolic content, and antioxidant capacity (I%, IC50 and AAI) of Spirulina. The results showed that with 0.5g.L-1 NPK added Zarrouk medium protein, phenolic content and antioxidant capacity were higher than 0.1 g.L-1 and 1 g.L-1 concentrations of NPK. Besides, it was found that the antioxidant ability (IC50 and AAI values) of Spirulina sp. in a Zarrouk medium containing 0.1g.L-1 concentration of NPK was higher than the medium containing 0.5g.L-1 and 1g.L-1 concentrations
of NPK.

Article Details

References

Agustini, T. W., Suzery, M., Sutrisnanto, D., & Ma’ruf, W. F. (2015). Comparative Study of Bioactive Substances Extracted from Fresh and Dried Spirulina sp.. Procedia Environmental Sciences, 23, 282-289.
Albayrak, S., Aksoy, A., Sagdic, O., & Hamzaoglu, E. (2010). Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food chemistry, 119(1), 114-122. doi:https://doi.org/10.1016/j.foodchem.2009.06.003
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-254.
Cornet, J. F., Dussap, C. G., & Dubertret, G. (1992). A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors: I. Coupling between light transfer and growth kinetics. Biotechnol Bioeng, 40(7), 817-825. doi:10.1002/bit.260400709
Danesi, E., Rangel-Yagui, C. d. O., De Carvalho, J., & Sato, S. (2002). An investigation of effect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis. Biomass and Bioenergy, 23(4), 261-269.
El Baky, H. H. A., El Baroty, G. S., & Ibrahem, E. A. (2015). Functional characters evaluation of biscuits sublimated with pure phycocyanin isolated from Spirulina and Spirulina biomass. Nutricion Hospitalaria, 32(1), 231-241.
Finamore, A., Palmery, M., Bensehaila, S., & Peluso, I. (2017). Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina. Oxid Med Cell Longev, 3247528. doi:10.1155/2017/3247528
Fried, S., Mackie, B., & Nothwehr, E. (2003). Nitrate and phosphate levels positively affect the growth of algae species found in Perry Pond. Tillers, 4, 21-24.
Gershwin, M. E., & Belay, A. (2007). Spirulina in human nutrition and health: CRC press.
Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24(6), 1477-1486.
Hajimahmoodi, M., Faramarzi, M. A., Mohammadi, N., Soltani, N., Oveisi, M. R., & Nafissi-Varcheh, N. (2010). Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. Journal of Applied Phycology, 22(1), 43-50.
KAND, S. (2013). Effect of different nitrogen concentrations on the biomass and biochemical consituents ofSpirulina platensis [Geitler]. Asian Journal of Bio Science, 8(2), 245-247.
Konícková, R., Vanková, K., Vaníková, J., Vánová, K., Muchová, L., Subhanová, I., . . . Kolár, M. (2014). Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Annals of Hepatology, 13(2), 273-283.
Kumari, A., Kumar, A., Pathak, A. K., & Guria, C. (2014). Carbon dioxide assisted Spirulina platensis cultivation using NPK-10: 26: 26 complex fertilizer in sintered disk chromatographic glass bubble column. Journal of CO2 Utilization, 8, 49-59.
Lim, S., Cheung, P., Ooi, V., & Ang, P. (2002). Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. Journal of Agricultural and Food Chemistry, 50(13), 3862-3866.
Madkour, F. F., Kamil, A. E.-W., & Nasr, H. S. (2012a). Production and nutritive value of Spirulina platensis in reduced cost media. The egyptian journal of aquatic research, 38(1), 51-57.
Madkour, F. F., Kamil, A. E.-W., & Nasr, H. S. (2012b). Production and nutritive value of Spirulina platensis in reduced cost media. Egyptian Journal of Aquatic Research, 38, 51-57.
Miranda, M., Cintra, R., Barros, S. B. d. M., & Mancini-Filho, J. (1998). Antioxidant activity of the microalga Spirulina maxima. Brazilian Journal of Medical and biological research, 31(8), 1075-1079.
Miranda, M. S., Cintra, R. G., Barros, S. B., & Mancini Filho, J. (1998). Antioxidant activity of the microalga Spirulina maxima. Braz J Med Biol Res, 31(8), 1075-1079.
Morsy, O., Sharoba, A. E.-D., & HEM, B. (2014). Production and evaluation of extruded food products by using spirulina algae. Annals of Agric. Sci., Moshtohor ISSN, 1110-0419.
Mukherjee, P., Gorain, P. C., Paul, I., Bose, R., Bhadoria, P., & Pal, R. (2019). Investigation on the effects of nitrate and salinity stress on the antioxidant properties of green algae with special reference to the use of processed biomass as potent fish feed ingredient. Aquaculture International, 1-24.
Scherer, R., & Godoy, H. T. (2009). Antioxidant activity index (AAI) by the 2, 2-diphenyl-1-picrylhydrazyl method. Food chemistry, 112(3), 654-658.
Shabana, E. F., Gabr, M. A., Moussa, H. R., El-Shaer, E. A., & Ismaiel, M. M. S. (2017). Biochemical composition and antioxidant activities of Arthrospira (Spirulina) platensis in response to gamma irradiation. Food Chem, 214, 550-555. doi:10.1016/j.foodchem.2016.07.109
Tran, D., Doan, N., Louime, C., Giordano, M., & Portilla, S. (2014). Growth, antioxidant capacity and total carotene of Dunaliella salina DCCBC15 in a low cost enriched natural seawater medium. World J Microbiol Biotechnol, 30(1), 317-322. doi:10.1007/s11274-013-1413-2
Uslu, L., Içik, O., Koç, K., & Göksan, T. (2011). The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. African Journal of Biotechnology, 10(3),
386-389.
Yaltirak, T., Aslim, B., Ozturk, S., & Alli, H. (2009). Antimicrobial and antioxidant activities of Russula delica Fr. Food Chem Toxicol, 47(8), 2052-2056. doi:10.1016/j.fct.2009.05.029