APPLICATION OF COPPER HEXACYANOFERRATE IN THE REMOVAL OF CESIUM AND STRONTIUM IONS FROM AQUEOUS SOLUTION

Đình Trung Nguyễn , Vũ Trâm Anh Lê , Đông Phương Trương , Thị Ánh Ly Huỳnh

Main Article Content

Abstract

 

 

Nanoscale copper hexacyanoferrate (CuHF) material was prepared by a low-cost chemical co-precipitation method. The research results show that CuHF is an effective adsorbent for both radioactive cesium and strontium ions. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) spectra, and high-resolution transmission electron microscopy (HRTEM) images were performed to determine the morphologies of CuHF. The Cu13[Fe(CN)6]14.(2K).10H2O material has a cubic structure (space group F-43) in the range of 10 and 30 nm and a surface area of 462.42 m2/g. The absorption of Cs+ and Sr2+ ion depends on pH value; the maximum value of absorption capacity (qmax) of this material is recorded at pH 6. The Langmuir model was conformable to describe the adsorption process of both Cs+ and Sr2+ ions by CuHF. According to the Langmuir model, the maximum adsorption capacity qmax obtained is 190.52 mg/g and 72.43  mg/g for Cs+ and Sr2+, respectively. The nanoscale copper hexacyanoferrate (CuHF) material in this study is evaluated as a potential and promising adsorbent in treating Cs+ and Sr2+ ions in nuclear water because of their excellent adsorption capacity, easy and low-cost synthesis.

 

 

Article Details

Author Biography

Đình Trung Nguyễn,

Giám đốc trung tâm phân tích và kiểm định trường Đại học Đà Lạt

Tiến sĩ Hóa học môi trường

 

References

Aguila, B., Banerjee, D., Nie, Z., Shin, Y., Ma, S., & Thallapally, P. K. (2016). Selective removal of cesium and strontium using porous frameworks from high level nuclear waste. Chemical Communications, 52(35), 5940-5942. doi:10.1039/c6cc00843g
Ali, M. M. S., Sami, N. M., & El-Sayed, A. A. (2020). Removal of Cs+, Sr2+ and Co2+ by activated charcoal modified with Prussian blue nanoparticle (PBNP) from aqueous media: kinetics and equilibrium studies. Journal of Radioanalytical and Nuclear Chemistry. doi:10.1007/s10967-020-07067-y
Avila, M., Reguera, L., Rodríguez-Hernández, J., Balmaseda, J., & Reguera, E. (2008). Porous framework of T2[Fe(CN)6]•xH2O with T=Co, Ni, Cu, Zn, and H2 storage. Journal of Solid State Chemistry, 181(11), 2899-2907. doi:10.1016/j.jssc.2008.07.030
Clarke, T. D., & Wai, C. M. (1998). Selective Removal of Cesium from Acid Solutions with Immobilized Copper Ferrocyanide. Analytical Chemistry, 70(17), 3708-3711. doi:10.1021/ac971138b
El-Kamash, A. M. (2008). Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. Journal of Hazardous Materials, 151(2-3), 432-445. doi:10.1016/j.jhazmat.2007.06.009
Faghihian, H., Iravani, M., Moayed, M., & Ghannadi-Maragheh, M. (2013). Preparation of a novel PAN–zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies. Chemical Engineering Journal, 222, 41–48. doi:10.1016/j.cej.2013.02.035
https://doi.org/10.1016/j.jenvrad.2020.106210
Hwang, K. S., Park, C. W., Lee, K.-W., Park, S.-J., & Yang, H.-M. (2017). Highly efficient removal of radioactive cesium by sodium-copper hexacyanoferrate-modified magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 516, 375-382. doi:10.1016/j.colsurfa.2016.12.052
Kiener, J., Limousy, L., Jeguirim, M., Le Meins, J.-M., Hajjar-Garreau, S., Bigoin, G., & Ghimbeu, C. M. (2019). Activated Carbon/Transition Metal (Ni, In, Cu) Hexacyanoferrate Nanocomposites for Cesium Adsorption. Materials, 12(8), 1253. doi:10.3390/ma12081253
Koo, Y.-H., Yang, Y.-S., & Song, K.-W. (2014). Radioactivity release from the Fukushima accident and its consequences: A review. Progress in Nuclear Energy, 74, 61-70. doi:10.1016/j.pnucene.2014.02.013
Loos-Neskovic, C., Ayrault, S., Badillo, V., Jimenez, B., Garnier, E., Fedoroff, M., … Merinov, B. (2004). Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium. Journal of Solid State Chemistry, 177(6), 1817-1828.
Ma, B., Oh, S., Shin, W. S., & Choi, S.-J. (2011). Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination, 276(1-3), 336-346. doi:10.1016/j.desal.2011.03.072
Mimura, H., Lehto, J., & Harjula, R. (1997). Selective Removal of Cesium from Simulated High-level Liquid Wastes by Insoluble Ferrocyanides. Journal of Nuclear Science and Technology, 34(6), 607-609. doi:10.1080/18811248.1997.9733715
Murray-Rust, P. Open-access collection of crystal structures of organic, inorganic, metal-organics compounds and minerals, excluding biopolymers. Retreived from http://www.crystallography.net/cod/
Parajuli, D., Takahashi, A., Noguchi, H., Kitajima, A., Tanaka, H., Takasaki, M., … Kawamoto, T. (2016). Comparative study of the factors associated with the application of metal hexacyanoferrates for environmental Cs decontamination. Chemical Engineering Journal, 283, 1322-1328. doi:10.1016/j.cej.2015.08.076
Singh, S., Eapen, S., Thorat, V., Kaushik, C. P., Raj, K., & D’Souza, S. F. (2008). Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria zizanoides. Ecotoxicology and Environmental Safety, 69(2), 306-311. doi:10.1016/j.ecoenv.2006.12.004
Sun, Sh. D., Zhang, X. Ch., Cui, J., & Liang Sh. H. (2020). Identification of the Miller indices of crystallographic plane: A tutorial and comprehensive review on fundamental theory, universal methods based on different case studies and matters needing attention, RCS. Nanoscale, 12,16657-16677, doi:10.1039/D0NR03637D
Takahashi, A., Kitajima, A., Parajuli, D., Hakuta, Y., Tanaka, H., Ohkoshi, S., & Kawamoto, T. (2016). Radioactive cesium removal from ash-washing solution with high pH and high K + -concentration using potassium zinc hexacyanoferrate. Chemical Engineering Research and Design, 109, 513-518. doi:10.1016/j.cherd.2016.02.027
Vincent, T., Vincent, C., & Guibal, E. (2015). Immobilization of Metal Hexacyanoferrate Ion-Exchangers for the Synthesis of Metal Ion Sorbents—A Mini-Review. Molecules, 20(11), 20582-20613. doi:10.3390/molecules201119718
Vipin, A. K., Ling, S., & Fugetsu, B. (2014). Sodium cobalt hexacyanoferrate encapsulated in alginate vesicle with CNT for both cesium and strontium removal. Carbohydrate Polymers, 111, 477-484. doi:10.1016/j.carbpol.2014.04.037
Vipin, A. K., Ling, S., & Fugetsu, B. (2016). Removal of Cs+ and Sr2+ from water using MWCNT reinforced Zeolite-A beads. Microporous and Mesoporous Materials, 224 84-88 http://dx.doi.org/10.1016/j.micromeso.2015.11.024
Voronina, A. V., Noskov, Yu, A., Semenishchev V. S., & Gupta, D. K. (2020). Decontamination of seawater from 137Cs and 90Sr radionuclides using inorganic sorbents. Journal of Environmental Radioactivity, 217, 106210.
Wang, L., Feng, M., Liu, C., Zhao, Y., Li, S., Wang, H., … Li, S. (2009). Supporting of Potassium Copper Hexacyanoferrate on Porous Activated Carbon Substrate for Cesium Separation. Separation Science and Technology, 44(16), 4023–4035. doi:10.1080/01496390903183253
Yasunari, T. J., Stohl, A., Hayano, R. S., Burkhart, J. F., Eckhardt, S., & Yasunari, T. (2011). Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proceedings of the National Academy of Sciences, 108(49), 19530-19534. doi:10.1073/pnas.1112058108
Zong, Y., Zhang, Y., Lin, X., Ye, D., Qiao, D., & Zeng, S. (2017). Correction: Facile synthesis of potassium copper ferrocyanide composite particles for selective cesium removal from wastewater in the batch and continuous processes. RSC Advances, 7(54), 33974-33974. doi:10.1039/c7ra90079a