APPLICATION OF COPPER HEXACYANOFERRATE IN THE REMOVAL OF CESIUM AND STRONTIUM IONS FROM AQUEOUS SOLUTION
Main Article Content
Abstract
Nanoscale copper hexacyanoferrate (CuHF) material was prepared by a low-cost chemical co-precipitation method. The research results show that CuHF is an effective adsorbent for both radioactive cesium and strontium ions. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) spectra, and high-resolution transmission electron microscopy (HRTEM) images were performed to determine the morphologies of CuHF. The Cu13[Fe(CN)6]14.(2K).10H2O material has a cubic structure (space group F-43) in the range of 10 and 30 nm and a surface area of 462.42 m2/g. The absorption of Cs+ and Sr2+ ion depends on pH value; the maximum value of absorption capacity (qmax) of this material is recorded at pH 6. The Langmuir model was conformable to describe the adsorption process of both Cs+ and Sr2+ ions by CuHF. According to the Langmuir model, the maximum adsorption capacity qmax obtained is 190.52 mg/g and 72.43 mg/g for Cs+ and Sr2+, respectively. The nanoscale copper hexacyanoferrate (CuHF) material in this study is evaluated as a potential and promising adsorbent in treating Cs+ and Sr2+ ions in nuclear water because of their excellent adsorption capacity, easy and low-cost synthesis.
Keywords
adsorption, cesium, copper hexacyanoferrate, strontium, nanoparticle
Article Details
References
Ali, M. M. S., Sami, N. M., & El-Sayed, A. A. (2020). Removal of Cs+, Sr2+ and Co2+ by activated charcoal modified with Prussian blue nanoparticle (PBNP) from aqueous media: kinetics and equilibrium studies. Journal of Radioanalytical and Nuclear Chemistry. doi:10.1007/s10967-020-07067-y
Avila, M., Reguera, L., Rodríguez-Hernández, J., Balmaseda, J., & Reguera, E. (2008). Porous framework of T2[Fe(CN)6]•xH2O with T=Co, Ni, Cu, Zn, and H2 storage. Journal of Solid State Chemistry, 181(11), 2899-2907. doi:10.1016/j.jssc.2008.07.030
Clarke, T. D., & Wai, C. M. (1998). Selective Removal of Cesium from Acid Solutions with Immobilized Copper Ferrocyanide. Analytical Chemistry, 70(17), 3708-3711. doi:10.1021/ac971138b
El-Kamash, A. M. (2008). Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. Journal of Hazardous Materials, 151(2-3), 432-445. doi:10.1016/j.jhazmat.2007.06.009
Faghihian, H., Iravani, M., Moayed, M., & Ghannadi-Maragheh, M. (2013). Preparation of a novel PAN–zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies. Chemical Engineering Journal, 222, 41–48. doi:10.1016/j.cej.2013.02.035
https://doi.org/10.1016/j.jenvrad.2020.106210
Hwang, K. S., Park, C. W., Lee, K.-W., Park, S.-J., & Yang, H.-M. (2017). Highly efficient removal of radioactive cesium by sodium-copper hexacyanoferrate-modified magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 516, 375-382. doi:10.1016/j.colsurfa.2016.12.052
Kiener, J., Limousy, L., Jeguirim, M., Le Meins, J.-M., Hajjar-Garreau, S., Bigoin, G., & Ghimbeu, C. M. (2019). Activated Carbon/Transition Metal (Ni, In, Cu) Hexacyanoferrate Nanocomposites for Cesium Adsorption. Materials, 12(8), 1253. doi:10.3390/ma12081253
Koo, Y.-H., Yang, Y.-S., & Song, K.-W. (2014). Radioactivity release from the Fukushima accident and its consequences: A review. Progress in Nuclear Energy, 74, 61-70. doi:10.1016/j.pnucene.2014.02.013
Loos-Neskovic, C., Ayrault, S., Badillo, V., Jimenez, B., Garnier, E., Fedoroff, M., … Merinov, B. (2004). Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium. Journal of Solid State Chemistry, 177(6), 1817-1828.
Ma, B., Oh, S., Shin, W. S., & Choi, S.-J. (2011). Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination, 276(1-3), 336-346. doi:10.1016/j.desal.2011.03.072
Mimura, H., Lehto, J., & Harjula, R. (1997). Selective Removal of Cesium from Simulated High-level Liquid Wastes by Insoluble Ferrocyanides. Journal of Nuclear Science and Technology, 34(6), 607-609. doi:10.1080/18811248.1997.9733715
Murray-Rust, P. Open-access collection of crystal structures of organic, inorganic, metal-organics compounds and minerals, excluding biopolymers. Retreived from http://www.crystallography.net/cod/
Parajuli, D., Takahashi, A., Noguchi, H., Kitajima, A., Tanaka, H., Takasaki, M., … Kawamoto, T. (2016). Comparative study of the factors associated with the application of metal hexacyanoferrates for environmental Cs decontamination. Chemical Engineering Journal, 283, 1322-1328. doi:10.1016/j.cej.2015.08.076
Singh, S., Eapen, S., Thorat, V., Kaushik, C. P., Raj, K., & D’Souza, S. F. (2008). Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria zizanoides. Ecotoxicology and Environmental Safety, 69(2), 306-311. doi:10.1016/j.ecoenv.2006.12.004
Sun, Sh. D., Zhang, X. Ch., Cui, J., & Liang Sh. H. (2020). Identification of the Miller indices of crystallographic plane: A tutorial and comprehensive review on fundamental theory, universal methods based on different case studies and matters needing attention, RCS. Nanoscale, 12,16657-16677, doi:10.1039/D0NR03637D
Takahashi, A., Kitajima, A., Parajuli, D., Hakuta, Y., Tanaka, H., Ohkoshi, S., & Kawamoto, T. (2016). Radioactive cesium removal from ash-washing solution with high pH and high K + -concentration using potassium zinc hexacyanoferrate. Chemical Engineering Research and Design, 109, 513-518. doi:10.1016/j.cherd.2016.02.027
Vincent, T., Vincent, C., & Guibal, E. (2015). Immobilization of Metal Hexacyanoferrate Ion-Exchangers for the Synthesis of Metal Ion Sorbents—A Mini-Review. Molecules, 20(11), 20582-20613. doi:10.3390/molecules201119718
Vipin, A. K., Ling, S., & Fugetsu, B. (2014). Sodium cobalt hexacyanoferrate encapsulated in alginate vesicle with CNT for both cesium and strontium removal. Carbohydrate Polymers, 111, 477-484. doi:10.1016/j.carbpol.2014.04.037
Vipin, A. K., Ling, S., & Fugetsu, B. (2016). Removal of Cs+ and Sr2+ from water using MWCNT reinforced Zeolite-A beads. Microporous and Mesoporous Materials, 224 84-88 http://dx.doi.org/10.1016/j.micromeso.2015.11.024
Voronina, A. V., Noskov, Yu, A., Semenishchev V. S., & Gupta, D. K. (2020). Decontamination of seawater from 137Cs and 90Sr radionuclides using inorganic sorbents. Journal of Environmental Radioactivity, 217, 106210.
Wang, L., Feng, M., Liu, C., Zhao, Y., Li, S., Wang, H., … Li, S. (2009). Supporting of Potassium Copper Hexacyanoferrate on Porous Activated Carbon Substrate for Cesium Separation. Separation Science and Technology, 44(16), 4023–4035. doi:10.1080/01496390903183253
Yasunari, T. J., Stohl, A., Hayano, R. S., Burkhart, J. F., Eckhardt, S., & Yasunari, T. (2011). Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proceedings of the National Academy of Sciences, 108(49), 19530-19534. doi:10.1073/pnas.1112058108
Zong, Y., Zhang, Y., Lin, X., Ye, D., Qiao, D., & Zeng, S. (2017). Correction: Facile synthesis of potassium copper ferrocyanide composite particles for selective cesium removal from wastewater in the batch and continuous processes. RSC Advances, 7(54), 33974-33974. doi:10.1039/c7ra90079a